Improving Disaster Response with Mobile Robots and Multi-Touch Technologies

Hurricane Katrina made landfall near Biloxi, Mississippi in late August 2005. The resulting disaster response revealed a large technological gap. Although satellite and aerial information existed, it was not available to or used by search teams. Instead, during the night, US Geological Survey and state forestry personnel manually generated area maps. These maps were distributed to search personnel in the morning for the daily grid searches. When the teams returned that evening, updates were manually integrated by USGS and forestry personnel based upon search reports.

The UMass Lowell Robotics Lab envisions an intelligent command and control interface that coalesces available information, e.g. combining satellite and aerial data over time with city planning layouts (street, sewer, water, gas, electric, and communication). Our system will allow collaboration on the interface by multiple users on multiple layers. Thus, informed discussion can occur, risks can be properly assessed, a plan can be developed, and resources efficiently allocated. If a significant finding occurs in the field, the plan can be quickly modified.

UMass Lowell Robotics Lab
The Robotics Lab was founded by Dr. Holly Yanco in 2001. Research focuses on human-robot interaction (HRI), which includes interface design, robot autonomy, computer vision, and evaluation methods. Application domains include assistive technology (AT) and urban search and rescue (USAR). The Robotics Lab also has an active community partnerships program, working with K-12 students.

Research in the lab is funded by the National Science Foundation (IIS-0308186, IIS-0415224, IIS-0546309, IIS-0534364, SES-0623083, CNS-0540564) and the National Institute of Standards and Technology (70NANB3H1116). Dr. Yanco received an NSF Career Award in 2005.
Interactive Damage Assessment

In a disaster relief effort, before and after comparisons of the area can be valuable to the command staff. Remaining structures can be annotated to indicate future search areas. Debris fields can be marked as a secondary search priority. The relocation of maritime structures and large boats may also be noted. Overall, the search space can be optimized and high priority given to areas with greatest potential for survivors.

The user marks a barge moved by the storm surge. During natural disasters like hurricanes, entire structures can be moved.

Aerial photography of Biloxi, Mississippi after Hurricane Katrina is overlaid on pre-disaster satellite imagery. To reveal the post-disaster image, the user places two fingers around the area of interest. This opens a window (shown as a color specified rectangle) owned exclusively by the user. In the window, the user can adjust the zoom level and annotate the map. The user can also move the window around the map.

Damage Assessment from Multiple Perspectives

The main focus of responders is to search for survivors and victims in the aftermath of disasters. The structural integrity of a building may be severely compromised by wind, storm surge, or debris. When human or canine personnel cannot safely search, robots can be deployed instead, thus minimizing further loss of life.

One such search robot is American Standard Robotics’ Variable Geometry Tracked Vehicle (VGTV), manufactured by Inuktun Services. The VGTV is a tele-operated, tethered robot. It is capable of changing its shape and is depth rated to 100 feet. It is equipped with a color zoom camera, two-way audio, and lights. The VGTV can also carry sensors and small equipment into search areas.

Our VGTV was used in Biloxi, Mississippi after Hurricane Katrina by Florida Task Force Three. Rescuers were able to search unsafe structures and experience a first-person view from the robot.

Enabling Technology: MERL DiamondTouch

Mitsubishi Electric Research Laboratories has created a touch-screen that breaks the normal monitor-keyboard-mouse paradigm. The DiamondTouch is capable of uniquely identifying multiple users simultaneously by touch. The board itself is embedded with antennas in the horizontal and vertical directions which form a grid. The antennas continuously transmit signals. When a user touches the board, the radio signal is sent to the receiver connected to their body. The board can also recognize gesture using combinations of the change in surface area, motion, and touch sequence. The DiamondTouch display is forward projected and spill resistant. It is available in two standard sizes: 32” or 42” diagonal.
Human-Robot Interaction: Design and Evaluation

Situation awareness (SA) is critical to the successful operation of an unmanned vehicle. Since 2003, the UMass Lowell Robotics Lab has studied numerous robot control systems intended for emergency response. We have designed evaluation methods and produced design guidelines for HRI. From this, we implemented our own video-centric urban search and rescue (USAR) system.

Our platform is an iRobot ATRV-JR featuring a 2.8GHz Pentium IV processor, a full sonar ring (26 sonars), two Canon VC-C4 pan-tilt-zoom cameras (front and rear), a SICK laser, a FLIR Systems Indigo A10 thermal camera, a carbon dioxide sensor, an audio system, and a lighting system. The robot currently uses four levels of autonomy, ranging from teleoperation to a goal-centric mode.

A remote user drives our ATRV-JR through a narrow turn in the test arena. Situation awareness is critical to avoid collisions with the structure, which could potentially cause damage to the robot and the structure.

Situation Awareness for Variable Geometry Robots

Polymorphic robots are capable of operating in dynamic environments. They can change shape to maximize their effectiveness. However, their shape-shifting ability adds complexity to situation awareness (SA) when designing an intuitive user interface.

The VGTV robot was designed to be polymorphic; the robot’s physical configurations range from lying completely flat to raised upright. UMass Lowell Robotics Lab’s VGTV was used in experiments conducted in conjunction with MITRE and American Standard Robotics. The experiments tested the impact of pose information on user performance and situation awareness.

The VGTV travels through aquatic and rough terrain without problems. Its sealed water-tight chassis allows it to work in difficult environments such as desert sand and snow.

The presence of pose information was found to increase SA. When the user was presented with robot pose information, we found a significant decrease in the number of times the robot tipped over or its forward motion was hindered. Without the pose display, participants were more likely to use the upright raised pose to reorient, thus requiring additional manipulation time.
Our Collaborators

- Florida Task Force Three (Mark Micire)
- iRobot (Dave Goodall, Tom Frost)
- Mitsubishi Electric Research Laboratories (Adam Bogue)
- MITRE (Jill Drury, Jennifer Casper)
- National Institute of Standards and Technology (Elena Messina)
- Idaho National Labs (David Bruemmer, Doug Few, Curtis Nielsen)

Related Links

- UMass Lowell Robotics Lab
 http://www.cs.uml.edu/robots
- DiamondTouch
 http://www.merl.com/projects/DiamondTouch
- VGTV-Extreme
 http://www.asrobotics.com

Selected Publications

