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Abstract

We describe mobile robots engaged in a cooperative
task that requires communication� The robots are
initially given a �xed but uninterpreted vocabulary
for communication� In attempting to perform their
task� the robots learn a private communication lan�
guage� Di�erent meanings for vocabulary elements
are learned in di�erent runs of the experiment� As
circumstances change� the robots adapt their lan�
guage to allow continued success at their task�

� Introduction

In this paper� we investigate the evolution of simple com�
munication protocols among nonverbal subjects engaged
in cooperative tasks� Gregarious animals� small children�
and even adult humans lacking common language engage
in such activity routinely� Grunts� gestures� and other
nonverbal signals take on mutually agreed�upon mean�
ings in the context of cooperative tasks� �Follow me��
�Look out�� and �Raise your end of the table higher�
can all be conveyed without previously agreed�upon lan�
guage� Satisfactory completion of cooperative tasks such
as table�carrying� hunting� or tribal survival often de�
pends on making e�ective use of such communications�
This paper describes an example of a cooperative

task	coordinated movement	achieved by a troupe of
mobile robots� Depending on circumstances� di�erent
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actions are required� One robot� in the role of the leader�
has access to this information and learns to act appropri�
ately� In addition� the leader must communicate to the
troupe what actions are required on their parts� The
communication language is not �xed at the outset
 in�
stead the troupe must learn to associate appropriate ac�
tions with the commands issued by the leader� As cir�
cumstances evolve� the meanings of the leader�s com�
mands may change
 the troupe must adjust their actions
accordingly� The goal is for the entire troupe to act
appropriately and to adapt those actions and the under�
lying language over time�

When a task requires cooperation� there is often
a need for some form of communication between the
participating agents� Cooperative work requires com�
munication whenever one agent�s actions depend crit�
ically on knowledge that is accessible only to an�
other agent� It is often an expedient even when one
agent can accomplish the task on its own or when
all agents have access to the requisite information�
Previous work on cooperative behavior among mobile
robots has largely assumed a �xed communication lan�
guage� �See� for example� 
Fukuda and Kawauchi� ������

Matsumoto et al�� ������ or 
Shin and Epstein� �������
However� a language created for the robots may not pro�
vide the optimal solution� The language itself may not
be natural either to the robots or to the task at hand�
In addition� in a changing world� a hard coded language
may make it di�cult for the agents to adapt to novel sit�
uations� Fixed communication languages are less able to
handle circumstances in which changing environments
dictate changing communications� just as agents that
cannot adapt to new environments are at an evolution�
ary disadvantage relative to those that are able to learn�

The research described in this paper is aimed to�
wards giving autonomous agents the ability to develop
their own language� Our initial work was inspired
by that of 
Shewchuk� ������ His Ph�D� thesis ad�
dresses the design of appropriate reinforcement learn�
ing algorithms to learn languages for internal repre�
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sentation as well as for communication� He has im�
plemented a simple simulation of a language learning
task similar to the basic experiment we describe be�
low �two robots� two language elements� as a part of
his symbolic test suite for reinforcement learning algo�
rithms� Work on the development of communication be�
tween groups of autonomous agents has also been done
by 
MacLennan� ����� and 
Werner and Dyer� ������
Their research addresses the problem of language learn�
ing with genetic algorithms� Language evolves over
many generations of the community� Within an indi�
vidual agent� however� language is �xed over its lifetime�
In all of these cases� implementation is limited to simu�
lation
 only the work of Shewchuk addresses the problem
of task�based reinforcement �see below��

� The task

The cooperative task that we have chosen is coordinated
movement� Groups of animals engage in such activity
when hunting� escaping predators� herding� �ocking� mi�
grating� or supervising their young� Environmental cues
inform the leader �or leaders� of the troupe as to appro�
priate troupe movements
 a successful leader learns to
interpret these cues� Further� the leader learns to com�
municate to the rest of the troupe the tasks that they are
to execute� For example� upon hearing predatory noises�
a mother may shepherd her young in the opposite direc�
tion or encourage them to remain motionless to avoid
detection� The followers may be unaware of or unable to
interpret the environmental cues�

We have implemented this task with troupes with two
and three members and with a variable number of vo�
cabulary elements on robots and in simulation� A troupe
of two robots made up of one leader� Bert� and one fol�
lower� Ernie� was used for the robot experiments� The
simulator was used to gather data for the three agent

experiments and for the larger vocabulary experiments
with two agents� Because we are particularly interested
in the development of language� we assume that the fol�
lowers do not have access to the task speci�cation �i�e�
the environmental cues� and must rely completely on the
communication signals emitted by the leader� In future
experiments� we expect to allow the follower robot�s� to
use some environmental input to modulate the commu�
nication signals from the troupe leader�
Since this is a cooperative task� successful performance

depends on the actions of the troupe as a whole� Analo�
gously� the mother animal succeeds in hiding her young
only if all remain motionless
 one disobedient cub can
give away the hiding place and cause the whole troupe
to be eaten� Environmental reinforcement is therefore
positive only if all agents perform the appropriate ac�
tions� Since the followers cannot correctly interpret the
environmental cues� this performance can be achieved
reliably only when the leader and follower robots mu�
tually agree on the development and interpretation of a
private communication protocol�
Thus� the learning tasks are as follows�

� For the leader robot� the interpretation of the environ�
mentally supplied signal� the execution of an appro�
priate action� and the transmission of an appropriate
signal to the follower robot�

� For the follower robots� the execution of an appropri�
ate action based on the signal received from the leader
robot�

The �appropriateness� of an action is determined by
the environmentally supplied signal� The �appropriate�
ness� of the leader robot�s signal� however� is constrained
not by the environment but by the leader and follower
robot�s adapted internal state� That is� the signal is
appropriate if and only if the follower robot takes the



�environmentally constrained� appropriate action when
that signal is received� �The algorithm is summarized in
�gure ���

� The robots

Bert and Ernie� the two robots used in this research� are
Sensor Robots designed by Fred Martin at the Media
Laboratory at the Massachusetts Institute of Technol�
ogy 
Martin and Sargent� ������ Each robot is approxi�
mately ���l� ���w� ���h� with a single circuit board con�
taining most of the computational and sensory resources
of the robot� A �v battery strapped to the underside of
the chassis supplies the power for the robot� The robots
are shown in �gure ��

The primary computational resource is an on�
board Motorola ���� microprocessor� The program�
ming environment is ic� a multi�tasking interactive
C compiler and interpreter developed by Randy Sar�
gent 
Sargent and Martin� ������ ic allows a Sensor
Robot to be addressed through a serial line from a host
computer as well as the downloading of programs for au�
tonomous activity� The work described in this paper was
implemented with the robots under autonomous control�
Locomotion is controlled by a dual geared�wheel drive

stripped from a Radio Shack Red Fox Racer� The direc�
tion of the robot is controlled by varying the speeds of
the left and right motors �with negative speed moving
the motor backwards�� The two motorized wheels are at
the rear of the robot chassis and a caster is on the front�
Communication from human to Bert is through an

infra�red remote control transmitter� Bert uses infra�red
receivers similar to those found in televisions and VCRs�
�While Ernie also has infra�red receivers on board� they
are not being used in this work � only Bert hears sig�
nals from humans�� The robots communicate between
themselves using a pair of radio transmitter and receiver
boards similar to those used in garage door openers�
�The transmitter and receiver each run o� of a separate
�v battery�� Additionally� each robot has a speaker and
a ���character LCD� both used primarily for debugging
and monitoring of the robot�s activity�

In addition to the infra�red and radio receivers� the
sensor robots contain four �front and rear� left and right�
bump sensors� left and right shaft encoders� an incli�
nation sensor� photosensitive cells� a microphone� and
infra�red emitters� These additional sensory abilities of
the robots were not substantively used in the experi�
ments described here�

� The implementation

In our experiments� the environment is represented by a
human �instructor� who issues one of a number of signals
to indicate the desired action� Currently� the number of
signals is equal to the size of the language� The leader
robot performs an action and also signals the follower

The initial state� s�� consists of the integer variables x��
n�� x�� and n�� each initialized to ��

u�s� a� r� � if a � � then begin

x� �� x� � r

n� �� n� � �
end else begin

x� �� x� � r

n� �� n� � �
end

e�s� � if ub�x�� n�� � ub�x�� n�� then

return �
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return �
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Figure �� Kaelbling�s interval estimation algo�
rithm 
Kaelbling� ����� Figure ����

robot� Upon receipt of the leader�s signal� the follower
robot selects and performs an action� If both robots
have performed correctly� positive reinforcement ��� is
issued� If either robot performs incorrectly� negative re�
inforcement ��� is issued� Based on this environmental
feedback� the robots learn to select appropriate actions
and communication signals� This algorithm is summa�
rized in �gure ��
Both the action selection and the signal selection

are learned using standard reinforcement learning tech�
niques� �See� e�g�� 
Kaelbling� ����� or 
Sutton� ����� for
overviews of reinforcement learning�� The particular al�
gorithm that we use is adapted from Kaelbling�s interval
estimation method 
������ Interval estimation is a rela�
tively simple form of reinforcement� A table of inputs �
actions is maintained� Each time an input is received�
the expected �best� action is taken and the counter for
that input�action pair is incremented� If positive re�
inforcement is received� a second counter for that in�
put�action pair is also incremented� The �best� action
given some input is selected by an optimization function�
If no one particular action is the �best�� an action is se�
lected randomly� �The algorithm for interval estimation
is given in �gure ���
In our initial experiments� we allow each of the robots

two possible actions� At each iteration� each robot
chooses either go straight or spin� Further� the communi�
cation protocol contains only two vocabulary elements	



Figure �� Ernie and Bert

high and low	so that the learning problem remains
tractable� The leader robot must thus learn to select
one of four possible action�communication pairs
 the fol�
lower robot must learn to associate each of the vocab�
ulary items with one of its two possible actions� Con�
vergence on the robots is easily veri�ed by testing each
environmental input
 if all behaviors are as expected� the
protocol will not change further without environmental
adaptation�

We have also implemented the identical learning algo�
rithms in simulation in C running under UNIX on SUN
SPARCstations� The simulation is used primarily for
ease of data collection over large numbers of runs and in
scaling up the experiments to larger language and troupe
sizes� To assess convergence� we wait until all of the
instructor�s signals �i�e� all distinct environmental cues�
have been completed three times consecutively without
negative reinforcement� At that point� each input is
tested to verify that convergence has truly been reached�
�This leads to slightly in�ated convergence times in sim�
ulation over experiments on the robots��

In the case of a two�element language� convergence
times vary wildly when a true random function is used�
Extended series of a single environmental cue cause os�
cillations in the agents� state variables� leading to pro�
tracted convergence times in a substantial fraction of the
runs� �The simulation took an average of �������� iter�
ations to converge for a two element language using two
agents� with a minimum of �� iterations and a maximum
of ������ iterations� In ��� tests of this case� the simu�
lation took over ��� iterations to converge in one quarter
of the tests�� To avoid this problem� we used a biased
random function that prevented extended series of sim�
ilar environmental inputs� The data given in the results
section of this paper was collected using the biased ran�

dom function� Data was also collected with an unbiased
random function
 in all but the two�element case� the
results are comparable�

In the implementation on our robots� communication
noise is dwarfed by human error and by the complexity
of the task�based learning problem
 we therefore omit it
from our simulation�

� Task�based reinforcement�

Our experiment is unusual in that reinforcement	
positive environmental feedback	is received only when
both robots succeed in performing the appropriate ac�
tions� This sort of task�based reinforcement contrasts
with the usual individually based reinforcement typical
in the literature� Because robots receive reinforcement
only when the troupe as a whole performs the task cor�
rectly� it is possible for an individual to perform correctly
but receive negative feedback� In addition� none of the
robots can sense the action taken by the others
 thus�
the environmental reinforcement cannot be interpreted
in that light� This further complicates the reinforcement
learning task�

Reinforcement learning algorithms typically generate
action policies for individual agents given some environ�
mental constraints� The adaptation that we describe
here is no exception� The leader robot� for example�
learns policies for what action to take and what signal
to send the follower on a given input signal� However�
what is reinforced	what the environment rewards	is
not the policy of the individual robot but the successful
performance of the total cooperative task�

For example� if the environmental constraints make
both spin the appropriate course of action� the leader
robot may spin and send the follower robot the sig�
nal that the leader believes to mean spin� If the fol�



Appropriate Leader�s Follower�s Reinforcement
action action signal action

�� �� spin low spin �

�� �� spin low straight �

�� �� straight high spin �

�� �� straight high straight �

�� �� spin low spin �
�� �� straight high spin �

 � �� spin low spin �
�� �� spin low spin �
�� �� spin low spin �
��� �� spin low spin �

��� �� straight high straight �
��� �� straight high straight �
��� �� spin low spin �

Table �� A sample run� The desired behavior is both spin on input ��� both go straight on input ��� After thirteen
iterations� convergence is reached�

lower has not yet learned the communication proto�
col� it may incorrectly interpret the leader�s signal to
mean go straight � In this case� the leader has per�
formed correctly	both its action and its signal were
appropriate	but receives negative reinforcement� Sim�
ilarly� if the leader issues an inappropriate signal	go

straight	but the follower interprets that signal to mean
spin� the environment provides positive reinforcement
�for a correctly executed task� in spite of the incorrect
internal communication� Further� neither robot is aware
of the action taken by the other and so cannot use that
knowledge to assess the environmental feedback�

The choice of this form of task�based reinforcement is
motivated by biological analogy� The world does not
generally reinforce inappropriate action� no matter how
well meant� Similarly� fortuitously apt actions are re�
warded even though the underlying intention is �awed�
�This is the root of serendipity and the sentiment under�
lying the saw� �Necessity is the mother of invention���
Because the robots� communication protocol is private
and not interpreted by the external environment �or hu�
man �instructor��� it is not relevant to the reinforcement
received� If the robots can succeed in taking appropriate
actions in spite of miscommunication� they continue to
receive positive feedback� In principle and in practice�
the task is designed so that only successful learning of
the private language allows continued successful execu�
tion of the cooperative task�

� Results

��� Developing a Shared Language

Bert and Ernie are able to learn both synchronous
action	both performing the same action in the same

interval	and divergent action	e�g�� leader spins � fol�
lower goes straight � Convergence times typically range
from �ve to twenty iterations� A sample run of the ex�
periment is given in table �� In this run� the appropriate
actions are for both robots to spin on input �� and
for both robots to go straight on input ��� The robots
converge on a mutually agreeable language	a low signal
means that the follower should spin� while a high signal
means to go straight	after thirteen iterations�

��� Adaptability of language

Once the robots converge on a particular dialect� they
continue to receive positive reinforcement as long as the
environmental constraints do not change� If circum�
stances change� however� the robots may �nd that their
previously successful actions no longer earn them pos�
itive feedback� For example� after the run in �gure ��
we might change the �appropriateness� of the robots�
actions by giving positive reinforcement to leader spin�

follower go straight on ��� Under such circumstances�
the robots can adapt their behavior	and� when nec�
essary� their communication protocol	to the changing
environment� Convergence times for the new task �i�e��
to unlearn portions of the old task and relearn the newly
appropriate behavior� range from roughly comparable to
the initial learning task to roughly double the time� de�
pending on the di�culty of the new task� the di�erences
between the old and the new� and how �rmly the previ�
ous behavior is entrenched�

��� Scaling Up the Language

The simulator has been used to collect statistics on lan�
guages ranging in size from two to twenty elements us�
ing troupes of two and three agents� For each language



Size of Number of Iterations to Convergence
Language Average Minimum Maximum

� ����� �� ��
� ������ �� ���
� ������ �� ���
� ������ ��� �� �
�� �������� ���� �����
�� ����� ��� ����� ���� � 

Table �� Learning times for a two member troupe� Ex�
periments for each language size were run ��� times�

Size of Number of Iterations to Convergence
Language Average Minimum Maximum

� � ��� �� ��
� �� � � �� ����
� ������� ��� ����
� ������� ��� � ���
�� ��������� � ���  �����

Table �� Data above is for a three member troupe and
was collected over ��� runs for each language size�

size� ��� experiments were run to convergence� Mean�
minimum� and maximum convergence times �number of
iterations� are given in table � and table �� Time to
learn a language grows exponentially in the number of
vocabulary elements in the language�

��� Variation over Dialects

In order to achieve convergence on any of these tasks� a
particular language must be agreed upon� However� the
language varies from run to run� For example� in the run
in �gure �� the robots agree that a low signal means that
the follower should spin� In another run of the same
experiment ��� means both spin� �� means both go

straight�� a high signal may be interpreted as spin and a
low signal as go straight � Such dialect di�erences depend
partly on the random selection of vocabulary elements

however� it is critical to the success of the task that the
leader and the followers all agree on the same dialect�
Using the simulator� we have counted the numbers of

times that particular dialects appear over ��� runs of a
particular experiment� In table �� data is given for the
two element language using both two and three agents

table � shows data for the three elements language using
two and three agents� These percentages are variable
and we expect that the agents� selection between dialects
would be evenly distributed in a large number of runs�

��� Increasing Troupe Size

When the troupe size is increased to three� the amount
of time necessary to converge upon a language increases

Dialect Two robots Three agents

low � spin �� ��
high � straight
low � straight �� ��
high � spin

Table �� The agents can agree on di�ering dialects in
each run� Totals for each dialect are based on ��� runs
of the two element language experiment�

Dialect Two robots Three agents

low � right
med � straight �� ��
high � left
low � right
med � left �� ��
high � straight
low � straight
med � right �� ��
high � left
low � straight
med � left � ��
high � right
low � left
med � right �� � 
high � straight
low � left
med � straight �� ��
high � right

Table �� In ��� runs� agents develop all of the six possible
dialects in a three element language� The number of
times each dialect was developed is given�

due to the additional learning that is required� �See
table ��� For the twenty element language using three
agents� the agents required ���������� iterations to agree
upon a dialect� �The experiment was only run once since
it required more than �� hours of processing time on a
SUN Sparc���
The learning time might be reduced by having a sub�

set of the agents �in this case� two of the agents� agree
on a dialect� then have these robots bootstrap the other
members of the troupe� This is similar to the way hu�
mans learn language
 every person who speaks a particu�
lar language does not need to relearn the language when
other people are learning it� This learning method will
be explored in future work�

	 Scaling up

As the number of possible actions and signals increase�
the time necessary for convergence increases exponen�
tially� This is due to the reinforcement learning algo�



rithm� For every signal� a table needs to maintained that
contains each of the actions that could be performed� In
the experiments� we are usually looking for a one�to�
one correspondence between signals and actions
 how�
ever� this fact is not exploited to speed up the learning
process since it would make the algorithm too speci�c�

If we rely on learning a new signal for every action� the
learning task quickly becomes intractable� Currently� we
are exploring alternate directions for language develop�
ment�
The language that we have described here maps single

vocabulary items onto single actions� Human language
gains power by virtue of its compositional nature� That
is� because vocabulary elements can be combined into
sentences� a vocabulary of �xed size can generate an
exponential number of utterances� Further� the inter�
pretation of the sentence depends on the interpretation
of the vocabulary elements in isolation� allowing a word
learned in one context to be correctly understood in a
novel utterance� The next phase of our experimenta�
tion will address the task of learning a compositional
language�

For example� the robots might have a language with
one set of signals for direction of motion and another
set for speed� The leader�s communications might then
be utterances such as �go left slowly� or �spin quickly��
Because the learning problem is per word rather than per
utterance� the complete language can be approximated
by a sublinear number of vocabulary elements� Even
allowing for the exponential blowup in space and time
of current reinforcement learning methods� the problem
remains in the realm of computational feasibility�


 Discussion

Implications of task�based reinforcement� Task�
based reinforcement poses particular challenges for re�
inforcement learning algorithms� The robots are learn�
ing individual action policy but receiving reinforcement
based on the global performance of the cooperative task�
As a result� task�based reinforcement behaves somewhat
like noise in the reinforcement signal� Because most
reinforcement learning algorithms are designed to func�
tion in the presence of some amount of noise� they are
adequate for this situation� However� task�based rein�
forcement is not random noise� and some algorithms will
be better suited to the job than others� Experiments
such as ours provide a useful testbed for learning algo�
rithms� 
Shewchuk� ����� describes e�orts to design re�
inforcement learning algorithms more suited to this sort
of problem�

Complex tasks� The selected task	coordinated
movement	is one in which reinforcement is received at
every iteration� In more complex tasks� reinforcement
may be received only after completion of a sequence

of actions� This delayed reinforcement complicates the
learning problem and necessitates the use of more so�
phisticated learning techniques� such as Sutton�s tempo�
ral di�erencing �TD� methods 
������ By replacing the
interval estimation algorithm that we have used with an
appropriate variant on TD� it should be possible to ex�
tend our adaptive communication protocol to tasks in
which the cooperative task requires several sequential
steps� This will of course slow down the learning phase
considerably�

Taking the human out of the loop� One short�
coming of the current work is that a human �instruc�
tor� is currently needed to observe the robot�s behav�
ior and provide positive or negative reinforcement� In
a more natural task� the environment itself should be
able to provide that feedback� 
Maes and Brooks� �����
describe such an experiment with an individual legged
robot that self�reinforces to learn a balanced gait� Be�
cause our robots are somewhat fragile and because their
e�ective ability is largely limited to wheeled locomotion�
we have not yet attempted such autonomic reinforce�
ment� The design of a cooperative task that does not
pose undue hazard to the hardware but allows for re�
peated experimentation and miscommunication remains
an open challenge�
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