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Abstract

We describe mobile robots engaged in a cooperative
task that requires communication. The robots are
initially given a fixed but uninterpreted vocabulary
for communication. In attempting to perform their
task, the robots learn a private communication lan-
guage. Different meanings for vocabulary elements
are learned in different runs of the experiment. As
circumstances change, the robots adapt their lan-
guage to allow continued success at their task.

1 Introduction

In this paper, we investigate the evolution of simple com-
munication protocols among nonverbal subjects engaged
in cooperative tasks. Gregarious animals, small children,
and even adult humans lacking common language engage
in such activity routinely. Grunts, gestures, and other
nonverbal signals take on mutually agreed-upon mean-
ings in the context of cooperative tasks. “Follow me,”
“Look out!” and “Raise your end of the table higher”
can all be conveyed without previously agreed-upon lan-
guage. Satisfactory completion of cooperative tasks such
as table-carrying, hunting, or tribal survival often de-
pends on making effective use of such communications.

This paper describes an example of a cooperative
task—coordinated movement—achieved by a troupe of
mobile robots. Depending on circumstances, different
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actions are required. One robot, in the role of the leader,
has access to this information and learns to act appropri-
ately. In addition, the leader must communicate to the
troupe what actions are required on their parts. The
communication language is not fixed at the outset; in-
stead the troupe must learn to associate appropriate ac-
tions with the commands issued by the leader. As cir-
cumstances evolve, the meanings of the leader’s com-
mands may change; the troupe must adjust their actions
accordingly. The goal is for the entire troupe to act
appropriately and to adapt those actions and the under-
lying language over time.

When a task requires cooperation, there is often
a need for some form of communication between the
participating agents. Cooperative work requires com-
munication whenever one agent’s actions depend crit-
ically on knowledge that is accessible only to an-
other agent. It is often an expedient even when one
agent can accomplish the task on its own or when
all agents have access to the requisite information.
Previous work on cooperative behavior among mobile
robots has largely assumed a fixed communication lan-
guage. (See, for example, [Fukuda and Kawauchi, 1990],
[Matsumoto et al., 1990], or [Shin and Epstein, 1985].)
However, a language created for the robots may not pro-
vide the optimal solution. The language itself may not
be natural either to the robots or to the task at hand.
In addition, in a changing world, a hard coded language
may make it difficult for the agents to adapt to novel sit-
uations. Fixed communication languages are less able to
handle circumstances in which changing environments
dictate changing communications, just as agents that
cannot adapt to new environments are at an evolution-
ary disadvantage relative to those that are able to learn.

The research described in this paper is aimed to-
wards giving autonomous agents the ability to develop
their own language. Our initial work was inspired
by that of [Shewchuk, 1991]. His Ph.D. thesis ad-
dresses the design of appropriate reinforcement learn-
ing algorithms to learn languages for internal repre-
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Figure 1: Information flow in the coordinated movement task.

sentation as well as for communication. He has im-
plemented a simple simulation of a language learning
task similar to the basic experiment we describe be-
low (two robots, two language elements) as a part of
his symbolic test suite for reinforcement learning algo-
rithms. Work on the development of communication be-
tween groups of autonomous agents has also been done
by [MacLennan, 1990] and [Werner and Dyer, 1990].
Their research addresses the problem of language learn-
ing with genetic algorithms. Language evolves over
many generations of the community. Within an indi-
vidual agent, however, language is fixed over its lifetime.
In all of these cases, implementation is limited to simu-
lation; only the work of Shewchuk addresses the problem
of task-based reinforcement (see below).

2 The task

The cooperative task that we have chosen is coordinated
movement. Groups of animals engage in such activity
when hunting, escaping predators, herding, flocking, mi-
grating, or supervising their young. Environmental cues
inform the leader (or leaders) of the troupe as to appro-
priate troupe movements; a successful leader learns to
interpret these cues. Further, the leader learns to com-
municate to the rest of the troupe the tasks that they are
to execute. For example, upon hearing predatory noises,
a mother may shepherd her young in the opposite direc-
tion or encourage them to remain motionless to avoid
detection. The followers may be unaware of or unable to
interpret the environmental cues.

We have implemented this task with troupes with two
and three members and with a variable number of vo-
cabulary elements on robots and in simulation. A troupe
of two robots made up of one leader, Bert, and one fol-
lower, Ernie, was used for the robot experiments. The
simulator was used to gather data for the three agent

experiments and for the larger vocabulary experiments
with two agents. Because we are particularly interested
in the development of language, we assume that the fol-
lowers do not have access to the task specification (i.e.
the environmental cues) and must rely completely on the
communication signals emitted by the leader. In future
experiments, we expect to allow the follower robot(s) to
use some environmental input to modulate the commu-
nication signals from the troupe leader.

Since this is a cooperative task, successful performance
depends on the actions of the troupe as a whole. Analo-
gously, the mother animal succeeds in hiding her young
only if all remain motionless; one disobedient cub can
give away the hiding place and cause the whole troupe
to be eaten. Environmental reinforcement is therefore
positive only if all agents perform the appropriate ac-
tions. Since the followers cannot correctly interpret the
environmental cues, this performance can be achieved
reliably only when the leader and follower robots mu-
tually agree on the development and interpretation of a
private communication protocol.

Thus, the learning tasks are as follows:

e For the leader robot, the interpretation of the environ-
mentally supplied signal, the execution of an appro-
priate action, and the transmission of an appropriate
signal to the follower robot.

e For the follower robots, the execution of an appropri-
ate action based on the signal received from the leader
robot.

The “appropriateness” of an action is determined by
the environmentally supplied signal. The “appropriate-
ness” of the leader robot’s signal, however, is constrained
not by the environment but by the leader and follower
robot’s adapted internal state. That is, the signal is
appropriate if and only if the follower robot takes the



(environmentally constrained) appropriate action when
that signal is received. (The algorithm is summarized in
figure 1.)

3 The robots

Bert and Ernie, the two robots used in this research, are
Sensor Robots designed by Fred Martin at the Media
Laboratory at the Massachusetts Institute of Technol-
ogy [Martin and Sargent, 1991]. Each robot is approxi-
mately 9”1 x 6"w x 4"h, with a single circuit board con-
taining most of the computational and sensory resources
of the robot. A 6v battery strapped to the underside of
the chassis supplies the power for the robot. The robots
are shown in figure 2.

The primary computational resource is an on-
board Motorola 6811 microprocessor. The program-
ming environment is I1C, a multi-tasking interactive
C compiler and interpreter developed by Randy Sar-
gent [Sargent and Martin, 1991]. 1C allows a Sensor
Robot to be addressed through a serial line from a host
computer as well as the downloading of programs for au-
tonomous activity. The work described in this paper was
implemented with the robots under autonomous control.

Locomotion is controlled by a dual geared-wheel drive
stripped from a Radio Shack Red Fox Racer. The direc-
tion of the robot is controlled by varying the speeds of
the left and right motors (with negative speed moving
the motor backwards). The two motorized wheels are at
the rear of the robot chassis and a caster is on the front.

Communication from human to Bert is through an
infra-red remote control transmitter. Bert uses infra-red
receivers similar to those found in televisions and VCRs.
(While Ernie also has infra-red receivers on board, they
are not being used in this work — only Bert hears sig-
nals from humans.) The robots communicate between
themselves using a pair of radio transmitter and receiver
boards similar to those used in garage door openers.
(The transmitter and receiver each run off of a separate
9v battery.) Additionally, each robot has a speaker and
a 16-character LCD, both used primarily for debugging
and monitoring of the robot’s activity.

In addition to the infra-red and radio receivers, the
sensor robots contain four (front and rear, left and right)
bump sensors, left and right shaft encoders, an incli-
nation sensor, photosensitive cells, a microphone, and
infra-red emitters. These additional sensory abilities of
the robots were not substantively used in the experi-
ments described here.

4 The implementation

In our experiments, the environment is represented by a
human “instructor” who issues one of a number of signals
to indicate the desired action. Currently, the number of
signals is equal to the size of the language. The leader
robot performs an action and also signals the follower

The initial state, sg, consists of the integer variables xg,
np, 1, and np, each initialized to 0.

u(s,a,r) = if a = 0 then begin
Ty = Ty + T
ng = ng -+ 1
end else begin
ry = x1 + r
ny = ny + 1
end

if ub(zo,n0) > wub(z1,n1) then
return O

else
return 1

where
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and z,/3 > 0.
Figure 3: Kaelbling’s interval estimation algo-

rithm [Kaelbling, 1990, Figure 21].

robot. Upon receipt of the leader’s signal, the follower
robot selects and performs an action. If both robots
have performed correctly, positive reinforcement (+) is
issued. If either robot performs incorrectly, negative re-
inforcement (—) is issued. Based on this environmental
feedback, the robots learn to select appropriate actions
and communication signals. This algorithm is summa-
rized in figure 1.

Both the action selection and the signal selection
are learned using standard reinforcement learning tech-
niques. (See, e.g., [Kaelbling, 1990] or [Sutton, 1992] for
overviews of reinforcement learning.) The particular al-
gorithm that we use is adapted from Kaelbling’s interval
estimation method [1990]. Interval estimation is a rela-
tively simple form of reinforcement: A table of inputs X
actions is maintained. Each time an input is received,
the expected “best” action is taken and the counter for
that input/action pair is incremented. If positive re-
inforcement is received, a second counter for that in-
put/action pair is also incremented. The “best” action
given some input is selected by an optimization function.
If no one particular action is the “best”, an action is se-
lected randomly. (The algorithm for interval estimation
is given in figure 3.)

In our initial experiments, we allow each of the robots
two possible actions. At each iteration, each robot
chooses either go straight or spin. Further, the communi-
cation protocol contains only two vocabulary elements—



Figure 2: Ernie and Bert

high and low—so that the learning problem remains
tractable. The leader robot must thus learn to select
one of four possible action/communication pairs; the fol-
lower robot must learn to associate each of the vocab-
ulary items with one of its two possible actions. Con-
vergence on the robots is easily verified by testing each
environmental input; if all behaviors are as expected, the
protocol will not change further without environmental
adaptation.

We have also implemented the identical learning algo-
rithms in simulation in C running under UNIX on SUN
SPARCstations. The simulation is used primarily for
ease of data collection over large numbers of runs and in
scaling up the experiments to larger language and troupe
sizes. To assess convergence, we wait until all of the
instructor’s signals (i.e. all distinct environmental cues)
have been completed three times consecutively without
negative reinforcement. At that point, each input is
tested to verify that convergence has truly been reached.
(This leads to slightly inflated convergence times in sim-
ulation over experiments on the robots.)

In the case of a two-element language, convergence
times vary wildly when a true random function is used.
Extended series of a single environmental cue cause os-
cillations in the agents’ state variables, leading to pro-
tracted convergence times in a substantial fraction of the
runs. (The simulation took an average of 12006.25 iter-
ations to converge for a two element language using two
agents, with a minimum of 10 iterations and a maximum
of 235109 iterations. In 100 tests of this case, the simu-
lation took over 100 iterations to converge in one quarter
of the tests.) To avoid this problem, we used a biased
random function that prevented extended series of sim-
ilar environmental inputs. The data given in the results
section of this paper was collected using the biased ran-

dom function. Data was also collected with an unbiased
random function; in all but the two-element case, the
results are comparable.

In the implementation on our robots, communication
noise is dwarfed by human error and by the complexity
of the task-based learning problem; we therefore omit it
from our simulation.

5 Task-based reinforcement.

Our experiment is unusual in that reinforcement—
positive environmental feedback—is received only when
both robots succeed in performing the appropriate ac-
tions. This sort of task-based reinforcement contrasts
with the usual individually based reinforcement typical
in the literature. Because robots receive reinforcement
only when the troupe as a whole performs the task cor-
rectly, it is possible for an individual to perform correctly
but receive negative feedback. In addition, none of the
robots can sense the action taken by the others; thus,
the environmental reinforcement cannot be interpreted
in that light. This further complicates the reinforcement
learning task.

Reinforcement learning algorithms typically generate
action policies for individual agents given some environ-
mental constraints. The adaptation that we describe
here is no exception. The leader robot, for example,
learns policies for what action to take and what signal
to send the follower on a given input signal. However,
what is reinforced—what the environment rewards—is
not the policy of the individual robot but the successful
performance of the total cooperative task.

For example, if the environmental constraints make
both spin the appropriate course of action, the leader
robot may spin and send the follower robot the sig-
nal that the leader believes to mean spin. If the fol-



Appropriate Leader’s Follower’s || Reinforcement,
action action | signal | action
1. ™ spin low spin —
2. OO spin low straight —
3. ™ straight | high spin —
4. OO straight | high straight —
5. OO spin low spin +
6. ™ straight | high spin —
7. OO spin low spin +
8. OO spin low spin +
9. OO spin low spin +
10 ™ spin low spin —
11 ™M straight | high straight +
12 ™ straight | high straight +
13 OO spin low spin +

Table 1: A sample run. The desired behavior is both spin on input (O, both go straight on input 1. After thirteen

iterations, convergence is reached.

lower has not yet learned the communication proto-
col, it may incorrectly interpret the leader’s signal to
mean go straight. In this case, the leader has per-
formed correctly—both its action and its signal were
appropriate—but receives negative reinforcement. Sim-
ilarly, if the leader issues an inappropriate signal—go
straight—but the follower interprets that signal to mean
spin, the environment provides positive reinforcement
(for a correctly executed task) in spite of the incorrect
internal communication. Further, neither robot is aware
of the action taken by the other and so cannot use that
knowledge to assess the environmental feedback.

The choice of this form of task-based reinforcement is
motivated by biological analogy. The world does not
generally reinforce inappropriate action, no matter how
well meant. Similarly, fortuitously apt actions are re-
warded even though the underlying intention is flawed.
(This is the root of serendipity and the sentiment under-
lying the saw, “Necessity is the mother of invention.”)
Because the robots’ communication protocol is private
and not interpreted by the external environment (or hu-
man “instructor”), it is not relevant to the reinforcement
received. If the robots can succeed in taking appropriate
actions in spite of miscommunication, they continue to
receive positive feedback. In principle and in practice,
the task is designed so that only successful learning of
the private language allows continued successful execu-
tion of the cooperative task.

6 Results
6.1 Developing a Shared Language

Bert and Ernie are able to learn both synchronous
action—both performing the same action in the same

interval—and divergent action—e.g., leader spins, fol-
lower goes straight. Convergence times typically range
from five to twenty iterations. A sample run of the ex-
periment is given in table 1. In this run, the appropriate
actions are for both robots to spin on input OO and
for both robots to go straight on input 1. The robots
converge on a mutually agreeable language—a low signal
means that the follower should spin, while a high signal
means to go straight—after thirteen iterations.

6.2 Adaptability of language

Once the robots converge on a particular dialect, they
continue to receive positive reinforcement as long as the
environmental constraints do not change. If circum-
stances change, however, the robots may find that their
previously successful actions no longer earn them pos-
itive feedback. For example, after the run in figure 1,
we might change the “appropriateness” of the robots’
actions by giving positive reinforcement to leader spin,
follower go straight on 1. Under such circumstances,
the robots can adapt their behavior—and, when nec-
essary, their communication protocol—to the changing
environment. Convergence times for the new task (i.e.,
to unlearn portions of the old task and relearn the newly
appropriate behavior) range from roughly comparable to
the initial learning task to roughly double the time, de-
pending on the difficulty of the new task, the differences
between the old and the new, and how firmly the previ-
ous behavior is entrenched.

6.3 Scaling Up the Language

The simulator has been used to collect statistics on lan-
guages ranging in size from two to twenty elements us-
ing troupes of two and three agents. For each language



Size of | Number of Iterations to Convergence
Language Average | Minimum | Maximum
2 15.34 10 24

3 110.30 33 501

4 340.38 53 990

5 906.62 255 2472

10 | 15011.61 2868 51031

20 | 232267.82 44196 1241767

Table 2: Learning times for a two member troupe. Ex-
periments for each language size were run 100 times.

Size of | Number of Iterations to Convergence
Language Average | Minimum | Maximum
2 27.21 10 80

3 327.71 35 1211

4 1530.12 340 6666

5 4415.60 652 17533

10 | 163530.62 37130 705029

Table 3: Data above is for a three member troupe and
was collected over 100 runs for each language size.

size, 100 experiments were run to convergence. Mean,
minimum, and maximum convergence times (number of
iterations) are given in table 2 and table 3. Time to
learn a language grows exponentially in the number of
vocabulary elements in the language.

6.4 Variation over Dialects

In order to achieve convergence on any of these tasks, a
particular language must be agreed upon. However, the
language varies from run to run. For example, in the run
in figure 1, the robots agree that a low signal means that
the follower should spin. In another run of the same
experiment (OO means both spin, 11T means both go
straight), a high signal may be interpreted as spin and a
low signal as go straight. Such dialect differences depend
partly on the random selection of vocabulary elements;
however, it is critical to the success of the task that the
leader and the followers all agree on the same dialect.
Using the simulator, we have counted the numbers of
times that particular dialects appear over 100 runs of a
particular experiment. In table 4, data is given for the
two element language using both two and three agents;
table 5 shows data for the three elements language using
two and three agents. These percentages are variable
and we expect that the agents’ selection between dialects
would be evenly distributed in a large number of runs.

6.5 Increasing Troupe Size

When the troupe size is increased to three, the amount
of time necessary to converge upon a language increases

| Dialect | Two robots | Three agents |
low = spin 45 52
high = straight
low = straight 55 48
high = spin

Table 4: The agents can agree on differing dialects in
each run. Totals for each dialect are based on 100 runs
of the two element language experiment.

| Dialect | Two robots | Three agents |
low = right
med = straight 19 14
high = left
low = right
med = left 14 20

high = straight
low = straight

med = right 16 15
high = left

low = straight

med = left 9 14
high = right

low = left

med = right 13 17
high = straight

low = left

med = straight 29 20
high = right

Table 5: In 100 runs, agents develop all of the six possible
dialects in a three element language. The number of
times each dialect was developed is given.

due to the additional learning that is required. (See
table 3.) For the twenty element language using three
agents, the agents required 12,105,480 iterations to agree
upon a dialect. (The experiment was only run once since
it required more than 24 hours of processing time on a
SUN Sparc2.)

The learning time might be reduced by having a sub-
set of the agents (in this case, two of the agents) agree
on a dialect, then have these robots bootstrap the other
members of the troupe. This is similar to the way hu-
mans learn language; every person who speaks a particu-
lar language does not need to relearn the language when
other people are learning it. This learning method will
be explored in future work.

7 Scaling up

As the number of possible actions and signals increase,
the time necessary for convergence increases exponen-
tially. This is due to the reinforcement learning algo-



rithm. For every signal, a table needs to maintained that
contains each of the actions that could be performed. In
the experiments, we are usually looking for a one—to—
one correspondence between signals and actions; how-
ever, this fact is not exploited to speed up the learning
process since it would make the algorithm too specific.

If we rely on learning a new signal for every action, the
learning task quickly becomes intractable. Currently, we
are exploring alternate directions for language develop-
ment.

The language that we have described here maps single
vocabulary items onto single actions. Human language
gains power by virtue of its compositional nature. That
is, because vocabulary elements can be combined into
sentences, a vocabulary of fixed size can generate an
exponential number of utterances. Further, the inter-
pretation of the sentence depends on the interpretation
of the vocabulary elements in isolation, allowing a word
learned in one context to be correctly understood in a
novel utterance. The next phase of our experimenta-
tion will address the task of learning a compositional
language.

For example, the robots might have a language with
one set of signals for direction of motion and another
set for speed. The leader’s communications might then
be utterances such as “go left slowly” or “spin quickly.”
Because the learning problem is per word rather than per
utterance, the complete language can be approximated
by a sublinear number of vocabulary elements. Even
allowing for the exponential blowup in space and time
of current reinforcement learning methods, the problem
remains in the realm of computational feasibility.

8 Discussion

Implications of task-based reinforcement. Task-
based reinforcement poses particular challenges for re-
inforcement learning algorithms. The robots are learn-
ing individual action policy but receiving reinforcement
based on the global performance of the cooperative task.
As a result, task-based reinforcement behaves somewhat
like noise in the reinforcement signal. Because most
reinforcement learning algorithms are designed to func-
tion in the presence of some amount of noise, they are
adequate for this situation. However, task-based rein-
forcement is not random noise, and some algorithms will
be better suited to the job than others. Experiments
such as ours provide a useful testbed for learning algo-
rithms. [Shewchuk, 1991] describes efforts to design re-
inforcement learning algorithms more suited to this sort
of problem.

Complex tasks. The selected task—coordinated
movement—is one in which reinforcement is received at
every iteration. In more complex tasks, reinforcement
may be received only after completion of a sequence

of actions. This delayed reinforcement complicates the
learning problem and necessitates the use of more so-
phisticated learning techniques, such as Sutton’s tempo-
ral differencing (TD) methods [1988]. By replacing the
interval estimation algorithm that we have used with an
appropriate variant on TD, it should be possible to ex-
tend our adaptive communication protocol to tasks in
which the cooperative task requires several sequential
steps. This will of course slow down the learning phase
considerably.

Taking the human out of the loop. One short-
coming of the current work is that a human “instruc-
tor” is currently needed to observe the robot’s behav-
ior and provide positive or negative reinforcement. In
a more natural task, the environment itself should be
able to provide that feedback. [Maes and Brooks, 1990]
describe such an experiment with an individual legged
robot that self-reinforces to learn a balanced gait. Be-
cause our robots are somewhat fragile and because their
effective ability is largely limited to wheeled locomotion,
we have not yet attempted such autonomic reinforce-
ment. The design of a cooperative task that does not
pose undue hazard to the hardware but allows for re-
peated experimentation and miscommunication remains
an open challenge.
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