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Abstract

The structure of an environment affects the behaviors of the
organisms that have evolved in it. How is that structure to
be described, and how can its behavioral consequences be
explained and predicted? We aim to establish initial answers
to these questions by simulating the evolution of very simple
organisms in simple environments with different structures.
Our artificial creatures, called “minimats,” have neither sen-
sors nor memory and behave solely by picking amongst the
actions of moving, eating, reproducing, and sitting, according
to an inherited probability distribution. Our simulated envi-
ronments contain only food (and multiple minimats) and are
structured in terms of their spatial and temporal food density
and the patchiness with which the food appears. Changes in
these environmental parameters affect the evolved behaviors
of minimats in different ways, and all three parameters are of
importance in describing the minimat world. One of the most
useful behavioral strategies that evolves is “looping” move-
ment, which allows minimats–despite their lack of internal
state–to match their behavior to the temporal (and spatial)
structure of their environment. Ultimately we find that mini-
mats construct their own environments through their individ-
ual behaviors, making the study of the impact of global en-
vironment structure on individual behavior much more com-
plex.

Key Words: environment structure, evolved behavior, re-
source density, resource regrowth, resource patches, simula-
tion

1 Introduction

What matters most in life? That is, what aspects of an organ-
ism’s external world make the most difference to the success
or failure of its life? This is the basic question underlying
the study of the effect of environment structure on behavior.
Some ways of organizing or structuring the world make a
difference in an organism’s life, and some do not. We seek

to discover which kinds of environment structure do make a
difference, how much, and why.

Which environmental characteristics effect life’s success or
failure clearly depends on how such success or failure is de-
fined. For humans, this is complicated by the fact that we can
decide on our own goals, our own criteria of life-fulfillment,
and thereby change what we think matters most: For epi-
cureans (if not Epicurus himself), the enjoyment of sensuous
gustatory delights is the goal of life, and so good food and
drink are what matter most; for monks, the ultimate goal is
abandonment of earthly distractions for spiritual insight, so
stationary, celibate solitude is best; while for the average “thir-
tysomething” American, raising a family defines a successful
life, and having enough resources in a child-friendly place to
live are most important.

For the majority of other animal species, however, a suc-
cessful life is less a matter of individual decision or contem-
plation, and more a matter of survival and reproduction. It
is then evolution’s task to “figure out” what matters most for
these two goals–which aspects of the environment can most
affect an organism’s success in attaining resources and spread-
ing its genes. Environmental characteristics that matter most
will have the most effect on the evolved (and any learned)
behavior of the organism. That is, if an important aspect of
the environment had been different during the evolution of
the organism’s ancestors, its current evolved behavior would
be different as well. But this is not to say that changing
such a characteristic of the organism’s current environment
will have a similar effect on its current behavior–it may not
have evolved sensitivity to this characteristic, but rather only
appropriate, unchangeable behavioral adaptations. For in-
stance, if our three-dimensional world were suddenly made
five-dimensional, we might not have any behavioral response
to this change, because we did not evolve sensitivity to such
changes–even though such an environmental characteristic is
undoubtedly central to our behavior (Shepard, 1987).

We are interested here in which environmental structures
affect the evolved behaviors of organisms, and how. To study
these questions, we will construct simulations of simple or-
ganisms behaving and evolving in simple environments and



test how different environments influence the behaviors that
ultimately evolve. We start at the beginning, with arguably
the most basic environment structure parameters possible: re-
source density in space and time. And we start with the
most primitive instantiation of organisms that we can imag-
ine: creatures with no sensors, and no internal state or memory
of past events, but only the ability to emit actions according
to an evolved probability distribution. As a consequence,
the distinction mentioned in the previous paragraph between
changes in the evolutionary environment and changes in the
current environment does not affect our research here: Be-
cause these simulated organisms cannot sense their current
environment, no changes in it could influence their behavior,
and only their evolutionary environment can have an effect.
Moreover, the environments we use are stable and stationary,
in the sense that we do not change their structural param-
eters over time–only the actions of the simulated creatures
themselves can change the current state of their world.

Simulated organisms of the type we use here are often
dubbed “animats,” after Wilson’s (1985, 1991) first use of the
term to describe his artificial animals that use local sensors
to search for food in a grid-based environment. Since Wil-
son’s work, the term’s meaning has been extended through its
use by others following in this research tradition. As a conse-
quence, “animat” now conjures up notions (to those for whom
it conjures up anything) of simulated creatures that use sim-
ple sensors and cognitive architectures, often with restricted
learning and memory abilities, to behave adaptively and take
advantage of their surroundings. But the artificial organisms
we study here, having neither sensors nor memory of any sort,
are simpler than even the most mentally challenged animat.
To emphasize this distinction, and not to bring too much dis-
repute on other more respectable animats by association, we
name our simulated creatures here minimats.

Our goal with such humble beginnings is to establish a
baseline of what effect environmental structure has on even
the simplest possible behaving organisms that have no direct
contact with that environment. If we find, for instance, that
food density has a particular effect on even their behavior,
we can suppose that food density will have an effect on the
behavior of any more realistically complex, sensor-bearing
organisms as well. By starting with the simplest possible
forms of blind, stateless behavior in the simplest possible
environments, we also hope to make clearer the impact of
richer environmental structure on more sophisticated sensor-
and memory-guided behavior in comparison.

But by focusing initially on simulated organisms without
sensors or memory, we also intend to emphasize the primacy
of action in behavior. Rather than viewing organisms as
input-output machines that operate on information from the
environment to produce optimal adaptive output behavior, we
should take the lesson from minimats that acting appropri-
ately in the environment is the main (evolutionary) objective,
and sensory and memory systems only evolve to help guide
that action. This puts our approach in sympathy with the
dynamical systems view of cognition and behavior (see, e.g.,
Yamauchi & Beer, 1994; Cliff, Harvey, & Husbands, 1993;
Hendriks-Jansen, 1996), even though minimat “brains” are
hardly dynamical systems.

1.1 Our approach in this paper–what we will
do

To establish which environmental structure parameters make
a difference to the evolved behaviors of minimats, we use
our SPO system (Simulation of Primitive Organisms) to sim-
ulate the evolution of populations of minimats in a variety
of different environments. The behaviors of minimats in the
population change over time in response to their environment–
but only between individual lifetimes, rather than within
them. Minimats lack the adaptive processes of development,
learning, and sensor-guided action, all of which bring about
changes in the ongoing behavioral responses of an individ-
ual. Rather, they are subject only to the adapting process of
evolution, which brings about changes in the aggregate be-
havioral responses of the minimat population. Thus, minimat
behaviors are adapted to their ancestral environment, rather
than adaptive to changes in their current environment on a
moment-by-moment basis.

The individual minimats in our system each act blindly
in their world (surrounded by a population of other simulta-
neously acting individuals), choosing randomly according to
some unchanging weighted probability distribution among a
small set of actions, including eating, moving, and reproduc-
ing. Minimats who find and eat the food-energy in their world
can survive and produce offspring with slightly modified be-
haviors, while those that run out of energy will die. Over
the course of time, the evolutionary process of descent with
modification and selection through competition will result in
a gradual tuning of minimat behavioral repertoires. After this
adapting process has run long enough, and minimats become
well adapted to their environment (or at least as adapted as
they can be, given their abilities), we analyze their behaviors
and look for patterns in the fit to the prevalent environmental
structure.

We construct a variety of very simple environments for the
minimats to evolve in, each of which is composed solely of
some pattern of food placed at various locations in a square
grid. The spatiotemporal structure of these environments is
determined by a small set of parameters that control food
growth and distribution. We then investigate how different
environmental structures lead to the evolution of different
adapted behavioral strategies. We are also interested in dis-
covering what environmental differences do not lead to differ-
ences in evolved behaviors–that is, the structural invariances
that the adaptive process of evolution ignores (at least on the
minimat’s behalf). Separating aspects of environmental struc-
ture into those that matter for minimats (e.g., the distribution
of food in the world) from those that do not (e.g., whether food
occurs in the “north” half of the environment or the “south”
half) is of central importance both in applying the results of
this work to understanding natural systems, and in designing
adaptively behaving artificial systems in light of the critical
features of their operating environments.

We begin by looking at how the spatial density of food in the
environment–how common food is in a given area–influences
evolved minimat behavior, expecting this most profound as-
pect of environment structure to have a large impact. Once
this relationship is established, we proceed to look at the ef-
fect of temporal density–how often food appears–on evolved
behavior. If temporal density also has an effect, there are two



possibilities for how it might influence behavioral evolution:
First, temporal density could cause a change in spatial den-
sity, which then affects evolution via the first relationship we
found; or second, temporal density can have an effect that is
independent of any simultaneous change in spatial density. It
is important to establish which of these is the case, because
if the former condition holds, then we can ignore temporal
density as an environmental parameter of importance to mini-
mat behavior and just analyze environments in terms of spatial
density (and possibly other parameters). If we find that spatial
density has an independent effect, then we must describe any
minimat environment with at least these two structure param-
eters together, and we have reason to suspect that they will
both influence the behavior of more cognitively rich animats
and organisms.

We continue with this logic for testing the independence
of environment structure parameters as we explore the effects
of higher-order structure. In particular, we vary another set
of minimat environments according to the patchiness of food
present–whether food-bearing locations occur independently
or together in clusters. We then test whether this affects mini-
mat behavior evolution at all, and if so, whether the effect can
be explained through a corresponding change in spatial den-
sity. (The temporal density does not change.) As soon as we
find a level of environmental organization or structure that our
evolved minimats no longer respond to uniquely (differently
from their response to lower-order structure), we can stop
our search for environment structure parameters that matter
to minimats, and we only need to describe minimat environ-
ments with the previously established set of parameters.

1.2 Possible differences in evolved behavior –
what we will look for

In an early and elegant precursor to our work here, Herbert
Simon (1956) analyzed the nature of “satisficing” behavior of
a simple food-seeking organism in a minimally structured en-
vironment. He stressed the importance of knowing the needs
and goals of an organism in order to analyze the relationship
between its behavior and its environment:

We are not interested in describing some physically
objective world in its totality, but only those aspects
of the totality that have relevance as the “life space”
of the organism considered. Hence, what we call
the “environment” will depend upon the “needs,”
“drives,” or “goals” of the organism, and upon its
perceptual apparatus. (p. 130)

We take the same approach here 1. Earlier we spoke of the
“goals” toward which animals strive as survival and reproduc-
tion. For minimats, the situation is largely the same. Because
we assess their evolved behavior after a certain fixed amount
of time has passed in their world, the “goal” of a minimat–
or a minimat behavioral repertoire–is to (still) be around at
that final time, when the whistle (or trumpet) blows and the
scores are tallied. To accomplish this, a minimat can either
be long-lived, conserving its energy and avoiding death so
that it will itself be included in the final reckoning; or it can

1Note that we make the analysis situation that Simon describes simpler
by eliminating the need to consider perceptual apparatus in minimats.

be prolific, producing many prolific offspring, so that at least
its descendants will be present at the final time step. Thus,
for minimats survival and reproduction are also the keys to
a successful life, though for different “species” of minimats
the two may be weighted differently (as they are indeed for
animals as well–compare the long-lived seldom-reproducing
primates with the short-lived many-egged mayfly).

But in any given environment, organisms can approach
the problems of survival and reproduction in a variety of
ways. Herbivores, carnivores, parasites, and plants each em-
ploy very different strategies for gathering energy and creat-
ing young. Evolution not only shapes the behaviors of the
species adopting each of these (and other) lifestyles, but it
also balances the relative presense of each lifestyle in a given
environment. Thus, when we analyze the evolved behaviors
of minimats, we will also look for these two evolutionary ef-
fects: how behaviors in a particular strategy are adapted to
a particular environment, and how the mix of different be-
havioral strategies also varies from one environment to the
next.

Of course, telling whether two behavioral strategies are
qualitatively different or just modified versions of the same
strategy might not be a straightforward proposition. We have
to consider the full range of behavioral possibilities from the
organism’s perspective and see if they fall into easily distin-
guishable categories. (See Blythe, Miller, & Todd, 1996, for
a description of the basic-level behavioral categories we can
generally expect to evolve, and some of the cues that can
be used to distinguish them.) Luckily, this is easily done in
the case of minimats: Given the small set of possible ac-
tions (and their limited perspective), we can distinguish a few
obvious strategies. Epicurean minimats can adopt a “move
in search of new food and eat” strategy to secure their next
meal, possibly reproducing along the way. Monkish mini-
mats can sit immobile in one location and never reproduce.
And thirtysomething, family-oriented minimats can also settle
immobile in one location, but reproduce in a sensible fash-
ion, creating offspring who may stay at home or who may
themselves move away in search of other rewards.

These are the different behavioral strategies (whimsically
described) that we will watch for in our evolved minimat
populations. How they mix together–or perhaps form homo-
geneous populations of a single behavioral strategy–will be
one important aspect to consider: Do we get ecosystems with
different “species” of minimats? We will also look at the spe-
cific adapted rates of the seven different actions within any
given behavioral strategy, to see how these too are shaped in
response to environment structure. One of our most surprising
findings in this regard is the curious behavior of “looping”–
moving repeatedly along a small path that loops back to where
it began–which allows minimats to “time” their environment
in a way that is well-matched to its temporal structure.

In the next section, we indicate our intellectual backdrop
in terms of related simulations of simple organisms in grid-
based environments. We present the environment structure
parameters used in this research in section 3, and the de-
scriptions of the minimats and their behavioral capabilities in
section 4. Section 5 gives the methods used to collect the data
we report in section 6. In section 6, we follow the general
course of investigating the behavioral impact of first food lo-
cation density, next regrowth delay, and finally environmental



patchiness, seeing which of these structural parameters make
a difference in the life of minimats. But along the way, we
take detours to explore mysteries that arise, such as popula-
tion extinctions, the usefulness of moving in general, and of
different types of looping behavior in particular, and what the
environment “looks like” to different sorts of minimats. We
have highlighted the main results in the subsection titles to
make the way easier to follow.

2 Past Work

The work reported in this article fits into the general research
program of characterizing the important features of environ-
ment structure in terms of the adapted (and often –but not
here–adaptive) behaviors they elicit, as outlined in Todd and
Wilson (1993). In our previous article (Todd, Wilson, So-
mayaji, & Yanco, 1994), we showed that the behavior of
blind, stateless simulated organisms (also minimats, though
we did not yet call them that) with no sensory contact with
their current environment could still be adapted to different
environments through the course of evolution. This time
around, we give the details of what those adaptations actually
are. But first, we want to indicate how our efforts compare
with those of other researchers in this area.

Several other research projects have used methods simi-
lar to our SPO system, simulating simple creatures behav-
ing in grid-based environments. These gridworlds are typ-
ically composed of a grid of discrete locations (rather than
continuous-space models) that can contain various objects
(such as food, water, and other resources, and obstacles, preda-
tors, and other hazards) in addition to the simulated creatures.
Some of these other projects are similar enough to SPO to
allow comparison of results across studies. But most are de-
signed with specific behaviors in mind and have not been used
to explore the effects of different environment structures on
those behavior. This overview should make apparent how our
system differs in motivation and emphasis from past work.

Among systems that use gridworlds to model animats (arti-
ficial creatures) interacting with an environment, a significant
number place only one creature in an environment at a time.
The environment defines a fitness function that is used for
some sort of genetic search over the space of possible be-
haviors of individual creatures. Systems of this type include
Wilson’s original animat (1985) and its close descendants (in-
cluding Cliff & Bullock, 1993, Wilson, 1994, and Cliff &
Ross, 1994). All of these animats start off with greater cogni-
tive complexity than our minimats, however, in terms of their
sensors, memory, or learning ability, and the environments
they live in are not varied in a systematic way to study their
behavioral effects.

Other related approaches can be found in the
Genesys/Tracker system (Jefferson et al., 1992), Floreano’s
(1993a) work on nest-based foraging strategies, the work
of Parisi, Nolfi, and Cecconi (1992) and Todd and Miller
(1991a,b) on neural network-controlled creatures that evolve
learning abilities, and Cecconi and Parisi’s (1993) neural net-
works with motivational units. These systems, though, like
the other animat systems, differ from ours in that multiple
creatures with different behaviors never interact in a common
world, and as a result the possibility of social behavior and

the effects of whole populations on a shared environment are
left out. In AntFarm (Collins & Jefferson, 1992), and Koza’s
(1992) ant colony simulations, ants within a given colony
do interact; however, the ants in each colony have a single
common genome, and selection occurs between these single
genomes based on the fitness of each colony determined in
isolation.

The RAM system (Taylor et al., 1989) is notable in hav-
ing the potential for modeling arbitrary interactions between
multiple animals and a gridworld environment by representing
each part of the system as an individual computer program.
However, reproduction must be explicitly coded into each
program, as the model itself has almost no predetermined
“biological smarts.” The modeler must choose what fea-
tures are relevant and hand-code programs that capture them.
(Resnick’s simple and elegant StarLogo programming lan-
guage allows an even more flexible framework within which
to develop gridworld ecosystems for a variety of applications–
see Resnick, 1994.) In contrast, all of the behavior of min-
imats in our current system is determined by the process of
evolution, and nothing is predetermined; if a minimat never
specifically chooses to reproduce, for instance (in this case by
having an insufficiently high probability of randomly select-
ing the reproduction action), it will die (or live) childless.

Many gridworlds that allow multiple creatures to interact
have been constructed with the goal of illustrating certain
kinds of interactions between creatures or the effects of cer-
tain cognitive or sensory capacities. Of these, a large number
ignore the effects of the underlying physical or social environ-
mental structure on behavior, but a few do deal with these ef-
fects in ways related to our concerns here. Ackley and Littman
(1992) focus on the relation between learning and evolution,
and later (1994) on the evolution of communication for altru-
istic purposes in a spatially structured environment that allows
speciation. Werner and Dyer (1992, 1993) explore systems
that illustrate specific kinds of communication and herding
activity. Toquenaga, Kajitani, and Hoshino (1994) model the
effects of resource patchiness on group foraging and flock for-
mation in egrets. Lund and Parisi (1995, 1996) describe the
emergence of generalist and specialist strategies in foraging,
when the organism’s sensors, behavior, and energy-extraction
ability are allowed to evolve together. Hartvigsen and Starmer
(1995) discuss the effects of different environment shapes and
boundary conditions on the coevolution of plant-herbivore de-
fense and resistance interactions. Maley (1996) studies the
effects of spatial environment structure on the success of new
species invading existing ecosystems. Floreano’s (1993b)
shared environment research examines the differences in be-
havior that occur when creatures can or cannot sense each
other. This work in particular bears on our current interest
in the effect of multiple creatures on a commonly grazed en-
vironment, but his methods are quite distinct and his system
starts at a higher level of behavioral (and sensory) complexity.

Each of these systems comes much closer to the work we
describe here, but all differ in being set up to explicate some
particular form of behavior. Our approach instead is to build
in the possibility of evolving a wide set of different types
of behaviors (at present, beginning with a small number of
primitive action types from which more complex behaviors
can be formed) and then to manipulate general features of
environment structure to see what types of behaviors actually



do evolve as adaptive.
Packard’s (1989) work on intrinsic evolution shares simi-

lar motivations to our work in that he strives for simplicity
in his system to bring a variety of basic evolutionary ques-
tions to the forefront. Some of the main differences are that
his creatures are born a lot smarter (they know how to find
food) and have significant sensory input, and only a few types
of food distribution and growth are examined. Bedau and
Packard (1992) further explore this type of system to develop
measures of evolutionary activity, and Fletcher, Zwick, and
Bedau (1996, in this issue) use an extension to study the effects
of environment structure on the rate of evolution, yielding re-
sults complementary to those we report here. Littman (1992)
has approached the problem of characterizing environments
in terms of behavioral capabilities by expanding on Wilson’s
(1991) scheme for classifying environmental indeterminacy,
and he has recently explored half of the problem we pose here,
analyzing the goal-seeking abilities of agents with no mem-
ory or internal state, only current sensation (Littman, 1994).
Mason (1993; Erdmann and Mason, 1988) has discussed the
other half of the equation, designing state-guided robots that
have no sensors.

Other more recent projects by Yeager (1994), Gracias et al.
(1996), Grant (1992), and the LEE system of Menczer and
Belew (1994, 1996a, and 1996b, in this issue) introduce rich
creature simulation environments in which a variety of types
of behavior can evolve. But each come with predetermined
decisions about the cognitive, sensory, or memory abilities
of the creatures involved and the structures of the environ-
ments in which they live. In the SPO system, of course, we
have also made such choices about the evolvable capabilities
of minimats. But we hope our particular decisions allow a
lower level of complication (if not also sophistication) in the
simulations, more appropriate for the kind of study we are
undertaking here into the simplest forms of blind but adapted
behavior evolved across a variety of environment types.

3 The World

To understand the evolution of minimat behavior in response
to different environmental structures, we must first describe
the environments themselves. The minimat world is a simple
place: It consists of a two-dimensional 64 x 64 grid of distinct
square locations, toroidally connected at opposite edges so
that movement wraps around and nobody will fall off. Any
number of minimats can occupy any of the 4096 locations in
the world. The only other type of object found in the world is
food, which can also be present in different locations in vary-
ing amounts. (“Food” is shorthand for energy, the common
currency in the world–minimats absorb it through success-
fully eating, use it up in all their activities, and die when they
run out of it.) Each individual minimat thus lives its life in
an environment made up solely of other minimats and bits
of food–and even the other minimats can largely be ignored,
because there is no direct interminimat interaction. One min-
imat can only affect another by affecting the distribution of
food in the world–that is, by eating food that the other indi-
vidual could otherwise have had. By controlling their own
spatial distribution over time, minimats have differing indi-
rect environmental impact on each other. By controlling the

initial and ongoing growth of food in space and time, we have
direct influence on the environment. These two interacting
factors, direct experimenter control and indirect minimat im-
pact, combine to create the actual environment in which the
minimats live and evolve.

3.1 Basic environment structure parameters

There are an endless number of ways to parameterize the pos-
sible patterns of food distribution and growth across space and
time in this simple world. We have started with just a few pa-
rameters that are particularly salient and more or less clearly
connected to patterns of plant growth in natural environments
(see, e.g., Barbour, Burk, & Pitts, 1987; Bell, 1991). First of
all, we specify the maximum overall density of food-bearing
locations in the world–that is, the percentage of locations in
the world in which food can be present simultaneously. One
can think of the world as having an underlying water supply on
which all the food-plants depend; if the water supply is suffi-
ciently large, food can grow in every location simultaneously
(giving 100% density), but if the supply is insufficient, there
may be only enough for half as many food-plants to grow at
once (giving food in roughly every second location, for 50%
density), or only a hundredth (giving about one food-plant in
every 10 x 10 area, for 1% density), and so forth–see Fig-
ure 1 a for an example of a 5% food location density random
environment, and 1 c for 40% density.

The maximum food location density thus controls the gross-
est aspect of spatial energy distribution in the environment.
If food-bearing locations are distributed purely randomly in
the world with a given density (as they are in many of the
experiments described in this article), then the density also
determines how far on average a minimat will have to travel
from one fertile location before encountering another. Note
that this parameter only affects the maximum possible density
of food in the world,by controlling the density of food-bearing
locations; as minimats eat the food in the world, the actual
number of locations that currently contain food will go down,
and so the effective food density that they experience will also
go down (this becomes important in section 6.4.1).

Food energy consumed in the world must be replenished to
fuel the ongoing behaviors of the minimat population. The
pattern over time with which food reappears in the world de-
termines its temporal distribution. New food could be made to
pop up anywhere in the world, but to keep things simple (and
somewhat realistic), we allow food to regrow only in the set
of fertile food-bearing locations determined when the world
is first initialized. That is, the world begins with food-plants
present in a set of locations whose prevalence is determined
by the food location density parameter. Thereafter, new food
can only regrow in one of those originally specified fertile
locations. We specify a second environment structure param-
eter, the food regrowth delay, to control how long it takes food
to regrow in a fertile location after its previous contents have
been eaten. When a particular food-plant is eaten (consumed
all at once by a lucky minimat, who swallows the entire energy
contents of a particular location in one gulp), the now-foodless
location will remain empty until the regrowth delay-specified
number of time steps has passed. This can vary from zero–
meaning no delay, so that food regrows immediately on the
next time step–to a high number of time steps (maximally 32



(a) (b)

(c) (d)

Figure 1: Example food distributions in a 16 x 16 subregion of the world for 5% maximum food location density with a clump
scale of 1 (a) and 4 (b) and for 40% maximum food location density with a clump scale of 1 (c) and 4 (d) showing overlapping
food clumps.



in our simulations here). The regrowth delay can be thought
of as the number of time steps a location must lie fallow before
it can support the growth of food-plants again. Whereas the
maximum food density specifies how far a creature must go
to find food, the regrowth delay specifies how long a creature
must wait at a given location before food reappears there.

3.2 Controlling the amount of energy in the
world

We now know where food can grow in the world, and when
it can regrow–but we must also specify how much food will
grow at any one time in a given location. In the minimat world,
food-plants shoot up to some full “size”–amount of energy–as
soon as they grow, and they stay that “size”until they areeaten.
Thus any location in the world will only ever contain either no
food energy or some maximum amount, nothing in between.
The maximum amount of food per location can be specified
directly, but we usually use a more indirect computation of this
parameter. We specify the desired maximum energy “flux”
in the world–that is, the greatest rate at which energy can
reappear after consumption in the world per location per time
step (where the average is defined across all world locations
and all time). This is not the same as defining some constant
amount of energy that rains down on the world at each time
step. Instead, imagine a pasture in which grass can grow
to some maximum height, so that there is some maximum
amount of biomass, and hencefood energy, that canbe present.
Now after the pasture has been grazed by a passing herd of
antelope, it can regrow to it maximum energy level again in
some amount of time. This maximum rate of regrowth, in
energy per unit area per unit time, is the energy flux. Without
grazing, that potential maximum flux cannot be realized–the
pasture will just stay at its holding energy capacity until the
next herbivore comes along.

The food energy flux parameter thus controls the maximum
amount of energy that can flow through the minimat world.
This flow only happens if there is an energy sink, though:
the consumption of energy by the minimats through eating.
Consumed energy will be replaced as quickly as it is eaten, up
to the energy flux rate. As a consequence, the energy flux rate
also controls the carrying capacity of the world–that is, the
number of minimats that can survive simultaneously for an
indefinitel period. Minimats burn up a certain (fixed) amount
of energy per time step, and so by computing

we can find the maximum number (carrying capacity ) of
minimats the world can support.

The energy flux is thus crucial for allowing us to make a
level playing field for different minimat populations in dif-
ferently structured environments. Our goal is to construct
environments with various food location densities and re-
growth delays, while holding the carrying capacity constant,
so we can explore the effect of the first two spatial and tem-
poral parameters alone. To do this, we need only vary one
additional aspect of the environment: the “size” to which
food-plants grow, that is, the amount of energy they each
contain when they (re)appear. To see how the different en-
vironmental parameters are interrelated, first imagine that we

have constructed an environment in which food grows ev-
erywhere (100% density) and regrows instantly after being
eaten (zero regrowth delay) to a level of 2.0 units of energy.
Now we want to compare evolution in this first environment
to what happens when we change the maximum food density
to 50%. If we leave the maximum food amount per location
at 2.0 units, then half of the locations will be able to grow
2.0 units of energy, and half will grow 0.0 units. Thus, in
the second environment, we have the same maximum food
amount, but half the maximum energy flux–only half as much
energy is ever available for the population of minimats, and
this can seriously affect their livelihood. To achieve equal
energy flux, and equal carrying capacity, we must double the
size of the food-plants (the amount of energy) that can grow
at each location in the second environment.

The same thing applies if we have a food regrowth delay.
Consider a third environment with 100% food density and
a regrowth delay of 1 time step. In this environment, food
appears only half as often (every second time step) as it does
in the case of the first zero regrowth delay world. Therefore,
to give this environment an equal energy flux, we again have
to double the amount of food that grows in one place. In
general, the energy flux can now be seen to correspond to:

1

and we can compute this food-plant size as follows:

1

3.3 Higher-order environment structure pa-
rameters

Just three of the preceding parameters (maximum food den-
sity, regrowth delay, and energy flux) are necessary to specify
a complete spatiotemporal distribution of food in a particular
environment. But such a distribution will be homogeneous
across space and time, lacking higher-order structure. This
is obviously an unrealistic portrayal of many natural envi-
ronments and habitats, in which food and other resources
are found instead in (often hierarchically) organized pat-
terns (Bell, 1991). Resource items often occur in discrete
patches separated by relatively empty (resourceless) space;
the patches themselves are furthermore typically clustered
into habitats separated by even greater distances. Much of
the study of foraging behavior (Stephens & Krebs, 1986;
Bell, 1991) relies on the notion of patchy environments that
creatures must explore and exploit appropriately. To be able
to model such environments more closely, we introduce one
more parameter: the clump scale value.

This parameter allows us to add at least one level of hi-
erarchical organization to the creatures’ environments, that
of the resource patch. We stock the world with equal-sized,
often overlapping, square patches of food-bearing locations.
The clump scale specifies the length and width of these fertile
square patches. Thus, for example, with a clump scale of 1,
the environment consists of 1 x 1 “patches” of food (i.e., food
grows in single locations–this is the same as having no patch
structure at all), while for a clump scale of 4, the world is filled



with the appropriate number of (possibly overlapping) 4 x 4
patches needed to achieve the desired overall density of (indi-
vidual) food-bearing locations. Figure 1 b shows an example
environment with 5% food location density and a clump scale
of 4, while Figure 1 d shows an environment with 40% food
location density and clump scale 4.

At the beginning of time, before the introduction of min-
imats to the world, the environment is stocked with a full
complement of food so that there will be plenty to eat for
the initial population. The maximum food density, regrowth
delay, and energy flux parameters are used to calculate the
maximum food-energy per location, and then locations are
filled with that much food-energy according to the desired
maximum density and clump scale. Once this initial configu-
ration of food has been determined, the food-bearing locations
are the only places where food can ever grow throughout the
ensuing history of this world.

4 The Minimats

As we described in our original statement of this research
program (Todd & Wilson, 1993), we are ultimately interested
in the evolution of three components of behavior in response
to different environment structures: action, sensation, and
memory. Only the first of these, action, is actually necessaryto
allow an organism to behave–and, indeed, to behave in a way
well-adapted to its particular environment (Todd et al., 1994).
That is, minimats need not be able to sense nor remember
anything about their world (or themselves) in order to survive
and reproduce in it, provided the world is generous and benign
enough. Simply performing different actions with certain
probabilities can suffice. Of course, no real organisms adopt
this strategy (nor would they want to); it is impossible to build
a physical system that cannot be affected by its immediate
environment in some way. But we begin with this otherwise-
impossible thought experiment as the logically simplest case
we can construct, again with the goal of establishing a baseline
against which it will be much easier to show the adaptiveness
of evolved sensors and memory systems in comparison.

4.1 Action types

There are only four kinds of actions that these simple minimats
can perform. To absorb the food-energy in their environment
upon which they subsist, minimats can eat; to travel from
location to location in search of new food,minimats can move;
to populate the world with more of their own kind, minimats
can split in two;and to pass time until conditions have changed
(or not), minimats can sit and do nothing. We now discuss
each of these in greater detail.

Minimats burn up energy with every action they make,
and they die if they ever run out of this energy. The only
way that minimats can get the energy they need to live is
to absorb it from the environment through eating, and the
only option available to them for eating is the food-plants
growing in the world. When an individual performs the eat
action, it attempts to absorb all the food-energy in its current
location. Plants can only be consumed whole in these worlds;
thus, if there are multiple minimats all trying to eat at one
particular food-bearing location, only one of the minimats

will actually succeed. This successful minimat alone gets all
the food-energy in that location, while all the others get no
new energy. The winning minimat–the one that gets to eat–is
chosen randomly from among all the contenders attempting
to eat in a location. This minimat’s internal energy store is
increased by the amount of food-energy that was available in
the location. At the same time, the location’s food-energy is
set to zero, ready to sprout again after the environmentally
specified regrowth delay.

Minimats might not necessarily need to move about in their
environment to survive–if they are lucky enough to be born on
a food-growing location, they might be able to get by with just
sitting and eating there their whole lives. But we also allow
minimats the option of moving, to open up a much wider
and more realistic set of behavioral possibilities. Minimats
can move one location at a time in one of the four orthogonal
directions in the square grid (i.e., to the neighboring location to
the north, south, east, or west of their current spot). Movement
is always relative to the current heading of the creature, so that
an individual does not choose to move north, south, east, or
west, but rather forward, backward, left, or right. Every
choice of movement actually first resets the current heading
so that the creature is facing the direction it is going to move
(i.e., if the creature chooses to move backward, it first turns
around and then moves one step forward in that new heading).
This heading-relative movement has important implications
for the minimats’ behavior, as we will see in section 6.

The ultimate indication that particular behavior patterns
have been well-suited to a given environment is the presence
of minimats with those behaviors populating that environment
after a suitable length of time. We could arrive at this state
simply by filling the world with randomly generated minimats
and seeing who remains (with what behaviors) after the se-
lective filtering process of death weeds out the maladaptive
ones. But besides not being a particularly realistic portrayal
of evolution, this method could miss well-adapted patterns
of behavior that happened to be absent from the initial pop-
ulation. Instead, we need the power of evolutionary search
through small adjustments to existing behavior patterns, and
for this, we need replication with modification. Hence, we
allow the minimats to reproduce by asexual splitting.

When a minimat splits, it creates a possibly slightly mod-
ified copy of itself and divides its current energy between
itself and its new “offspring.” The newborn is placed in the
same location as the original splitting minimat (though with a
randomly-assigned heading), and they go on to lead separate
lives from that instant. The rare modifications in the newborn
consist of changes in its probabilities of choosing the various
actions in the minimat’s behavioral repertoire (see the next
section on action selection). The mutation rate–the chance
that any given action probability will be replaced with a new
probability value–is 5% throughout the runs described here.
This results in an individual who will behave slightly differ-
ently from the parent it split off from, allowing evolutionary
search of the space of possible behavior patterns.

Finally, we allow minimats to “choose” to do nothing in
a particular time step, just sit and wait for the moment to
pass. In this way, minimats can “travel” through time in the
same way they can traverse space. We hoped that including
this action would allow minimats to capitalize on the temporal
density of food in their world, in the same way that movement



operates on spatial density, but we have not yet seen evidence
for this.

Every action a minimat performs has energetic side effects
determined by the bioenergetic characteristics of the world
(see Todd & Wilson, 1993; other approaches to energy use
are presented by Menczer & Belew, 1994, 1996a, and 1996b in
this issue, and Lund & Parisi, 1995, 1996). Actions all use up a
certain amount of energy; throughout the simulations reported
here, every action uses a constant 0.5 units of energy when
performed (so minimats always use up 0.5 units of energy in
every time step they are alive). Beyond these action-costs,
some actions can further increase or decrease an individual’s
energy. Successful eating increases the individual’senergy by
the amount of food-energy absorbed from the current location,
while splitting cuts the individual’s energy in half. Thus
energy flows into the simulated world through food growth,
continues into minimats when they eat, and flows back out
of the minimats by being burned up through the actions they
perform. Because minimats only die when they run out of
energy, no energy-filled carcasses ever end up in the world–
dead minimats just disappear.

4.2 Action selection

Deciding how to “do the right thing,” while an open challenge
for most simulated agent research (Maes, 1994), is not a very
involved process for minimats. Minimats have neither sensors
nor memories or internal states to distinguish any location
from any other, nor any time step from the rest of eternity. As
a consequence, there is not much they can use to decide which
actions to perform in a given location at a given instant. In
fact, all that minimats can use is the roll of a die–they select
among all their possible actions randomly. But the die can
be weighted, with different probabilities (all summing to 1.0)
assigned to each of the seven possible actions (move forward,
backward, left, or right, eat, split, or sit).

It is these probabilities, distinct in each individual minimat,
that determine the makeup of its behavioral repertoire, and
which it uses to “decide” what to do next. Evolution shapes
these probabilities over time so that minimats will behave in a
way that is more or less well adapted to the environment they
live in. (We also allow an action to be “turned off” directly
by evolution, changing its probability to zero in one step by
making that action inactive; if the action is mutated back to
being active in a later minimat, its old probability level is
restored, allowing a sort of genetic memory.) For instance, it
is generally a bad idea in any environment for a minimat to
split more often than it eats: every time a minimat splits it
loses half of its energy (as well as paying the splitting action
energy cost), and without eating often enough to replenish
that lost energy, the minimat (and all its similarly low-energy
offspring) would soon perish. Hence, we are unlikely to see
a population of evolved minimats with an eating probability
lower than their splitting probability.

Each minimat thus has an internal list of seven probabil-
ities for selecting among the seven possible actions. These
probabilities remain constant throughout a minimat’s lifetime
(minimats neither learn nor change developmentally). When
a minimat splits, it is these probabilities that are modified
slightly in the newborn offspring.

At every time step, each minimat chooses one action at ran-
dom according to its own internal probability distribution and
then performs that action. These probability distributions are
therefore all we can look at to assess the behavioral repertoire
of the minimats in our evolving populations, but this situation
has the advantage of allowing us a very easy and straightfor-
ward way of analyzing what is happening in the world. In
contrast, the efforts of other researchers trying to make sense
of the behaviors of a population of sensing, remembering, and
acting neural-network-based simulated creatures are fraught
with much greater difficulties. And as we will see in section
6, even so simple a behavioral repertoire as this set of seven
actions weighted relative to each other can still lead to some
interesting evolved results.

5 What We Did

To collect most of the data reported in this article, we ran
populations of minimats for 15,000 time steps and computed
statistics for the final population at the end of each run. Our
earlier studies had shown that the evolutionary dynamics of
changing behaviors, population size, and environmental im-
pact (e.g., changing food density as a result of minimat eating)
had all settled down well before 15,000 steps. For each en-
vironment structure, we averaged five successful runs and
computed the standard deviation to get an idea of the de-
gree of variation of evolved behavioral solutions across runs.
However, because of occasional extinctions, not all runs are
successful (see section 6.1), and so we ran as many simula-
tions at each parameter setting as were necessary to produce
the five that went to completion with 15,000 steps.

Each run was begun with a population of 500 minimats,
evenly dispersed across the environment. Food was ini-
tially stocked at its maximum specified density, in energy
amounts specified by the energy flux equation. Each of the
first-generation minimats had a randomly assigned behavior
probability distribution, a random heading, and 20 units of
energy to start out life with. This initial population gives the
evolutionary process a variety of starting points to begin work-
ing from in parallel and allows multiple possible behavioral
strategies to compete with each other for domination. But
new behaviors also appear as time proceeds and the minimats
split, further fueling the evolutionary competition throughout
each run.

The first thing that happens as the initial random mini-
mats begin to act in any environment is a rapid population
explosion, from the starting point of 500 indiividuals up to
somewhere in the neighborhood of 1500 individuals within
the first few time steps. This is because the initial population
contains a number of minimats with very high probabilities of
splitting, so that is what they do. But because reproducing is
basically all some of these oversexed minimats do, they soon
run out of energy and die, and the population crashes to around
300 more self-controlled minimats. From that point on, the
successful minimats begin to make their presence felt, as they
responsibly move about their world, eat, and only very occa-
sionally have offspring. The population size grows steadily
over the next several hundred time steps before leveling off.
This initial population explosion followed by a rapid collapse
and slower rebuilding is seen in the majority of runs. The



final stable population size that is reached, though, and the
behaviors that evolve within that population, depend greatly
on the exact structure of the environment.

We focus here on understanding the evolutionary effect
of environments created with maximum food location density
between20% and 100%, where the patterns areclearest. (Note
that we describe density in percent in the text, but label it from
0.0 to 1.0 in the graphs.) Similarly, we begin our discussion
of results by considering regrowth delays between 0 and 4
time steps, which correspond to 100% temporal density (food
regrows at every time step) down to 20% (food every fifth
time step). Thus we have covered matching ranges of spatial
and temporal density. We proceed to consider a wider range
of regrowth delays and then look at the effects of clump scale
on evolved behavior.

The minimats and their environment were simulated on a
4096-processor 7 MHz Connection Machine 2 (CM-2) using
the *Lisp data-parallel language. We achieved a computation
rate of about five time steps per second for a population of up
to 16,000 minimats.

6 What Happened

6.1 Overall measures of evolved populations

One of the most obvious indications that different environ-
ment structures have an effect on minimat evolution would
simply be systematic changes in ultimate population size as
environmental parameters change. In Figure 2, we see that
this is exactly what happens. In general, as the maximum food
density increases, so too does the population size attainable
in that environment. It is easier to find food, the minimat’s
central task, because there are more food-bearing locations
(though each food-plant contains less energy, to maintain a
constant energy flux). Similarly, as food regrowth delay in-
creases from 0 to 4, again so does the population size. Things
get a bit messyfor low food densities (under 20% food-bearing
locations), where these general trends seem to reverse. In
addition, there is a large standard deviation for 90% food lo-
cation density (also seen in several of the later graphs), which
arises because of the underlying variation in evolved pat-
terns of behavior between different populations. (Generally,
large error-bars mean there were a variety of different evolved
strategies in a particular environment.) But overall the pattern
is clear: Changes in food density and regrowth delay bring
about clear differences in evolved population size.

The large population sizes with increasing food density of
Figure 2, though, mask one of the first mysteries of minimat
evolution. As we indicated in the previous section, the data
shown in these figures is averaged across successful runs,
where the population made it to 15,000 time steps. But in
different environments, there are varying degrees of evolu-
tionary success. As food density increases, there is actually a
decreasing rate of successful runs–that is, higher food densi-
ties lead to a greater number of early extinctions across runs.
In the “toughest” environment we looked at, with a food den-
sity of 80% and no regrowth delay, 64% of the populations (9
of the 14 runs we had to do to get 5 successful ones) quickly
go extinct –this despite food being present in almost every lo-
cation, and regrowing as soon as it is eaten! This trend largely

disappears, however, at the highest food density, 100%, and as
regrowth delay increases, when almost all runs successfully
reach 15,000 steps.

We do not yet know why many seemingly benign, plentiful
environments present so much difficulty to the evolving pop-
ulations, nor why a small change in food density or regrowth
delay can have such a large impact on evolutionary success.
The evolved behavioral patterns do not show corresponding
jumps at these environmental parameter settings and so offer
us no clues. One possibility is that there is an important inter-
action between the amount of energy per food-plant that can
be eaten and the energetic costs of the minimat’s moment-to-
moment actions. If each food-plant eaten does not give the
average minimat enough energy to live long enough to find
the next piece of food, we would expect frequent extinctions
in these environments. We will vary the energy costs of ac-
tions (or the energy flux) in different environments to check
this possible cause of environmental difficulty for minimat
evolution.

6.2 General patterns of evolved behaviors

6.2.1 Minimats spend most of their time eating

Our main interest, of course, is not how many minimats there
are in a population, nor how successful their different popu-
lations are, but rather what they do (cf. Fletcher et al., 1996,
who focus on evolutionary “success”). How do changes in en-
vironmental structure affect the behaviors that evolve? In Fig-
ure 3, we see the answers. As we saw for population size, the
patterns are different for very low food location densities, but
above density 20%, we see movement alone (summed across
all four movement directions) increasing with greater food
density, and eating, splitting, and sitting decreasing. Greater
regrowth delays also make for more movement and less eat-
ing. Overall, minimats in this range of environments spend
the vast majority of their time (over 80%) just trying to eat
whatever food might be in their current location and only
move occasionally (2-18%) to other possibly greener pas-
tures. They sit still infrequently–it seems better at least to
try to eat, if one is not moving on, than not even to take the
chance by just sitting, because in either case the same amount
of energy (0.5 units) is lost on this time step. (But then why
should minimats ever sit rather than eat? This action might
remain in the population due to mutation, with insufficient
selection pressure to decrease its prevalence further. But this
does not explain its systematic changes across environments,
so some mystery remains.) And minimats reproduce only
rarely, because of the energetic costliness of this action; on
average (for higher food densities), only about one minimat
in 200 will split on a given time step.

6.2.2 Moving makes sense at high food densities

The majority of excitement in a minimat’s life comes from
eating and sometimes blindly stumbling to a neighboring lo-
cation, and it is these actions that we have endeavored most
to understand. At high food location densities, the likelihood
of moving onto a neighboring spot that can grow food is also
high; therefore, movement is a low-risk strategy; anywhere
else is just about as likely to be a good grazing spot as where
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Figure 2: Population size vs. maximum food location density for four different regrowth delays, showing that the number of
minimats in the world goes up as food becomes more common. Note that the large error bars for 90% food location density
(here and in later figures) indicate a greater variety of evolved behaviors at that parameter value.

the minimat is right now. Furthermore, moving can provide
a valuable payoff: A minimat can escape the food-scramble
competition in its current location. Granted, it will probably
end up in a new, similarly competitive situation; but the alter-
native, never to move, will cause minimats and their offspring
to end up piling higher and higher on one spot, parents and
children starving one another in their struggle for the limited
local resources. Thus, those minimats that do move provide
a better chance of survival for themselves and their offspring,
and this behavior pattern will tend to spread through the pop-
ulation.

6.2.3 Moving seems risky if food is sparse

But what of the minimats stuck in sparse-food environments,
where it may take several successive movements to get from
one fertile food-bearing location to another? In these cases,
rarely moving seems like a worse strategy than never moving
at all: Consider, for example, a minimat born on a fertile
location in a 20% food density world, who moves once every
20 to 30 time steps. Once this minimat moves off of its
birthplace, it will (if moving randomly) probably take about
four more movements to find another fertile spot. Given its
low movement rate, this could take 100 foodless time steps,
and by that point, the minimat could well have starved to
death. So for such sparse environments, it may make more
sense to stay in one location by never moving. Why then
do we find a population average movement rate of 2 to 8%
in 20% density environments, and even 5% movement in the
very sparse 5% density environments?

Because averages obscure the real story. There is no “aver-
age minimat” with 2.3 offspring and a Volvo (only driven 5%
of the time). In fact, some minimats never move–and some
never reproduce–at all. As we indicated in section 1.2, each
minimat population is composed of distinct subpopulations

with quite different behavior patterns, and to understand how
environments affect minimat behavior, we must consider the
subpopulations themselves.

6.2.4 Most minimats do not move if food is sparse

So to answer our question of why there is still a low average
movement rate at low food densities, we need to see if all
minimats in the population are moving equally. The answer
is a resounding “no”–most minimats never move once in their
entire lifetime. In Figure 4 a, we show the percentage of
minimats in the population that have any active move actions–
that is, that can ever move–as a function of food density and
regrowth delay. Over 80% of the minimats in low food density
environments are completely immobile, spending their whole
lives eating in the same location (and sometimes splitting or
sitting), just as we suspected they should two paragraphs ago.
As food density (and regrowth delay) increases, so too do
the number of movers in the population, until at 100% food
density nearly all minimats are moving, again as we expected.

6.2.5 Moving minimats move about the same amount

A subpopulation of mobile minimats is thus responsible for
all of the “average” movement we find in Figure 3 b, while
the rest sit idly by. How much are these movers themselves
actually moving? Surprisingly, this is roughly constant across
environments, as we see in Figure 4 b. At very low food
densities, those minimats that move at all, move quite a bit (20-
40%), which matches our earlier suspicions about the folly
of low movement rates in sparse environments. Movement
rates of 10 to 20% change rather little across the higher food
densities (those above 20%), though. Rather, it seems that
evolution changes the mix of a small set of subpopulations
in many different environments, while keeping the behaviors
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Figure 3: The percentage of time that minimats eat (a), move (b), split (c), and sit (d) vs. maximum food location density,
showing that evolved minimat behavior changes in regular ways with changes in environment structure. Note that the y-axes
are all the same scale but have different ranges, with eating being the most common action by far, followed by moving.
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Figure 4: (a) The percentage of mobile minimats (Movers) in the population vs. the maximum food location density, showing
that movement increases overall in the population as food becomes more common, because the number of Movers increases.
(b) The percentage of time that Movers actually move vs. the maximum food location density, showing that Movers spend
about the same amount of time moving across a wide range of food location densities.



within each of those subpopulations largely constant. Thus,
we need to consider not only the minimat behaviors adapted
to different environments, but also the mix of these behaviors
across environments and the evolutionary stable strategies
these mixes represent. (We save this game-theoretic analysis
for the future.)

The importance of looking at the mix of roughly behav-
iorally constant subpopulations is reinforced when we con-
sider the rates of reproduction in the population. Figure 5 a
shows the percentage of potential reproducers (dubbed “split-
ters”) in the population (those minimats with nonzero repro-
duction rates), which rises for low and high food densities.
Figure 5 b shows the percentage of time the potential repro-
ducers actually spend splitting, which again stays more con-
stant across environments (again once food density is above
20%), even as the reproducing/nonreproducingsubpopulation
mix changes. (Higher splitting rates at the low food location
densities are probably possible because each food-plant eaten
provides a large surge of energy, which the minimat can use
to reproduce many times without running out.)

6.2.6 Many minimats do not reproduce

The relationships between moving and reproducing can be
seen by considering four different subpopulations: minimats
who both move and reproduce, or those who move without
reproducing, or reproduce without moving, or neither move
nor reproduce. In Figure 6, we show the number of indi-
viduals (rather than population percentages) in each of these
four subpopulations supported by different food location den-
sities (all for regrowth delay 0–similar patterns hold for other
delays). The number of movers (both reproducing and non-
reproducing) increases over tenfold across the food density
range, while the number of nonmovers declines. (When com-
bined, of course, the four subpopulations yield the population
sizes shown in Fig. 2.)

Interestingly, the number of minimats that do not reproduce
is greater for both movers and nonmovers alike, across all
food densities. These minimats never pay the high energy
cost of splitting in two and so are more likely to amass greater
amounts of energy and stay further away from starvation than
their more prolific compatriots. Thus we do not yet seem to
have overcome the unnatural presence of potentially immortal
minimats we noted early in our studies (see Todd, 1993). But
(nearly) all populations do have at least some fertile members,
as shown in Figure 5 a, so the problem we earlier feared, of
evolution coming to a halt through lack of reproduction, is not
a concern here.

6.3 Movement effects of food location density

Now let us return again to our question of movement rates in
sparse food environments. We saw that most minimats (80-
90%) do not move at all in such environments, and those few
that do, move rather often (20-40%). This lessens the time
spent between fertile locations, and so helps avoid starvation
in empty desert regions. But of course, it also lessens the time
spent on any fertile locations before moving off again. Over-
all, movement still seems to be a risky proposition in these
environments–why should any portion of the population leave
a food-bearing location? Early on in the course of evolution,

such movement could help wandering minimats come upon
fertile locations that were not already filled with sessile eaters.
But after enough time steps, for instance, the 15,000 time-step
case we are considering here, the population will have set-
tled to a steady state dominated by the nonmoving minimats,
crowded onto the scattered fertile locations (as many as eight
minimats per location at 5% food location density, and three
per location at 20% food location density). In such a situa-
tion, random movement seems particularly hopeless: Even if
a mobile minimat does find another food-bearing location, it
will already be swarming with immobile competitors.

6.3.1 Minimats do not move randomly

Faced with this puzzle, we decided to check our assumptions.
Random movement implies that each minimat would move
in each of the four possible directions approximately equally
often. We counted up the number of directions each mo-
bile minimat could move in, expecting an average close to 4.
To our surprise, the average came out very close to 1–most
minimats can only move in a single direction. Moreover,
this evolutionarily restricted, nonrandom movement is very
quickly and strongly selected for (at least at low food densi-
ties), as Figure 7 shows–within 2000 time steps of this typical
run (10% food location density, regrowth delay 4), nearly 80%
of the movers travel with just one movement type.

So our assumption of random movement had been wrong.
What were these minimats doing instead? There are four
possibilities: If they only ever move in direction 0–straight
ahead–they will move in a straight line across their toroidal
world, wrapping back to where they started after covering 64
locations. If they move solely in direction 1–turning right
and taking a step ahead–they will describe a four-location
loop, ending up back where they started after executing four
move-actions. This is the same for direction 3, except that the
four-move loop winds to the left instead. Finally, if a minimat
moves repeatedly in direction 2–turning around 180 degrees
and then stepping forward–it will simply loop back and forth
over two locations.

6.3.2 Minimats mostly move in small loops

Now it remains only to find out which of these types of loops–
whether of length 64, 4, or 2–our moving minimats are cir-
cumnavigating. In Figure 8, we have plotted just this, across
different food densities, holding regrowth delay constant at 0
time steps 2. (We will explore the effects of regrowth delay in
the next section.) Truly random movement–those minimats
who move in more than one direction–is very low across most
food densities, only rising at the very highest densities, when
moving anywhere is likely to lead to food. Moving in a 64-
location loop, which crosses the entire world, also remains an
uncommon strategy until the higher food densities. (For very
low food location densities, as we found earlier, the story is
more complicated.) But with 2- and 4-location loops, things
get more interesting.

2Note that we have added together the minimats moving only in direction
1 and those moving only in direction 3, because in both cases they are
traveling on 4-location loops. The direction of these loops does not make a
behavioral difference. Throughout the runs, movements 1 and 3 are about
equally common.
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Figure 5: (a) The percentage of reproducing minimats (Splitters) in the population vs. the maximum food location density. (b)
The percentage of time that Splitters actually split vs. the maximum food location density, showing that Splitters spend about
the same amount of time splitting across a wide range of food location densities.
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Moving off of a fertile location can make some sense, even
at low food densities, if one could be guaranteed of being able
to return to that fertile location in the near future. This is
exactly what 2- and 4-location loops allow–after the requisite
number of movements, the minimat will be back where it
started. Notice though that we do not know exactly how long
it will take for the minimat to return to any given location.
Because all actions are chosen probabilistically, it may take
some time before the minimat executes the two or four moves
necessary, interspersed with its other (more common) eating
and (less common) splitting and sitting actions. (We can
compute the approximate time to complete a loop, though,
which will become useful when we consider regrowth delay
in the next section.) But sooner or later, the minimat will get
back to any food-bearing location it left, and in the meantime,
it will have visited one (for 2-move loops) or three (for 4-
move loops) other locations. And this is where the benefit of
looping in sparse environments comes in: Mobile minimats
will have a chance of finding other food-bearing locations that
their immobile cousins will not.

6.4 Action effects of regrowth delay

We have now seen how the most obvious aspect of a minimat’s
world–the density of food locations–affects the evolution of
minimat behaviors, including prevalence and type of looping
movements. We also saw a hint in the initial graphs of how
the second environmental parameter, regrowth delay, affects
evolved behavior, and how the two parameters interact. But
our initial range of regrowth delays, as presented in Figure 3,
was too restricted to get a complete picture of its behavioral
impact. We now consider a wider range of regrowth delays
and see whether or not they have an independent effect on
evolved minimat behavior.

6.4.1 Regrowth delay affects evolved behavior

In Figure 9, we show the evolved average mix of minimat
behaviors in environments with regrowth delay ranging from 0
to 32 (in nonequal jumps), all for a fixed food location density
of 40% (a midrange density). As the time taken for food to
reappear goes up, the amount of time minimats spend moving
also goes up, while their eating rates go down. Splitting and
sitting rates remain very low throughout, changing little. This
pattern of increasing movement and decreasing eating mirrors
the changes we saw with increasing food location density in
Figure 3. So is regrowth delay having the same effect on
evolved behavior as food density? Can this temporal variable
simply be mapped onto the spatial one, as far as minimats are
concerned? In our quest to characterize the environmental
structure that matters to minimats, can we get away with
using just a single parameter?

The answers to these questions could of course go either
way. Temporal structure seems, to us memory-endowed ob-
servers, to be an important element of any environment; but
to minimats, lacking memory and sensation of their envi-
ronment, it could well be that taking advantage of temporal
structure is a luxury they are forced to do without. Certainly
regrowth delay has an effect on evolved minimat behavior, as
we saw in Figure 9. But if regrowth delay has, first, an effect
on food density, and it is these food density differences that
are actually influencing minimat evolution, then we would be
justified in saying that regrowth delay as such is not the param-
eter affecting evolved behavior (see section 1.1). This would
mean we could talk about all the minimat environments we
have considered so far, purely in terms of their effective food
density, when analyzing them for their expected behavioral
impacts.

It is the case that regrowth delay has a direct effect on the
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Figure 9: Percentage of time that minimats eat, move, sit, and split, for food regrowth delays from 0 to 32, with maximum food
location density 40%. These patterns are similar to those in Figure 3, but for different reasons (see text).

current density of food in the world. With increasing de-
lays, food takes longer to reappear in a given grazed location,
and so at any given time step, there will be fewer locations
containing food–and hence, actual food density will be lower
(see section 3.1). (Of course, this only occurs as a result of
minimat eating, making this a clear instance of the minimat
population’simpact on its own environment.) This can clearly
be seen in Figure 10, where we plot the actual food density
experienced by minimats against increasing regrowth delay
in an environment with 40% maximum food location den-
sity. With zero regrowth delay, food regrows instantly to its
maximum 40% density, but as delay increases, less food has
regrown at any given time step and the effective experienced
density in the environment decreases.

6.4.2 Regrowth delay has a different effect from food
location density

But before we conclude that regrowth delay does nothing
more than change the food density that influences minimat
behavior, we have to see whether or not the behavioral effects
of regrowth delay vary with its effects on density in the same
way that behavior varies with density in Figure 3. In the latter,
eating went down and movement went up as density increased.
Here, density increases with lower regrowth delays, so if the
two parameters have matching effects, we should see less
eating at lower regrowth delays, and more moving. But this
is exactly the opposite of what Figure 9 shows. Instead, as
regrowth delay goes up and food density goes down, we get
increasing movement and decreasing eating. So the effect
that regrowth delay has on food density does not account for
its effect on evolved behaviors–in fact, just the opposite. We
must conclude that regrowth delay is indeed an independent
parameter of environment structure that makes a difference to
evolving minimats.

We can understand the general trends in evolved behaviors

for different regrowth delays (Fig. 9) as follows: Eating is of
course still the most important thing to do. But as regrowth
delays increase, moving makes more and more survival sense
as well. If food has been grazed from a minimat’s current
location and will not appear there again for some time, it is
not a particularly good idea to continue to sit there and just
try to eat, gnawing at the empty ground. (This is different
from the situation of instant food regrowth in locations with
many competing minimats. There, it is a reasonable strategy,
adopted by the many immobile minimats, to sit in one location
and just try to eat at every time step, because there is always a
chance that they will be the lucky one to get the food that time.
With long regrowth delays, there is no chance for anyone to
get food from a grazed location for some time.) Moving on in
search of other fertile locations can be more rewarding, and
so the average rate of movement increases with increasing
regrowth delay. In fact, as we saw in Figure 4, any single
mobile minimat in one of these environments moves about
the same amount as any other–roughly 30% of the time–but
the number of mobile minimats themselves increases with re-
growth delay, accounting for the growing average movement
rate in Figure 9.

6.4.3 Minimats can loop to “time” their environment

Moving away from a slowly regrowing food location rather
than uselessly waiting around for its reblossoming can be
energetically rewarding because it allows the minimat to find
other food-bearing locations. But it still means leaving behind
a known food-bearing location for possible starvation in the
unknown, unless, as we saw for sparse food environments,
there is a guarantee of returning to the original regrowing
location. And so here too again looping behavior proves
useful. If a minimat can graze a food-bearing location, leave
it in the hopes of finding other food-bearing locations, and
then return to the first location just as its regrowth delay is up
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world.

and food reappears to be eaten, the minimat will be in ideal
sync with the temporal structure of the environment and will
be able to exploit maximally the available resources.

Of course, no minimat can time things this precisely, lack-
ing any of the internal state necessary for such controlled
behavior. But they can come close, in a probabilistic sense.
Recall that the mobile minimats in the environments of Fig-
ure 9 spend roughly 30% of their time moving, and so about
70% of the time eating. This means that a 2-move loop will
take about 6 time steps, and a 4-move loop will take about
12. It is most adaptive to loop in such a way that the minimat
will not return to a given location before food could have re-
grown there, but rather after, when it has already reappeared
and is again available for eating. Thus we would predict that
2-move loops taking 6 time steps will be most beneficial in
environments with regrowth delays up to 6, and 4-move-loops
will be most beneficial for regrowth delays above 6, up to 12
or so.

In Figure 11, showing the prevalence of the different loop
types across increasing regrowth delays, we see that this is
largely the case: The 2-move loops are used most at low
delays, while 4-move loops are used more at higher delays,
and the two types cross just at a delay of six time steps. The
proportion of 4-move loops does not fall off very quickly as
delay gets even longer, but eventually nonlooping movement
(and some 64-move loops) start to increase when the delays
get too long for looping to accomodate.

6.5 Action effects of clump scale

So far we have seen that evolved minimat behavior is sensitive
to both the overall density of food locations in the environ-
ment and the delay with which food regrows. These are, in
some sense, the lowest-order spatial and temporal parameters
with which an environment could be characterized: They re-

flect mere prevalence of resources in space and time, without
capturing any aspect of higher-level organization or structure
in space and time. We next sought to investigate whether
minimat behavior could evolve to capitalize on the kinds of
higher-level environmental structure that is so obvious to or-
ganisms (such as ourselves) that can compare environmental
conditions across space and time. We introduced an envi-
ronmental structure parameter that controls the clumpiness or
patchiness with which food grows in the world, as this is one
of the most commonly seen and analyzed higher-level envi-
ronmental structures (see section 3.3). We did not hold out
much hope that our minimats could evolve to take advantage
of patch structure in their world, given their sensory and cog-
nitive limitations. We instead expected that here would be the
first example of environment structure that does not matter in
the minimat world.

We tested minimat populations in environments with clump
scales 1, 2, 3, 4, 5, 7, and 10, all with 5% overall food location
density and zero regrowth delay (see Fig. 1 for examples of
these environments with clump scales 1 and 4). The effect of
clump scale on average evolved behaviors is shown in Fig-
ure 12. As food in the world appears in bigger and fewer
patches, the rate of eating decreases (though slightly), move-
ment increases, and splitting and sitting decrease marginally.
These trends mirror those for increasing food density (Fig. 3),
just as the patterns for increasing regrowth delay did (Fig. 9).
Now, as we did for regrowth delay, we must ask if clump scale
affects evolved behaviors in some new way, or merely through
its effects on food density? Is it an independent environmental
structure parameter that matters, or not?

6.5.1 Clump scale does not affect overall food density

The answer at first seems clear: As we changed clump scale,
we held the overall food location density constant (by de-
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creasing the number of bigger clumps in the environment
accordingly). So clump scale is not affecting overall food
density, and its effects must be independent of that density.
But overall food density in a clumpy world is not something
that most minimats can ever assess. As we saw in previ-
ous environments, most minimats that move do so in small
loops, and that is also the case in clumpy environments. So
most minimats only ever see a very small portion of the total
world (this is true not only for the mobile looping minimats,
but of course also for those that never move at all). Their
concern then is not overall worldwide food location density,
but only the food density in their own tiny pathway. When
the environment is not patchy (clump scale 1), containing no
higher-order structure, then the statistics of food density in a
small local area such as a 4-location loop do match the density
statistics of the whole world (e.g., if overall food density is
75%, then on average, 75% of the locations in a 4-location
loop will contain food, too). But for clumpier environments,
this relationship breaks down, and the world that minimats
experience may not reflect the characteristics of the world as
a whole. This leads to complications, as we will see.

6.5.2 But clump scale does affect experienced food den-
sity

Consider a minimat living out its life by eating and making
2-location loops. If this minimat lives in a nonclumpy world
with 5% food density, then it has a 2 5% 95% 9 5%
chance of living in a 2-location loop with one fertile, food-
bearing location and one nonfertile location in it. It also has
a 5% 5% 25% chance of living in a 2-location loop with
both locations being fertile. The rest of the time, it would
find itself in a pair of locations that are both nonfertile, and
because it would then never find food, it would quickly starve
and disappear from the population. Thus the only cases we
really care about for 2-location loopers–the only ones where
these minimats could possibly stick around long enough to be
analyzed in our system–are those with one or both locations
bearing food. If we renormalize for just those two conditions,
we find that these (nonstarving) minimats in the 5% food world
will live in 2-location loops with one food-bearing location
9 5 9 75 97% of the time, and will have both locations
capable of growing food just 3% of the time.

In contrast, consider our 2-location-looping minimat in a
clumpy world with clump scale 10 (and still overall food
density 5%), where the world is filled with 10 x 10 squares
of food-growing fields. How often will it live in a 2-location
loop with only one food-bearing location? This will only
happen if the minimat’s loop happens to lie half on and half
off one of the food patches, and this will happen roughly
36% of the time (because there are 36 edge locations in a
10 x 10 square, but some squares might overlap–again we
ignore all cases where the minimat would live in totally empty
space, because it would quickly die there). The other 64%
of the time, the minimat would find itself in the interior of
a food patch, and it would thus live on a 2-location loop
with food in both locations. Thus, to a minimat living in a
patchy environment, the world looks very different from the
randomly distributed food case. In particular, food appears
much denser, precisely because food is much denser anywhere
that a minimat can possibly survive. So to compare patchy

and nonpatchy (nonclumpy) environments, we must compare
how they appear to behaving minimats, not how they appear to
omniscient environment designers with a global perspective.

We have performed this kind of comparison from the per-
spective of 2-location looping minimats in Table 1. First,
we have listed the percentage of 2-location loops that have
one or two food locations in them (ignoring empty loops), for
nonpatchy (clump scale 1) environments with varying overall
maximum food location densities of 5 to 100%. Next, we
have performed this same analysis for patchy environments,
for clump scales between 1 and 10, all for overall maxi-
mum food location density of 5%. Finally, we have shown
the closest match between each of the patchy environments
and the nonpatchy environments, mapping from clump scale
to corresponding experienced apparent food location density
(from the minimat’s perspective). We see that as clump scale
increases, so too does the experienced food density, which
rapidly approaches asymptote. Thus 2-location looping min-
imats living in patchy worlds will “feel” that they are living
in worlds with higher overall food density than is actually
the case. (This analysis also holds for the 4-location loopers,
though it is slightly more complex for them.)

So the mapping from clump scale to experienced food
density for loopers and nonmovers alike is clear: Increas-
ing clump scale corresponds to increasing experienced food
density. If we then compose this relationship with the relation-
ship between food density and behavior in Figure 3, we get
the same pattern of results as in Figure 12: Increasing clump
scale and correspondingly the food density corresponds to de-
creasing rates of eating and increasing rates of movement. By
this test, changing clump scale is not doing anything to affect
evolved behaviors other than changing the experienced food
density. This is further supported by the percentages of dif-
ferent types of looping behavior across clump scales, shown
in Figure 13. The pattern there matches that for the loopers
at different food densities shown in Figure 8. Thus, on the
basis of these pieces of evidence, we would seem to be able to
eliminate patchiness as an independent structural parameter
from our description of minimat environments.

6.5.3 Clumpy worlds look different to different loopers

But there is one more piece of data to consider before final-
izing this conclusion. Look again at Figure 8. The type of
movement that becomes most prominent there at high food
densities is moving straight ahead (movement 0), that is, cir-
cumnavigating the world in a 64-location loop. But in Fig-
ure 13, this type of movement stays low across high clump
scales, even though the experienced food density (for 2- and
4-location loopers) is also high. The reason for this lack
of forward-moving individuals in clumpy worlds is apparent
when we take the minimat’s-eye perspective again: While a
2- or 4-location looping minimat only “sees” the prevalence
of food in its tiny local loop neighborhood, a forward-moving
minimat on a 64-location loop would “experience” a much
wider swath of the world and so would encounter food at a
rate closer to the true overall food location density 3. Because

3Note though that patchiness does also affect the food density experienced
by forward-moving minimats. This is because all nonstarving ones will cross
at least one patch, and so will encounter a stretch of food at least clump scale
locations wide. As a consequence, the experienced food location density seen



Percentage of non-empty 2-step loops with 1 or 2 food-bearing locations vs. clump scale:

Clump scale
1 2 3 4 5 7 10 15 20 25

1: 97 65 48 38 32 24 18 12 8 7
2: 3 35 52 62 68 76 82 88 92 93

Percentage of non-empty 2-step loops with 1 or 2 food-bearing locations vs. maximum food location density:

Maximum food location density
5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1: 98 94 89 82 75 66 57 45 33 18 0
2: 2 6 11 18 25 34 43 55 67 82 100

Nearest matches based on these 2-step loop statistics, showing the experienced food density as a function of clump scale:

Clump scale: 1 2 3 4 5 7 10 15 20 25
Exp. Density: 5% 50% 70% 80% 80% 90% 90% 90% 100% 100%

Table 1: Comparisons of the effects of clump scale and maximum food location density on experienced food location density.
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Figure 13: Percentage of mobile minimats (Movers) who move in loops of lengths 2, 4, or 64 or without looping for clump
scales from 1 to 10, with maximum food location density 5% and food regrowth delay 0. Bigger food clumps do not lead to
more long loops, in contrast to increased food location density (Fig. 8), indicating that these two parameters have different
behavioral effects.



the maximum food location density used in Figure 13 is 5%,
any (nonstarving) forward-moving minimats would experi-
ence many fewer food locations than its (nonstarving) 2- or
4-location looping counterparts. Thus this big-loop behav-
ioral strategy is a losing proposition in patchy environments,
and minimats instead evolve to stay local and ignore global
statistics.

6.5.4 So clump scale is an independent environmental
parameter

We must therefore now conclude that clump scale does make a
difference to minimats. To immobile individuals, and to those
traversing 2- and 4-location loops, clump scale is reducible
to changes in the experienced apparent food location density.
But to 64-location loopers, changing the clump scale does not
change the experienced food density nearly as much. Thus,
because clump scale has a differential effect on differently
behaving minimats, it represents a unique selective force in
their evolution, and its effect cannot be reduced to that of food
density (nor regrowth delay) alone.

This is a surprising result, that a higher-order environmental
structure such as patchiness should matter to creatures without
sensors or memory to keep track of this structure. But it comes
about because, in some sense, the behaviors themselves of our
minimats have some higher-order structure: Minimats can be
immobile or move only locally, or they can travel across the
entire world. Thus there are two broad spatial scales at which
minimats can evolve to behave. Changing clump scale has
different effects at these two different spatial scales, greatly
increasing the experienced food location density at the small
scale, while altering it only insignificantly at the large scale.
Changing overall food density in a random, unclumped en-
vironment, on the other hand, has the same overall effect at
both of these two spatial scales. So the structure inherent in
minimat behavioral possibilities will be matched to the struc-
tural changes induced by these two environmental parameters
in different ways. (This also implies that if minimat behavior
did not allow large-scale spatial travel, then environmental
patchiness would not have a different effect from apparent
food density on evolved behavior.)

From this point, once we have abandoned the notion that no
higher-order environmental structure will matter to minimats,
it quickly becomes clear that some kinds of higher-order struc-
ture will make a difference in minimat evolution, and some
kinds will not. For instance, if the environment were struc-
tured fractally, changes in overall food density would have
the same effect on experienced density at all spatial scales,
by definition. So we would not expect fractal organization
to make a difference to minimats; their evolution will be
“blind” to this structure. On the other hand, it is easy to
construct a highly structured environment with food placed
in a regular pattern that will strongly select certain behavior
patterns, but in a different way from clump scale. In the en-
vironment shown in Figure 14, nonstarving 64-location loop-
ers and 2-location loopers would do well–experiencing 50%

by 64-location loopers goes up fairly linearly with clump scale–but is still
much lower than that experienced by 2- and 4-location loopers. For instance,
at clump scale 7, when 2-location loopers are experiencing an apparent 90%
food location density, 64-location loopers experience only an apparent 14%
density.

food density–because of their linear movement patterns. In
contrast, 4-location loopers would fare poorly–experiencing
25% food density–because of their two-dimensional move-
ment pattern. Hence we could devise another structure pa-
rameter based on regular food spacing that would also be im-
portant for characterizing minimat environments. Clearly our
search for the complete set of important environment structure
parameters in minimat worlds is not yet over.

7 What We Learned

We have come full circle: We argued initially that we have
to take the organism’s perspective in terms of their behav-
ioral capabilities to figure out what their general behavioral
strategies might be, before we can study how the environment
will shape those particular strategies. But now we have found
that we cannot even define the environment per se irrespec-
tive of the organism’s perspective–we have to consider their
behaviors to know what their environment is. Contrary to
Simon’s statement quoted at the beginning of Section 1.2, it
is not sufficient to know the organism’s behavioral capacities,
sensory abilities, and goals; we must know how they actually
put these together into the behaviors performed during their
lifetimes, to construct their own individually-experienced en-
vironments. Thus, just like our moving minimats, we are in a
loop: Evolved behaviors are affected by the environment, but
behaviors determine that environment and its selection effects
as well. We must consider both environment and behavior si-
multaneously in an interlocked fashion.

This turns our approach to characterizing evolved behavior
in terms of environment structure on its head. The environ-
ment is not a fixed entity, predetermined and mandated for the
minimats (or any organism) to respond to; depending on the
behaviorally generated viewpoint, the environment to which
an organism or population must adapt can assume a variety
of sizes, shapes, and statistical properties. Thus, we should
not begin by designing environments with global parameters
and then see what behaviors evolve in response. We need
to look first–or at least simultaneously–at the behaviors that
are possible and see how different behavioral strategies will
constrain the experienced environment. We must then com-
pare these behavioral strategies in terms of how well-adapted
they are to their particular self-constructed environments, not
how well adapted they are to the global environment or that
constructed by some other behavior pattern.

We are arguing here that organisms construct their own
environment through what they “choose” to experience as a
consequence of their behaviors. Note that it is also true that
organisms construct their environment in a more direct fash-
ion as well, by affecting the actual distribution of resources
and other organisms around themselves. We see clear ev-
idence of this in the minimat world in Figure 10, showing
how food density decreases through the effect of minimats
eating. Bedau (1996, in this issue) discusses the importance
of organisms “pushing around” other organisms and thereby
in some sense constructing their “social” environment, and
Kirsh (1996, in this issue) compares a variety of methods by
which organisms can change their environment to be more
accomodating to their abilities. The issue of environment
construction is central to Godfrey-Smith’sdiscussion of mind-



Figure 14: A regular pattern of food-bearing locations that will select for minimats moving in 2- and 64-location loops, who will
experience fertile locations in 50% of the locations they traverse. Minimats moving in 4-location loops will only experience
25% fertile locations, and so will be selected against. This contrasts with both clumpy environments (Fig. 13) and environments
with randomly located food (Fig. 8).

environment interactions (1996, in this issue), leading him to
distinguish between narrow constructionist viewpoints where
the organism causes direct physical change in the external
environment, and a broader definition where changes in the
organism’s sensory and mental capacities make new things in
the environment take on importance for the organism. But
even this broader definition of organism-mediated environ-
ment construction, akin to Simon’s (1956) discussed earlier,
does not fully reveal the importance of considering indirect,
behaviorally selected environment construction as a key step
in analyzing behavior-environment interactions.

The fact that even sensory-less, memory-less minimats
can construct their environments through behavioral selec-
tion only strengthens the importance of considering this type
of environment-behavior feedback. If minimats, who can ex-
perience nothing, can still select the environment that they
must adapt to, then organisms that can sense their world will
have all the more occasion to choose their own environment
structures to deal with (see, e.g., the “Just Say No” principle
of Kirsh, 1996, in this issue). This indicates that a fruitful
approach for designers of artificial agents in particular envi-
ronments (and analyzers of real animals in their environments)
is first to consider the range of appropriate behavioral strate-
gies, then to analyze the experienced environments that each
strategy would select, and finally to design sensors that will
add the most useful information about those environments to
guide the agent’s behavior (or for real animals, analyze their
sensory abilities in light of their behaviors and selected envi-
ronments). For instance, adding expensive, full-blown vision
to an artificial agent (or a primitive real organism) might not
give it much more adaptive advantage than a simple range-
finder (cf. Smithers, 1994, on the advantages of simple sen-
sors for simple robot behaviors, and Arbib & Cobas, 1991, on
the simple sensory needs of prey-capturing frogs and robots).

So is our whole research program of looking for environ-
mental effects on evolved behaviors now hopelessly under-
mined? Any changes we make to what we perceive as the en-
vironment might not actually be changes in what the minimats
(or other organisms under study) select as their environment,
so how can we tell what is going on? In fact, the behavior-
environment selection-adaptation loop might actually make
our job easier: This feedback process might make behavior
less sensitive to changes in environment, so that we have less
to look for. As we saw in Figures reffigure4 b and 5 b, par-
ticular patterns of minimat moving and splitting seem to be
rather insensitive to a wide range of environmental conditions.
Slightly closer to home, paleontologist Donald Prothero has
said, “We’ve oversold the idea that animals, especially land
mammals, are responsive to environmental change. Animals
seem to be remarkably resistant to a lot more change than
we thought” (quoted in Kerr, 1996, p. 432). Instead, the
behavior-environment feedback loop may create a set of at-
tractor states into which behavioral strategies tend to fall, and
from which it is difficult to dislodge them, even as the envi-
ronment changes.

This is the next step in our environment structure research
program: to analyze behavior-environment feedback in terms
of its effects on behavioral evolution. We hope to find evi-
dence for behavioral fixed points and basins of attraction that
yield a predictable kind of “inertia” to the evolutionary pro-
cess of adapting behaviors to particular environments. To do
so, we will once again take the perspective of the minimat
(or animat) in its environment, and then, when in the minimat
world, do as the minimats do, to discover the nature of the
environments they select for themselves, and how those self-
constructed environments exert selective pressures on their
behaviors in turn.
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