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ABSTRACT
Assistive robotics have been developed for several domains,
including autism, eldercare, intelligent wheelchairs, assistive
robotic arms, external limb prostheses, and stroke rehabil-
itation. Work in assistive robotics can be divided into two
larger research areas: technology development, where new
devices, software, and interfaces are created; and clinical
application, where assistive technology is applied to a given
end-user population. Moving from technology development
towards clinical applications is a significant challenge. De-
veloping performance metrics for assistive robots can unveil
a larger set of challenges. For example, what well established
performance measures should be used for evaluation to lend
credence to a particular assistive robotic technology from a
clinician’s perspective? In this paper, we survey several ar-
eas of assistive robotic technology in order to demonstrate
domain-specific means for evaluating the performance of an
assistive robot system.

Categories and Subject Descriptors
A.1 [Introductory and Survey]

General Terms
Performance measures

Keywords
Assistive technology, human-robot interaction, robotics, end-
user evaluation

1. INTRODUCTION
Assistive robotics may have therapeutic benefits in do-

mains ranging from autism to post-stroke rehabilitation to
eldercare. However, it can be challenging to transition an
assistive device developed in the lab to the target domain.
This problem can occur even when the device was designed
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with a specific end user in mind. Römer et al. provided
guidelines for compiling a technical file for an assistive de-
vice for transfer from academic development to manufac-
turing [52]. Their guidelines state that documentation of
an assistive device must include its “intended use, design
specifications, design considerations, design methods, design
calculations, risk analysis, verification of the specifications,
validation information of performance of its intended use,
and compliance to application standards” [52]. Academic
and industrial research labs are the piloting grounds for new
concepts. However, due to the institutional separation be-
tween the research environment and end-users, special care
must be taken so that a finished project properly addresses
the needs of end-users. As such, it is imperative for the
development of assistive robotic technologies to involve the
end-user in the design and evaluations [28]. These end-user
evaluations, with the proper performance measures, can pro-
vide the basis for performance validation needed to begin the
transition from research pilot to end product.

Does there exist a ubiquitous set of performance mea-
sures for the evaluation of assistive robotic technologies?
Time to task completion or time on task are common mea-
sures. Römer et al. propose an absolute measure for time to
task completion, where the time is normalized with an able-
bodied person’s performance [52]. Task completion time fits
many robotic applications, such as retrieving an object with
a robotic manipulator. However, it may not suit other appli-
cations, such as a range of motion exercise in the rehabilita-
tion of an upper limb. Römer et al. also acknowledge other
factors in determining performance measures, namely “user
friendliness, ease of operation, [and] effectiveness of input
device” [52].

Aside from the very general metrics described above, should
there even be a ubiquitous set of performance metrics? This
lack of a ubiquitous set has occurred in part because each do-
main has very specific needs in terms of performance. Most
metrics do not translate well between domains or even sub-
domains. The field of assistive robotics technology has used
a wide variety of performance measures specific to domains
for end-user evaluations. However, there are observable sim-
ilarities between various employed metrics and how they are
devised. In order to evaluate an assistive robotic technology
within a particular domain, clinical performance measures
are needed to lend validity to the device.

Clinical evaluation is the mechanism used to determine
the clinical, biological, or psychological effects of an evalu-
ated intervention. Clinical evaluations use The Good Clin-



ical Practice Protocol, which requires clearly stated objec-
tives, checkpoints, and types and frequency of measurement
[68]. Well established domains can have well established
performance measures. For example, the Fugl-Meyer motor
assessment, created in 1975 [25], is commonly used when
evaluating upper limb rehabilitation for patients post-stroke.
FIM [42] is popular when measuring the function indepen-
dence of a person with respect to activities of daily living
(ADLs). The two evaluations have little correlation, if any,
to each other because they are domain-specific. However,
they are both used for studying potential end-users that do
not use assistive technology, and can serve as an effective
method for assessing performance relative to the established
baseline.

In this paper, we explore contemporary end-user evalua-
tions and the performance measures used in evaluating assis-
tive robotic technology. We detail the performance measures
and discuss for which evaluations and contexts they would
be appropriate.

2. ASSISTIVE ROBOTIC TECHNOLOGIES
Haigh and Yanco surveyed assistive robotics in 2002 [30].

A historical survey of rehabilitation robotics through 2003
can be found in Hillman [32]. Simpson surveyed intelligent
wheelchairs through 2004 [57]. We present a contemporary
survey of assistive technologies that have been evaluated by
end-users. We believe that the primary focus of end-user
evaluations should be on the human performance measure-
ments, and secondarily on the performance of the robot.
This section highlights six areas of assistive technology de-
velopment: autism; eldercare; intelligent wheelchairs, assis-
tive robotic arms; prosthetic limbs; and post-stroke reha-
bilitation. For each area, we describe a few examples of
performance metrics and how they are employed/applied.

2.1 Autism Spectrum Disorder
An increasing number of research institutions are inves-

tigating the use of robots as a means of interaction with
children with autism spectrum disorder (ASD), including
the National Institute of Information and Communications
Technology [37], University of Hertfordshire [49, 50, 48],
Université de Sherbrooke [43, 53], University of Southern
California [21], University of Washington [60], and Yale Uni-
versity [55, 56]. The goal of these systems is to use robots as
a means of affecting the social and communicative behavior
of children with autism for either assessment or therapeutic
purposes.

2.1.1 End-user Evaluations
The University of Hertfordshire has conducted several ob-

servation studies with children with ASD [49]. In one study,
four children interacted with Robota, a robot doll, over a pe-
riod of several months. Post-hoc analysis of video footage of
interaction sessions yielded eye gaze, touch, imitation, and
proximity categories. Performance measures included fre-
quency of the occurrence of the categories. Another study
used the hesitation and duration of a drumming session as a
task-specific measure of engagement with a drumming robot
[50]. In addition, measures for observing social behavior
were taken from existing work from the autism research
community regarding methods for using video coding for
observing social behavior [64] to determine if a robot was an
isolator or mediator for children with autism [48].

The Université of Sherbrooke conducted an observation
study of four children with autism spectrum disorder over
seven weeks [43]. The children interacted with Tito, a human-
character robot, three times per week for five minutes. Video
was collected during the interactions. In post-hoc analy-
sis, the interactions were categorized into shared attention,
shared conventions, and absence of shared attention or con-
ventions; all video data were coded using twelve-second win-
dows. Performance measures included frequency of the oc-
currence of categories. Other work involved the use of au-
tomated interaction logs in order to model a user’s play be-
havior with the robot [53]. Performance measures included
correlation of recognized play with observed behavior.

The National Institute of Information and Communica-
tions Technology (NICT) conducted a longitudinal observa-
tion study in a day-care setting [37]. Groups of children
interacted with a simple character robot, Keepon, in twenty
five three-hour sessions over five months. Each session was
a free-play scenario that was part of the regular day-care
schedule. Children were given the opportunity to interact
with the robot, or not, and children were allowed to interact
with the robot in groups. Video of these interactions was
recorded and analyzed in a qualitative fashion. In particu-
lar, they observed changes in dyadic interaction between the
child, the robot, and peers.

The University of Southern California (USC) conducted a
study with children with autism interacting with a bubble-
blowing robot [20]. This research uses a repeated-measures
study to compare two types of robot behavior, contingent
(the robot responds to the child’s actions) and random (the
robot executes an action after a random amount of time has
passed). The scenario involved the child, the robot, and
a parent observed for forty-five minutes. Post-hoc analysis
of video data was used to identify joint-attention, vocaliza-
tions, social orienting, and other forms of social interaction,
identified by target (parent, robot, or none). These behav-
iors were taken from a diagnostic exam, the Autism Diagnos-
tic Observation Schedule (ADOS) [40], which uses a similar
scenario to the one used in the experiment, providing a key
for identifying relevant evaluative behavior. Results from
this work supported the hypothesis that a robot behaving
contingently provoked more social behavior than a robot be-
having randomly. Performance measures included frequency
and richness of the interaction observed between sessions.

The University of Washington developed a study that
compared a robot dog, AIBO, to a simple mechanical stuffed
dog [60]. After a brief introductory period, the participants,
parent and child, interacted with the one of the artifacts for a
period of thirty minutes. The sessions were videotaped, and
coded for behavior. The behavior coding included verbal
engagement, affection, animating artifact, reciprocal inter-
action, and authentic interaction. The data were compared
between sessions with each dog. The performance measure
used was the amount of coded social behavior observed.

Yale University has been developing robots for diagnos-
tic and therapeutic applications for children with autism.
Specifically, they are developing passive sensing techniques
along with robots designed to exhibit social “presses” in or-
der to provoke and observe the behavior of children with
autism [55]. One example of this approach was the use
of observing gaze behavior as a means for providing diag-
nostic information [56]. In one study, children were outfit-
ted with eye-tracking equipment and their gaze was tracked



with various visual and auditory stimuli. This experiment
tested both children with autism and typically developing
children. The performance measure for this study was to
determine if the gaze tracker could identify significant dif-
ferences between the gaze patterns of children with autism
and typically developing children. Another study compared
affective prosody given from either a human or robot speech
therapist [36].

2.1.2 Analysis
One common technique for measuring performance in the

ASD domain is coding, followed by a post-hoc analysis to
create keywords, phrases, or categories from video data [51].
Categories and definitions are defined from these units. The
data, such as open ended responses to questions or recorded,
can be annotated with the categories. To ensure reliabil-
ity, multiple coders are trained on the units and definitions.
When multiple coders are used, inter-rater reliability needs
to be established, usually assessed using Cohen’s kappa [12].
However, in each case, the basic unit of time for behavior
data could be vastly different, ranging from tenths of a sec-
ond [49], to twelve seconds [43], to assessments of the entire
session [37]. The resulting performance measures use the
number of occurrences within the categories.

While these assessments are in most cases driven by exist-
ing tools used in developmental or autism-specific settings,
there is little evidence shown so far that the measures used
translate well to real-world improvements in learning, social
skill development, and psychosocial behavior. It is impor-
tant to note that autism is considered a spectrum disorder
and that there is a great deal of heterogeneity to the popula-
tion [24]. While studies can show effects for a small subgroup
of children, it is important to analyze how generalizable the
results are. One strategy for ensuring that the observed
data are somewhat grounded in the field of autism research
is to draw the analysis metrics from existing communities
[51, 20].

2.2 Eldercare
Studies show that the elderly population is growing world-

wide [6]. Roboticists from research institutions, such as
NICT [70], USC [63], and University of Missouri [72] are
investigating robots for use as minders, guides, and com-
panions.

2.2.1 End-user Evaluations
The University of Missouri in conjunction with Tiger-

Place, an eldercare facility, studied assistive technology for
aging in place [72], where residents who would otherwise be
required to have full-time nursing-home care are able to live
in their current residence and have health services brought to
them instead. As part of this effort, they developed a fuzzy-
logic augmentation of an existing day-to-day evaluation, the
Short Physical Performance Battery (SPPB) [29]. This test
measures the performance for balance, gait, strength, and
endurance.

NICT conducted a five-week study of twenty three elderly
women interacting with Paro, the therapeutic care robot
seal, in an eldercare facility. Interaction occurred one to
threes times per week [70]. Performance measures included
self assessment of the participant’s mood (pictorial Likert
scale [39] of 1 (happy) to 20 (sad)) before and after the
interaction with Paro; questions from the Profile of Mood

States questionnaire [41] to evaluate anxiety, depression, and
vigor (Likert scale of 0 (none) to 4 (extremely)); and urinary
specimens to measure stress.

Researchers at the USC are currently developing a robot
for exercise therapy in adults suffering from dementia [63].
Exercise therapy was part of the regular care regiment pro-
vided by the staff at the nursing home location of the ex-
periment, but keeping the elders engaged in the task was
a challenge for the staff. The experiment scenario involves
using a robot to demonstrate, coach, and monitor exercises.
The real-world performance measure for success is compli-
ance to the exercise regimen, measured by time on task (from
recorded video data post-hoc), or overall health of the res-
idents. Initial studies involved using a focus group to as-
sess resident’s reactions to the robot. For the focus group
interaction, performance was measured by the number of
residents showing willingness to interact with the robot.

2.2.2 Analysis
Most of the above systems are currently at the feasibility

stage of implementation, an important stage of evaluation
for determining if the technology is ready for deployment
in a real-world environment. User and behavior studies of
eldercare systems, such as with Paro, serve to describe the
effects that such systems have on users and their environ-
ment. By emphasizing social interaction and fitness, these
performance measures implicitly measure changes in quality
of life (QoL).

Current evaluations of eldercare systems occur over a pe-
riod of days or weeks. As these systems become more per-
manent fixtures in eldercare environments, the assessment
of QoL becomes more important. There exist standardized
questionnaires for observing QoL at multiple points of time.
Therefore, QoL can be a good method of observing the long-
term effectiveness of a change in the eldercare environment
[76]. For example, the SF-36 survey [1] is used to assess
health-related QoL, while the 15-D [59] survey is used to
measure QoL along several elements of a subject’s lifestyle.

2.3 Intelligent Wheelchairs
Intelligent wheelchairs can potentially improve the qual-

ity of life for people with disabilities. Research has focused
on autonomous and semi-autonomous collision-free naviga-
tion and human-robot interaction (i.e., novel input devices
and intention recognition) and has been conducted by both
research institutions and companies.

2.3.1 End-user Evaluations
In 2005, MobileRobots (formerly ActivMedia) and the

University of Massachusetts Lowell evaluated the Indepen-
dence – Enhancing Wheelchair (IEW) [45, 46] with several
end-users at a rehabilitation center. The original testing de-
sign planned to use of a maze-like obstacle course made of
cardboard boxes. However, this scenario did not work well
with the participants. They were frustrated by a maze that
was not like their regular driving environments and viewed
boxes as moveable objects.

Instead, the participants operated the IEW as they would
typically use a wheelchair in their everyday lives (e.g., going
to class which entailed moving through corridors with other
people and passing through doorways). The performance
measure, number of hits/near misses and time on task, was
not modified. The results have not yet been published.



End-user trials have also been completed by intelligent
wheelchair companies, such as DEKA [16] and CALL Centre
[8], seeking government approval to prove the safety of these
systems. The University of Pittsburgh has conducted an
evaluation of DEKA’s iBOT with end-users [13].

2.3.2 Analysis
In the domain of intelligent wheelchairs, the majority of

user testing has been in the form of feasibility studies with
able-bodied participants. As noted in Yanco [77], able-bodied
participants are more easily able to vocalize any discomforts
and stop a trial quickly. These pilot experiments pave the
way for end-user trials.

One barrier to end-user trials of robotic wheelchair sys-
tems is the need for the use of a participant’s seating on
the prototype system. While seating can be moved from the
participant’s wheelchair to the prototype system (if compat-
ible) and back, this seating switch can take thirty to sixty
minutes in each direction, making multiple testing sessions
prohibitive.

We discuss performance measures commonly used thus far
in feasibility studies. One of the most common tests of an
autonomous intelligent wheelchair is passing through a door-
way [58]. Passing through a doorway without collision is one
of seven “environmental negotiations” that a person must
perform in order to be prescribed a power wheelchair for
mobility [67]. Other tasks include changing speed to accom-
modate the environment (e.g., cluttered = slow), stopping
at closed doors and drop offs (e.g., stairs and curbs), and
navigating a hallway with dynamic and stationary objects
(e.g., people and furniture).

In the case of these power mobility skills, the user is rated
based on his/her ability to safely complete the task. In
contrast, robotic performance measures are not binary. Per-
formance measures include time to completion (i.e., time
to pass through the doorway), number of interactions, and
number of collisions. Recent performance measures include
accuracy, legibility, and gracefulness of the motion used to
pass through the doorway [9, 62].

2.4 Assistive Robotic Arms
Robotic arms can improve the quality of life by aiding

in activities of daily living (ADLs), such as self-care and
pick-and-place tasks. Robotic arms can be used in fixed
workstations, placed on mobile platforms, or mounted to
wheelchairs. Research focuses both on building robot arms
and the design of human-robot interaction. One topic of in-
terest is retrieving an object from a shelf or floor (i.e., pick-
and-place task), one of the most common ADLs [61]. Insti-
tutions investigating assistive robotic arms include Clarkson
University [26], Delft University [65], Stanford University
[71], University of Massachusetts Lowell [66], University of
Pittsburgh [11], and TNO Science & Industry [65].

2.4.1 End-user Evaluations
Stanford University conducted an experiment with twelve

spinal cord injury patients on two user interfaces for ProVAR,
a vocational workstation [71]. After using each interface,
each participant answered an evaluation questionnaire. Per-
formance measures included open-ended responses to posi-
tive and negative questions on the robot’s appearance, nav-
igation, ease of use, error messages, complexity, usefulness,
and functionality, and also on the participant’s satisfaction.

The University of Pittsburgh evaluated the effects of a
Raptor arm, a commercially available wheelchair-mounted
robotic arm, on the independence of eleven spinal cord in-
jury patients [11]. Participants first completed sixteen ADLs
without the Raptor arm, then again after initial training,
and once more after thirteen hours of use. At each session,
the participants were timed to task completion and classified
as dependent, needs assistance, or independent.

Clarkson University evaluated eight multiple sclerosis pa-
tients over five ADLs with and without the Raptor arm [26].
The participants in this study all required assistance with
self-care ADLs. Participants were evaluated before and af-
ter training on the Raptor arm. At each session, the partici-
pants were timed to task completion and interviewed. They
also rated the level of difficulty of task performance and
the Psychosocial Impact of Assistive Devices Scale (PIADS)
[15].

University of Massachusetts Lowell conducted an experi-
ment of a new visual human-robot interface for the Manus
Assistive Robotic Manipulator (ARM), a commercially avail-
able European robot arm. Eight individuals who used wheel-
chairs and had cognitive impairments participated in an
eight week controlled experiment to control the robot arm in
a pick-and-place task. Performance measures included time
to task completion (i.e., object selection time), level of atten-
tion, level of prompting (based on measurement of functional
independence [42]), and survey responses (i.e., preference of
interface, improvements).

TNO Science & Industry and Delft University conducted
a four person case study [65]. The end-users were peo-
ple who use power wheelchairs and have weak upper limb
strength and intact cognition. TNO Science & Industry
evaluated their alternative graphical user interface for the
Manus ARM. The performance measures included number
of mode switches, task time, Rating Scale of Mental Effort
(RSME) [78], and survey responses.

2.4.2 Analysis
As demonstrated by Tsui et al. [66], Tijsma et al. [65],

and Fulk et al. [26], it is also important to account for
the user’s experience with respect to cognitive workload and
mental and emotional state. The basis for the user’s experi-
ence performance measure must be derived or adapted from
an existing clinical measure.

In Tsui et al. [66] and Tijsma et al. [65], the partici-
pants were rated or rated themselves with respect to cog-
nitive workload. In Tsui et al. [66], the level of prompting
during a trial was a cognitive measure based on FIM, which
is a scale that measures functional independence [42]. A per-
son is rated on a Likert scale (1 = needs total assistance to
7 = has complete independence) on a variety of ADLs. FIM
may also be applied as a cognitive measure to activities such
as “comprehension, expression, social interaction, problem
solving, and memory” [42]. In Tijsma et al. [65], RSME was
used as a cognitive performance measure. RSME is a 150
point scale measuring the mental effort needed to complete
a task, where 0 = no effort and 150 = extreme effort. The
Standardized Mini-Mental State Examination [47] is another
cognitive performance measures used in older adults.

In Fulk et al. [26], participants explicitly ranked the per-
ceived difficulty of the task and their mental and emotional
state were recorded using PIADS. PIADS is a twenty six
item questionnaire in which a person rates their perceived



experience after completing a task with an assistive technol-
ogy device [14]. It measures the person’s feelings of com-
petence, willingness to try new things, and emotional state.
PIADS is well established and significantly used in the US
and Canada [14]. An alternative emotional performance
measure is the Profile of Mood States [41] used in Wada
et al. [70].

2.5 External Limb Prostheses
Robotic prostheses can serve as limb replacements. Re-

search institutions, such as Hong Kong Polytechnic Univer-
sity [38], Massachusetts Institute of Technology [3], North-
western University [44], and the Rehabilitation Institute of
Chicago [44], have investigated creating new robotic pros-
thetics and control strategies.

2.5.1 End-user Evaluations
The Rehabilitation Institute of Chicago (RIC) and North-

western University conducted a clinical evaluation of six
individuals who underwent targeted muscle reinnervation
surgery [44]. After the upper limb prosthetic device was op-
timally configured for each patient’s electromyography sig-
nals (EMG), functional testing occurred after the first month,
third month, and sixth month. The functional testing was
comprised of a series of standard tests: box and blocks,
clothespin relocation, Assessment of Motor and Process Skills
(AMPS) [23], and the University of New Brunswick pros-
thetic function [54]. Performance measures included time to
complete task, accuracy, and AMPS score.

Researchers at the Massachusetts Institute of Technol-
ogy conducted a clinical evaluation with three unilateral,
transtibial amputees [3]. Data collection included oxygen
consumption, carbon dioxide generation, joint torque, and
joint angle. Kinematic and kinetic data were collected using
a motion capture system for the ankle-foot prosthesis and
unaffected leg. The resulting performance measures were
metabolic cost of transport (using oxygen consumption as a
parameter), gait symmetry between the legs, vertical ground
reaction forces, and external work done at the center of mass
of each leg.

Hong Kong Polytechnic University conducted a clinical
evaluation with four transtibial amputees over the course of
three consecutive days [38]. Data collected included motion
capture and open-ended responses about the participant’s
comfort and the prosthesis’ stability, ease of use, perceived
flexibility, and weight. Stance time, swing time, step length,
vertical trunk motion, and average velocity were derived
from the motion capture data. Performance measures in-
cluded ranking of the prostheses used (with respect to com-
fort, stability, ease of use, perceived flexibility, and weight),
gait symmetry, and ground force reactions.

2.5.2 Analysis
Performance measures involving ADLs can be used in

evaluating prostheses because ADLs include functions such
a locomotion and self-care activities. Locomotion includes
walking and climbing stairs, and self-care activities involve
a high level of dexterity. Heinemann et al. [31] proposed the
Orthotics and Prosthetics Users’ Survey (OPUS). Burger et
al. [7] in turn evaluated the Upper Extremity Functional
Status of OPUS with sixty one users with unilateral, up-
per limb amputations and found that the scale was suitable
for the measuring functionality of the population. The Up-

per Extremity Function Status is comprised of twenty three
ADLs, rated in a Likert scale fashion (0 = unable to com-
plete, 3 = very easy to complete. Similarly, AMPS is also
comprised of ADLs but in a more flexible fashion; there
are eighteen categories of ADLs with up to eleven choices
within a category [2]. Another measure of quality of life is
FIM, which is comprised of eighteen ADLs.

2.6 Stroke Rehabilitation
Robots are being investigated for gait training at Ari-

zona State University [73], upper-limb recovery at RIC and
Northwestern University [33], and wrist rehabilitation at
Hong Kong Polytechnic University [34]. It is well docu-
mented that stroke patients regain most of their mobility
through repetitions of task training [35]. Many researchers
are investigating the use of robots as a way to augment cur-
rent rehabilitation strategies for post-stroke patients.

2.6.1 End-user Evaluations
An example of a typical rehabilitation robot study using

stroke patients was conducted by RIC and Northwestern
University of the Therapy Wilmington Robotic Exoskele-
ton (T-WREX). The team conducted a clinical evaluation of
twenty three stroke survivors over sixteen weeks comparing
robot-assisted therapy to a traditional rehabilitation ther-
apy regimen [33]. The researchers observed functional arm
movement, quality of affected arm use, range of motion, grip
strength, a survey of patient satisfaction of therapy, and
the use of the affected arm in the home when not undergo-
ing therapy. Performance assessments with or without the
robot included Fugl-Meyer [25] and Rancho Functional Test
for Upper Extremity [74] to measure ability to use the arm.
In addition, they measured use of the arm outside of the ex-
perimental setting by using the Motor Activity Log [69], a
self-report, to determine how the arm was used in the home.
Finally, to assess the costs of using the robot, they measured
the amount of time that the user needed assistance in order
to use the T-WREX.

The early stages of rehabilitation robot development in-
volves evaluations of the performance of the robot in a pilot
setting. Some evaluations are users studies, where the robot
is used with small number of users to determine what needs
to be altered [73]. Performance measures used involve satis-
faction surveys, measures of robustness, and analyses of the
quantifiability of sensor data for clinical purposes. These
measures are specific to the robot being evaluated, and in
general cannot be used in the field in general.

The primary assessment of post-stroke rehabilitative ro-
botics involves the use of clinical assessments of patient func-
tion. Discussed above was the Fugl-Meyer and Rancho Func-
tional Test. However, there are many others used. At at
Northwestern University and RIC, Ellis et al. [18] supple-
mented the Fugl-Meyer with several other measures, includ-
ing the Chedokee McMaster Stroke Assessment, the Reach-
ing Performance Scale, and the Stroke Impact Scale. At
Hong Kong Polytechnic University, Hu et al. [34] used four
other measures: the Motor Status Score (MSS, used to assess
shoulder function) [22], the Modified Ashworth Scale (MAS,
used to measure of increase of muscle tone) [4], the Action
Research Arm Test (ARAT, used to assess grasp, grip, pinch,
and gross movement) [17], and FIM (used to asses function-
ality in ADLs) [42]. These performance measures provide
the picture of the clinical definition of effectiveness.



2.6.2 Analysis
Stroke rehabilitation is an established medical domain.

Thus, the evaluations of these experiments use relevant clin-
ical evaluations to determine the effectiveness of the robot-
augmented therapy. The scope of rehabilitative robotics for
patients post-stroke is quite large, ranging from upper-limb
recovery to gait training and wrist rehabilitation. Even
within a domain, the specific performance measures differ
depending on the therapy and may not translate well to
another sub-domain. For example, the MSS is applicable
to the T-WREX [33] upper-arm rehabilitative aid, but not
evaluating gait rehabilitation.

Functional evaluations, such as the Fugl-Meyer [27] and
Wolf Motor Function [75], are crucial to comparing the ef-
fectiveness of robot-augmented therapies to one another in
addition to comparing them with non-robot augmentations
for current therapies. It is through these comparisons that
robots can truly be evaluated as a rehabilitative device.

3. CONCLUSIONS
We believe that performance measures should be specific

to the domain and relevant to the task. Domains with clear,
well-established medical or therapeutic analogs can leverage
existing clinical performance measures. For example, the
Fugl-Meyer motor assessment, founded in 1975 [25], is popu-
lar when evaluating upper limb rehabilitation of post-stroke
patients. Domains without strong therapeutic analogs can
appropriately borrow clinical performance measures. Alter-
natively, they may draw inspiration from a clinical perfor-
mance measure to create a new one or augment an existing
one if none of the existing measures are appropriate [29].

Further, we believe that evaluations conducted with end-
users should focus at least as highly on human performance
measures as they do on system performance measures. By
placing the emphasis on human performance, it becomes
possible to correlate system performance with human per-
formance. Celik et al. has taken the important first steps
for stroke-rehabilitation by examining trajectory error and
smoothness of motion with respect to Fugl-Meyer [10]. Sim-
ilarly, Brewer et al. has used machine learning techniques
on sensor data to predict the score of a person with Parkin-
son’s disease on the Unified Parkinson Disease Rating Scale
(UPDRS) [5, 19].

Existing performance measures for most of assistive robotic
technologies do not provide sufficient detail for experimental
and clinical evaluations. We provide a summary of perfor-
mance measures used (see Table 1) and offer guidelines as
to choosing appropriate and meaningful performance mea-
sures:

• Consult a clinician who specializes in the particular
domain, if possible.

• Choose an appropriate clinical measure for the domain.
A domain’s “gold standard” will provide the best va-
lidity to clinicians.

• Choose an appropriate method to capture a partici-
pant’s emotional and mental state.

• Consider an appropriate quality of life measurement.

• Administer the human performance measures at least
before and after the experiment.

• Consider coding open ended responses, comments,
and/or video.

• Concretely define each enumeration in a Likert scale.

By choosing meaningful performance measures, robotics re-
searchers provide a common ground for interpretation and
acceptance by the clinical community. In addition, the re-
searchers of a given system are also given clear guidelines for
how to observe and define performance of a given system.

Through this survey, we seek other well-established per-
formance measures to apply to assistive robotic technologies.
Common performance measurements will allow researchers
to both compare the state of the art approaches within spe-
cific domains and also to compare against the state of the
practice within the field outside of the robotics community.
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[62] T. Taha, J. V. Miró, and G. Dissanayake. Pompdp-based
long-term user intention prediction for wheelchair
navigation. In IEEE Intl. Conf. on Robotics and
Automation, 2008.

[63] A. Tapus, J. Fasola, and M. J. Matarić. Socially assistive
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