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Abstract - Human-robot interaction with urban search
and rescue (USAR) robots needs to provide operators
with a means of maintaining situation awareness (SA),
especially since the USAR operators usually cannot see
the robots that they are directing.   We used a technique
from human-computer interaction known as usability
testing, plus implicit and explicit SA measurement
techniques, to investigate USAR operators’ levels of SA
and strategies for maintaining SA.  We found that
operators developed different SA strategies, spent an
average of 30% of their time solely in SA activities, had
less SA of the space behind the robot than in front or on
the sides, did not use automatically-generated maps to
gain SA., and had difficulty maintaining SA when in the
autonomous mode.

K e y w o r d s :   Situation awareness, human-robot
interaction, HRI, urban search and rescue, human-
computer interaction, HCI.

1   Introduction
We have been working to understand how human-

robot interaction (HRI) can better support users in safety-
critical situations: situations in which an error or failure
could result in death, injury, loss of property, or
environmental harm [Leveson 1986].  Safety-critical
situations constitute a serious challenge for robot
designers due to the vital importance that robots perform
exactly as intended and support humans in efficient and
error-free operations.  We have been studying HRI in the
urban search and rescue (USAR) domain as a prime
example of a safety-critical application.

Prior to this year, we analyzed HRI chiefly during
USAR robotic competitions.  At competitions, the robots
were most often controlled by the people who developed
them.  These developers were not typical users: they often

did not have the same backgrounds or degree of
experience with computerized systems (meaning, we
expect that the developers were more used to working
with technology than USAR domain experts on average,
and less experienced in performing authentic USAR
tasks).  According to the principles of human-computer
interaction (HCI), it is not possible to get a true
assessment of the suitability and usability of an interface
without testing it with representative users.  Thus, we
designed an investigation, described below, to determine
whether two different interfaces for USAR robots
adequately support USAR domain experts known as first
responders.

We had previously noted [Drury, Yanco, and Scholtz
2003] that most problems encountered when navigating
robots have resulted from the humans’ lack of awareness
of the robot’s location, surroundings or status.  While we
called it “human-robot awareness,” first responders speak
of “maintaining situation awareness.” Situation awareness
(SA) is defined by Endsley [1988] as “the perception of
the elements in the environment within a volume of time
and space, the comprehension of their meaning, and the
projection of their status in the near future.”  We can
modify this definition for HRI, giving a definition of
situation awareness as the perception of the robots’
location, surroundings, and status; the comprehension of
their meaning; and the projection of how the robot will
behave in the near future.

Since it was clear to us that HRI needs to support users
in attaining and maintaining SA, we designed an
investigation specifically to probe SA acquisition and
maintenance as supported by the robots’ interfaces.

The rest of this paper contains a brief overview of the
SA literature, our investigation methodology, results, and
conclusions.



2  Situation Awareness
Because the literature surrounding SA is very large,

we confine ourselves to SA measurement, plus literature
specific to SA of robotic systems.

2.1 SA Measurement

Hjelmfelt and Pokrant [1998] state that experimental
methods for measuring SA fall into three categories:

Subjective: subjects rate their own SA

Implicit performance: experimenters measure task
performance, assuming that a subject’s performance

correlates with SA, and that improved SA will lead to
improved performance

Explicit performance: experimenters directly probe the
subjects’ SA by asking questions during short
suspensions of the task.

Two of the most frequently used measurement
methods fall into different categories: Taylor’s [1990]
Situational Awareness Assessment Technique (SART) is
a subjective measure, while Endsley’s [1988] Situation
Awareness  Global Assessment Technique (SAGAT) falls
under the explicit performance category.  These and other
examples of often-cited measurement methods are
described in Table 1.

Table 1.  SA Measurement Techniques

Category Technique Reference Description
Subjective Situational

Awareness
Assessment
Technique
(SART)

[Taylor 1990] SART was developed through analysis with pilots.  Operators rate on
a 10-dimensional bipolar scale the degree to which they perceive (1)
a demand on operator attention, (2) supply of attention and (3)
understanding of the situation.  The 10 components of the scale are
combined to provide an overall score.

Subjective Crew
Awareness
Rating Scale
(CARS)

[McGuinness
1999]

A generic 8-part questionnaire addressing both the mental content
and mental processing of SA with respect to 4 separate functions:

• Perception – assimilation of new information

• Comprehension – understanding of information in context

• Projection – anticipation of possible future developments

• Integration – synthesis of above with one’s courses of action

For each, subjects were asked to rate (from 1 – 4 with 1 being best
and 4 being worst):

• Content of that aspect – is it reliable and accurate?

• Processing of that aspect – is it easy to maintain?

Implicit
performance

“Mini sitreps” [McGuinness
2002]

Short situation reports (mini sitreps) are used to provide an objective
measure of the match between the subject’s understanding of the
situation and the actual situation at that point in time.  The mini
sitreps in McGuinness 2002 contained:

• Current enemy positions

• Assessment of enemy intent

• Assessment of current operation

• Assessment of future developments/outcomes

• Any deviations from original plans

Explicit
performance

Situation
Awareness
Global
Assessment
Technique
(SAGAT)

[Endsley 1988] Employs periodic, randomly-timed freezes in a simulation scenario
during which all of the operator’s displays are temporarily blanked.
A series of questions is asked of the operator with the intent of
probing their understanding of the situation.

Explicit
performance

Real-time
probes

[Endsley et al.
1998]

Uses SAGAT-type questions, but doesn’t involve blanking the
screen.  Measures response time as well as accuracy.



2.2  SA of Robotic Systems

A number of studies have stated the importance of
designing the human-robot interaction so that the operator
can maintain SA. Some recent examples are
Dudenhoeffer et al. [2001], Johnson et al. [2002], Green
and Oh [2003], Lewis et al. [2003], and Hughes and
Lewis [2004], as summarized below.

• Dudenhoeffer et al. [2001] hypothesize that modeling
and simulation will help to develop interfaces that
provide SA.

• Johnson et al. [2002] evaluate how well operators can
perform tasks with an original vs. improved interface.

• Green and Oh [2003] discuss using unmanned aerial
vehicles (UAVs; airborne robots) in enclosed spaces.

• Lewis et al. [2003] compare users’ performance with a
gravity-referenced display versus a standard fixed
camera with separate attitude indicator.

• Hughes and Lewis [2004] investigate how multiple
cameras with independent control can potentially
improve HRI performance (where performance is
defined by numbers of targets located and identified).

All of these studies used implicit performance
measures for SA to a greater or lesser extent (e.g.,
subjects in the experiment described by Hughes and
Lewis [2004] reported targets found under several camera
configuration conditions), although none of the papers
made a strong connection between their dependent
variables and the implications for SA.  In particular, the
dependent variables chosen by Johnson et al. [2002] are
very pertinent examples of implicit measures of
operators’ SA levels.  In addition, Scholtz [2003]
discusses roles that humans take on when working with
robots and how their SA can be measured explicitly or
implicitly.

3  Methodology
We performed a “usability test” as practiced by HCI

experts.  Usability tests involve observing typical users
(often only 3 to 5 users) performing representative tasks
under realistic conditions, usually while “thinking aloud”
(voicing their thoughts) [Ericsson and Simon 1980].  If all
users perform the same tasks and each has difficulty at
certain points, then the interface elements that are in use
during those points are likely candidates for redesign.

We tested four first responders who had no prior
experience working with robots (although some had
experience with remote controlled cars or airplanes).  For
each user, we conducted a half-day of testing on two
different experimental robotic systems, which included
training for each system as well as practice and testing
runs.  In all cases, the human directing the robot (the
“operator”) could not see the robot while it was in
operation.  This is a very important distinction: it is much

easier to direct a robot that a human can see rather than to
perform so-called “remote” robot operations.  The
operators were asked to find victims (represented by
numbered tags) in the NIST USAR test arena.  This arena
replicates a partially destroyed building [Jacoff et al.
2000].  The operators were not allowed to see the arena
prior to their runs, further increasing task complexity.

For each run, we videotaped the robot’s progress in the
arena and recorded which parts of the arena it covered,
captured the operator’s manipulation of the interface and
also the operator’s voice, and conducted post-run
interviews with the operator.  We measured SA implicitly
using such measures as amount of time spent panning the
camera and the number of times the robot bumped
elements in the environment.  Further, we analyzed the
tapes of the robot and the operator’s screen/voice to
determine the operator’s SA acquisition strategies and
explicit self-assessment of SA (e.g., “I have no idea where
the robot is right now.”) 

While the subjects tested two robot systems, the
results discussed below are for only one of the two
systems.  The second system had many hardware failures
during the runs, preventing us from obtaining usable data.

4  Results and Discussion
Our quantitative results are summarized in Table 2.

We found that individual users have different strategies
for acquiring SA.  We had hypothesized that the strategies
would mostly be influenced by the design of the robot
system, since the design of the system directly influences
the interactions that a user has with it.  However, in our
tests, we found that four subjects had different strategies
for acquiring SA on the same robot system.

In our tests, we found that 12 – 63% of each run was
spent acquiring SA to the exclusion of all other activities.1

An average of 30% of each run was spent acquiring SA
while no other task was being done.2  Despite this time
spent trying to acquire SA, users often expressed
confusion about where their robots were located relative
to various landmarks and whether their robots were near
obstacles.  For example, users backed robots into walls,
asked “have I been here before?”, and stated, “I have no
idea where I am.”

                                                            
1 In Subject 4’s Run 3, no time was spent by the operator

to acquire SA because the robot was in autonomous
mode.  This number is not included in our range.

2 This figure includes Subject 4’s Run 3 that used no time
to acquire SA while not moving the robot.  Removing
this zero results in an average of 33% of run time spent
only acquiring SA.



Table 2.  Data from the experiments

Subject,
Run

% Run
acquiring
SA

% SA
camera
panning

% SA
robot
panning

% Run
with
camera
off-center

Number of
obstacle
encounters

1, 1 63 81 19 20 0

1, 2 56 43 57 1 7

1, 3 43 54 46 0 0

2, 1 28 26 74 9 2

2, 2 12 73 27 32 4

2, 3 28 23 77 0 7

3, 1 25 70 30 48 0

3, 31 24 13 87 2 1

4, 1 13 64 36 0 2

4, 2 36 66 34 0 1

4, 3 02 0 0 0 5

Average 29.8 46.6 44.3 10.2 2.6

                                                            
1 Data from Subject 3’s Run 2 was not analyzed due to problems with the robot system during the run.
2 During Subject 4’s Run 3, the autonomous mode was primarily used.  Since the robot did most of the driving, the subject

did not pan the camera or robot to acquire SA.

We observed two primary methods for acquiring SA
on the robot platform that was tested.  The first involved
moving the camera; operators could pan, tilt and zoom the
camera to look around the environment.  The second
involved moving the robot back and forth to look around,
not for any navigation purpose. Most of the subjects
developed this strategy when they found that the robot
could be turned more quickly than the camera could be
turned.  We found that two of the subjects spent more
time panning the camera than the robot (Subjects 1 and
4), while the other two (Subject 2 and 3) spent more time
panning the robot than the camera.

One problem observed with camera panning is that the
camera was sometimes left off-center when the operator
resumed driving, which can negatively impact an
operator’s SA.  In a prior study [Yanco et al. 2004], we
found that an operator drove with his camera off center
for over half of his run, causing him to hit more obstacles
than usual during that run.  The camera was pointed to the
left, so the operator would see a clear area, but there
would be an obstacle in front of the robot.

4.1  SA and Mapping

Another method for acquiring SA would be to use the
map generated by the robot system and displayed on the
system’s interface.  However, the subjects noted that the
map was not very useful.  One subject stated, “I have to
keep a mental image of the map because this [pointing to

the map on the interface] right now is useless.”  Another
subject said, “The mapping down here, for me personally,
isn’t really helping a whole lot.  It’s hard to tell where the
robot is with respect to this [pointing to the map].”

We believe that this problem occurred due to the fact
that the depiction of the robot on the map was a small
gray dot, while walls were also marked using gray pixels.
If the robot was moving, you could see the gray dot
representing the robot move around the screen.  However,
since the map is presented diagonally to the right, below
the video screen, the operator could not watch the map
updating while concentrating on the video screen to drive
the robot.

The mapping system could be improved by using a
clearer icon showing where the robot is on the map.
Additionally, allowing the users to mark landmarks on the
map could help.  Subjects were often surprised to find that
they had come back to a known location such as a
previously identified tag or the entrance to the arena.  If
landmarks such as these were marked on the map, the
operator could see the robot’s progress through the space
more clearly.

4.2  SA During Autonomous Driving

Subject 4 chose to put the robot in an autonomous
mode during the majority of the third run.  In the
autonomous mode, the robot drives around the arena,



avoiding obstacles (or, rather, avoiding as many obstacles
as the autonomy algorithm can manage).  During the run,
the subject did not need to acquire SA in order to be able
to navigate the robot.  The subject noted, “This
[autonomous driving mode] is really helpful because now
you can really kind of use the mapping since I don’t have
to worry about where I’m going.”

During this run, the subject was able to pay more
attention to the interface, noting details such as the health
status of the robot.  The subject remarked, “There's a lot
of information on the screen.  It'd take a lot of practice to
take it all in and use it.”

In the middle of the run, the map created by the robot
grew too large to be properly displayed on the interface,
leading the subject to ask if the robot had left the arena
since it had gone off the edge of the map.

After approximately eight minutes of driving
autonomously, the subject noted, “Looks like it keeps
going over the same area, so I’m going to have to… after
it backs itself out of here, I’m going to intervene maybe
and get it out.  I don’t think I’m going to have much
luck.”  The subject then switched back to a driving mode
where a joystick was used to control the robot’s
movement.  The switch was made because the robot had
moved into a dark area and didn’t seem to be making any
progress towards emerging from the area.  The subject
described being confused about where the robot was and
how to get out of the area.

While an autonomous robot can explore areas that a
human operator may not be able to go (in this case, the
robot ventured into a covered area that the operator had
not gone into in either of the prior two runs), the operator
may lose SA during the period of autonomy.  Since the
operator is not driving, it does not seem necessary to keep
track of every turn the robot is making.  However, the
operator needed to take control back from the robot when
it had problems, putting the operator into a situation
where SA had not been acquired and the video image was
dark.

4.3  Directional SA

During the experiments, we observed the robot bump
obstacles in the environment an average of 2.6 times per
run.  Of the 29 hits during all of the subjects’ runs, 12 or
41% of the hits were on the rear of the robot.  If SA were
the same everywhere around the robot, we’d expect to see
an even distribution of hits.

It is easiest to obtain awareness of the robot’s
surroundings around the front of the robot.  The front of
the robot has a color video camera with pan, tilt and zoom
capabilities, a laser rangefinder, and several sonar sensors.
This observation appears to be supported by the fact that
just 4, or 14%, of bumps happened on the front of the
robot.

It is a bit harder to gain awareness on the side of the
robot, with only two sonar sensors pointing out from each
side.  However, the primary direction of motion is usually
forward or backward, leading to less opportunity for
hitting the side of the robot.  Additionally, the obstacles to
the sides of the robot just passed from view as the robot
moved forward.

The rear of the robot only has two sonar sensors, one
on the left and one on the right.  We believe that the gap
in sensing is causing many of the rear hits.  In fact, while
in safe mode (a mode that is supposed to prevent the robot
from hitting objects in the environment), we observed the
robot back up into obstacles several times.   This SA
problem could be remedied through the addition of more
sonar sensors on the rear of the robot.  Adding a rear view
camera might also help to correct the problem of lack of
SA on the rear of the robot.

4.4 Losing and Regaining SA

All subjects expressed confusion as to where they
were during some portion of their runs.  In one run, a
subject said, “I have no idea of where I am.”  Three
minutes later, he added, “I’m all disoriented now.”  In
another run, another subject asked, “Where am I at?”  One
subject started her second run by stating, “I’m going to
look where I start so I know where I’m going this time.”

We noted that SA is most often regained when a
subject finds an object that has already been seen before,
whether it’s a numbered tag or a particular location.  One
subject noted, “I’ve lost my bearings of where I am.”
Three minutes later, the subject said, “I’m back to where I
came in.”  While the subjects can reacquire SA in this
manner, they don’t know how they got back to that point.
In a rescue situation, an inability to describe how to get to
a victim would be a significant problem.

5  Conclusions and Future Work
We expected that remote robot operators would spend

a measurable amount of time acquiring or regaining SA
but were surprised that operators spent such a large
fraction of their time maintaining SA to the exclusion of
all other activities (30% on average).  This large time
commitment devoted to SA, however, presents clear
opportunities for targeting improvements to the human-
robot interface.  We have mentioned several possible
improvements here: a clearer depiction of the robots’
position on the map plus the ability for the operator to
place landmarks on the map, and information presented to
the operator from new sensors that point backwards.
Since operators often watched video to the exclusion of
the other sensor readouts (and the occasional detriment to
their level of SA), we are exploring a design approach
that overlays sensor data on the video display [Baker et al.
2004, Hestand and Yanco 2004].  By doing so, we
hypothesize that the operator will be able to pay attention



to a greater variety of sensor input simultaneously and
enhance their SA.
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