
Blending Human and Robot Inputs

for Sliding Scale Autonomy*

Munjal Desai Holly A. Yanco

Computer Science Dept. Computer Science Dept.
University of Massachusetts Lowell University of Massachusetts Lowell

Lowell, MA 01854, USA Lowell, MA 01854, USA

mdesai@cs.uml.edu holly@cs.uml.edu

* This work was supported in part by NSF IIS-0308186, NSF IIS-0415224 and NIST 70NANB3H1116.

Abstract – Most robot systems have discrete
autonomy levels, if they possess more than a single
autonomy level. A user or the robot may switch between
these discrete modes, but the robot can not operate at a
level between any two modes. We have developed a
sliding scale autonomy system that allows autonomy
levels to be created and changed on the fly. This paper
discusses the system’s architecture and presents the
results of experiments with the sliding scale autonomy
system.

Index Terms – Sliding Scale Autonomy, Human-
Robot Interaction, Mobile Robots, Mixed Initiative,
Adjustable Autonomy.

I. INTRODUCTION

The continuum of robot control ranges from
teleoperation to full autonomy. The level of human-
robot interaction, measured by the amount of
intervention required, varies along this spectrum.
Constant interaction is required at the teleoperation
level, where a person is remotely controlling a robot.
Less interaction is required as the robot has greater
autonomy. Operating in the space between teleoperation
and full autonomy is referred to as shared control.
Additional definitions of autonomy can be found in
Huang, Messina and Albus [1]. Autonomy can also be
measured by the amount that a person can neglect a
system [2].

Shared control has traditionally operated at a fixed
point, where the predefined robot and operator
responsibilities remain the same. However, it is easy
to imagine situations where it would be desirable to
have a system that could move up or down the
autonomy continuum. Human operators may wish to
override the robot’s decisions, or the robot may need to
take over additional control during a loss of
communications. Research in this area has been called
adjustable autonomy, sliding scale autonomy and
mixed initiative. For examples of work in this area,
see [3-6].

Most autonomous mobile robot systems have
discrete autonomy modes modeled according to their
application. However, many occasions require a

combination of available autonomy modes, which is
not possible. In such situations, sliding scale autonomy
can be used to provide intermediate autonomy levels on
the fly, thus providing a great deal of flexibility and
hence allowing optimum usage of the system.

We define sliding scale autonomy as the ability to
create new levels of autonomy between existing, pre-
programmed autonomy levels. Others have defined
sliding scale autonomy as a system with discrete
autonomy modes and the capability to shift between
them on the fly [7].

II. DESCRIPTION OF THE

SLIDING SCALE AUTONOMY SYSTEM

Our system was modelled on the INEEL robot
control architecture [7], which consists of four discrete
autonomy modes:

• Teleoperation: In this mode, the user controls
the robot directly without any interference
from robot autonomy. In this mode, it is
possible to drive the robot into obstacles.

• Safe: In this mode, the user still directly
controls the robot, but the robot detects
obstacles and prevents the user from bumping
into them.

• Shared: In this mode, the robot drives itself
while avoiding obstacles. The user, however,
can influence or decide the robot’s travel
direction through steering commands.

• Autonomous: The robot is given a goal point
to which it then safely navigates.

To create a system with sliding scale autonomy,
we identified the characteristics that help define each of
these modes. Our system has the ability to change all
of the variables for these characteristics on the fly. New
autonomy modes are created by blending desired
characteristics. If particular settings are determined to
be a useful autonomy mode that the operator would like
to store for later use, the mode-defining characteristics
can be saved in a preset slot for future use.

 (a) 100% User, 0% Robot (b) 75% User, 25% Robot (c) 50% User, 50% Robot

 (d) 25% User, 75% Robot (e) 0% User, 100% Robot

Fig. 1: Figures a-e show the varying speed profiles based upon the percentage of speed contribution for the user and the robot.
The robot speed and the user speed are combined using the speed contribution to determine the ultimate speed of the robot.

A. System Variables
1) Force Field: There are four force fields, one in

each compass direction. These can be independently
changed and act like a virtual wall. These values define
the distance between the robot and the virtual wall in
each of the four directions. Whenever any object comes
in contact with a force field, the movement of the robot
in that particular direction stops; the robot can still be
moved in other directions. The values for force fields
range between 0 – 4 robot lengths.

2) User Speed: This defines the maximum speed at
which the user can drive the robot. This value ranges
from 0 – 1.

3) Robot Speed: This defines the maximum speed
that the robot can set. Even though this maximum
value is set by the user, the actual speed value is
decided by the robot. For example, if the robot is
moving in an obstacle filled area, it will keep the actual
speed to a low value even if the robot speed value is set
to 1. This value ranges from 0 – 1.

4) Speed Contribution: This can be used to switch
from the user having full control of the final speed to
the robot having full control of the speed or any point
in between, without changing the user speed and robot
speed values. This can be very helpful when the user
wants to be able to quickly transfer/blend control
without actually changing the user speed and robot
speed values. Fig. 1 shows the speed profiles that
result from varying speed contributions.

5) Speed Limiter: Because of inertia and traction,
the robot does not always stop dead when its force field
touches an object; this is especially true when it is
going at high speeds. The speed limiter can be used to
control the user’s contribution to speed by deciding
when to start slowing down and at what rate. The value
ranges between 0 – 1.

For example, when the robot is traveling in a
narrow hallway with the user speed set to 1 and a speed
limiter value greater than 0, if the user commands the
robot go forward at full speed, the speed limiter will
slow down the robot based upon the current distance to
the hallway walls and the force field that has been set.

Similarly, if there is an obstacle in the path of the
robot, the robot will start to slow down at a rate
dependent on the value of the speed limiter. The robot
will then come to a stop when the force field comes in
contact with the object.

6) Obstacle Avoidance : This has a value between 5
– 15 robot lengths, with increments of 1. The number
indicates the distance of a point on the straight path the
robot is currently on that the robot is supposed to
reach. Once initiated, the robot automatically drives
itself to the specified point. If there are any obstacles
encountered, the robot will try to avoid them and
recalculate the path to the desired point. Fig. 2 shows
the calculation of the robot’s path.

If the robot is not able to reach the point due to an
excess number of obstacles and crosses the limit (limit

Fig. 2: Calculation for Obstacle Avoidance.

= the value of Obstacle Avoidance) in either X-axis or
the Y-axis, the robot exits this mode.

In order for the robot to move with an obstacle
avoidance setting, the robot speed and speed
contribution must be greater than 0. Once the
destination point is reached or the limits are crossed,
the obstacle avoidance ends, and the robot will revert to
driving based upon the current combination of robot
and human inputs.

B. System Description
The human user provides input to the robot using a

GamePad which has six degrees of movement and six
buttons on it. The human inputs to the SSA system
are translation and rotation speeds, given by moving
the game controller. After some initial processing to
eliminate noise from hand jitter, the human input is
given to the speed limiter function to ensure that the
current speed is safe enough for the current
environment.

At the same time, the robot determines its desired
behavior. The robot’s behaviors can be determined
using any robot architecture, ranging from reactive
control to a hybrid architecture. As with the human
input, the robot’s selected behavior is expressed as
translation and rotation speeds. The robot’s speeds are
not passed through a speed limiter, as the robot should
be programmed to drive at safe speeds using sensor
readings to locate nearby obstacles.

The human and robot outputs are then passed to
the behavior arbitrator. Using the speed contribution,
the final translation and rotation values are computed,
taking the force field values into account as well. Thus
at this level, the arbitration is between these translation

Fig. 3: Information Flow Diagram. The architecture for
the sliding scale autonomy system.

and rotation values and not the arbitration of goals.
However, we plan to investigate methods for blending
goals in the future.

The system architecture is diagrammed in figure 3.

C. Presets
Presets provide a way to store and load system

variable values. Once a desired behavior has been
found, a user can simply save the current values into a
preset and load it at a later point in time using the
joystick. Thus, the user is not required to change the
system variable values every time.

III. RESULTS

We performed tests to see how the system behaves
when there is an object in front of it, by either enabling
or disabling the user speed, robot speed, speed limiter
and obstacle avoidance variables. Here enabling means
setting a value above 0 and disabling means setting the
value to 0. The experiments were repeated several
times and the diagrams shown in figures 4 through 11
represent the general behavior.

Figure 4 shows the front force field enabled with
no contribution to the behavior from the robot. The
user can drive the robot at a constant speed until the
obstacle is reached.

The experiment in figure 7 was repeated several
times by changing the distance between the robot and
obstacle, the user speed, the speed limiter and front
force field. In each case, the robot would always start
to significantly slow down and stop at the specified
distance from the object.

Figure Note: In all figures below, the dashed rectangle is the force field and the solid rectangle inside it is the robot. Solid
path lines indicate higher speeds. Dashed path lines indicate lower speeds, with the speed decreasing with smaller dashes.

Fig. 4: User speed enabled, robot speed disabled and speed limiter
disabled. The robot moves at a constant speed and stops when the

force field touches the object.

Fig 5: User speed disabled, robot speed enabled and speed
limiter disabled. As the obstacle is approaching,

the robot turns to open space.

Fig 6: User speed enabled, robot speed enabled and speed
limiter disabled. The robot passes closer to the obstacle

due to the user’s influence

Fig. 7: User speed is enabled, robot speed is disabled and the speed
limiter is enabled. When the object comes into the robot’s view, the

speed limiter function kicks in and starts to decrease the robot’s
speed.

Fig. 8: User speed is enabled, robot speed is enabled and the
speed limiter is enabled. The speed limiter kicks in to decrease the

user’s contribution. Later, the robot starts to turn because of the
object in front. As there is nothing in the robot’s view during the

turn, the speed limiter lets the user’s contribution go up.

Fig 9: With the obstacle avoidance variable set, the robot
steers around an obstacle, regaining the user’s forward

path once past the obstacle.

Fig 10: With the obstacle avoidance variable set, the robot
steers around two obstacles, regaining the user’s forward

path once past the obstacles.

The experiments in figures 5, 6 and 8 show that
the robot takes a right turn because there was an object
on the left side. In figure 5, the robot is driving
autonomously with no user input. In figure 6, the
human’s forward input and robot’s obstacle avoidance
inputs are blended, causing the robot to drive a bit
closer to the obstacle than in the autonomous case in
figure 5. Figure 8 also combines the human and robot
inputs, but also includes the speed limiter, slowing the
robot as it approaches and turns around the obstacle.

Figures 9 and 10 show the use of obstacle
avoidance. In figure 9, the robot steers around the
single obstacle and brings the robot back to the user’s
desired path. Figure 10 shows that the robot needs to
make two turns to return to the user’s desired path.

In all of the experiments, the robot’s behavior was
to look for open space. We believe that any robot
behavior generating rotate and translate would return
similar results.

IV. DISCUSSION AND FUTURE WORK

The sliding scale autonomy system has shown that
it has the ability to dynamically combine human and
robot inputs, using a small set of variables. These

variables were selected by examining current autonomy
levels and determining how they differed from one
another. We expect that we will add new variables as
the work continues.

While the human now sets all of the variable
values, we are investigating how we could allow the
robot to change the variables as well, thus creating a
system where the robot can also change the autonomy
level. We believe that this type of system could be
particularly useful when a robot needs assistance.
Instead of stopping and requiring user intervention
when the robot is unable to determine what to do, the
robot could start to shift some autonomy to the user as
it begins to recognize that the situation is becoming
more difficult. This should prevent the usual problem
of a human operator needing to take on full control of
the robot in the worst possible situations.

Our investigations will also explore how the
system needs to change as the robot’s program changes
to a hybrid architecture. We will look for ways to
combine human and robot goals in addition to
translation and rotation speeds.

The system uses a GamePad plugged into the
robot’s serial port to set system variables and drive the
robot. We are currently developing a new interface for
the system that uses a wireless GamePad along with a
PDA to view and change the system variables. The
PDA will also display video.

Improving the methods for the arbitration of user
and robot goals will lead to improved human-robot

interaction. Our sliding scale autonomy system shows
some promising results towards this goal.

ACKNOWLEDGEMENTS

Thanks to Andrew Chanler for helping to interface
the robot with the joystick.

REFERENCES

[1] Huang, H.-M., Messina, E., and Albus, J. (2003). “Toward a
generic model for autonomy levels for unmanned systems
(ALFUS).” PerMIS 2003.
[2] Goodrich, M. A., Crandall, J. W., and Stimpson, J. L. (2003).
“Neglect tolerant teaming: issues and dilemmas.” In Proceedings of
the 2003 AAAI Spring Symposium on Human Interaction with
Autonomous Systems in Complex Environments.
[3] Kortenkamp, D., Schreckenghost, D., and Martin, C. (2002).
“User interaction with multi-robot systems.” In Multi-Robot Systems:
From Swarms to Intelligent Automata (Proceedings from the 2002
NRL Workshop on Multi-Robot Systems), A. C. Schultz and L. E.
Parker, eds. Kluwer Academic Publishers, pp. 213 – 220.
[4] Kortenkamp, D., Keirn-Schreckenghost, D., and Bonasso, R. P.
(2000). “Adjustable control autonomy for manned space flight
systems.” In Proceedings of the IEEE Aerospace Conference.
[5] Bruemmer, D.J., J.L. Marble, and D.D. Dudenhoeffer (2002).
“Mutual initiative in human-machine teams.” IEEE Conference on
Human Factors and Power Plants, Scottsdale, AZ, September.
[6] Bruemmer, D.J., D.D. Dudenhoeffer, J.L. Marble, M.
Anderson, and M. McKay. “Mixed initiative control for remote
characterization of hazardous environments for speed contribution.”
HICSS 2003, Waikoloa Village, Hawaii, January 2003.
[7] Bruemmer, D.J., D.D. Dudenhoeffer, and J.L. Marble.
“Dynamic autonomy for urban search and rescue.” Proc. 2002
AAAI Mobile Robot Workshop, Edmonton, Cananda, August 2002.

