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Abstract Robots have been developed for several assistive technology domains,
including intervention for Autism Spectrum Disorders, eldercare, and post-stroke
rehabilitation. Assistive robots have also been used to promote independent living
through the use of devices such as intelligent wheelchairs, assistive robotic arms,
and external limb prostheses. Work in the broad field of assistive robotic technology
can be divided into two major research phases: technology development, in which
new devices, software, and interfaces are created; and clinical, in which assistive
technology is applied to a given end-user population. Moving from technology de-
velopment towards clinical applications is a significant challenge. Developing per-
formance metrics for assistive robots poses a related set of challenges. In this paper,
we survey several areas of assistive robotic technology in order to derive and demon-
strate domain-specific means for evaluating the performance of such systems. We
also present two case studies of applied performance measures and a discussion
regarding the ubiquity of functional performance measures across the sampled do-
mains. Finally, we present guidelines for incorporating human performance metrics
into end-user evaluations of assistive robotic technologies.

1 Introduction

Assistive robots have the potential to provide therapeutic benefits in health care
domains ranging from intervention for Autism Spectrum Disorders to post-stroke
rehabilitation to eldercare. However, it is invariably challenging to transition an as-
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sistive device developed in the lab to the target domain. This problem can occur
even when the device was designed with a specific end-user in mind. Römer et al.
provided guidelines for compiling a technical file for an assistive device for trans-
fer from academic development to manufacturing [80]. Their guidelines state that
documentation of an assistive device must include its “intended use, design speci-
fications, design considerations, design methods, design calculations, risk analysis,
verification of the specifications, validation information of performance of its in-
tended use, and compliance to application standards” [80]. Academic and industrial
research labs are the piloting grounds for new concepts. Due to the institutional sep-
aration between the research environment and end-users, special care must be taken
so that a technology, developed in the lab, properly addresses the needs of end-users
in the real world. It is thus imperative for the development of assistive robotic tech-
nologies to involve the end-user in the design and evaluations [44]. These end-user
evaluations, with the proper performance measures, can provide the basis for perfor-
mance validation needed to begin the transition from research pilot to end product.

Does there exist a ubiquitous set of performance measures for the evaluation of
assistive robotic technologies? Time to task completion and time on task are com-
mon measures. Römer et al. propose an absolute measure for time to task comple-
tion, in which the time is compared to that of an able-bodied person’s performance
[80]. Task completion time fits many robotic applications, such as retrieving an ob-
ject with a robotic manipulator. However, it may not suit other applications, such as
a range of motion exercise in the context of rehabilitation of an upper limb. Römer
et al. also acknowledge other factors in determining performance measures, namely
“user friendliness, ease of operation, [and] effectiveness of input device” [80].

Aside from the very general metrics described above, should we even seek a ubiq-
uitous set of performance metrics? The lack of ubiquitous performance metrics is a
result of necessarily domain-specific performance needs. Most metrics do not trans-
late well between domains or even sub-domains. Thus, the field of assistive robotic
technology has used a wide variety of performance measures specific to the domains
for end-user evaluations. However, there are observable similarities between various
employed metrics and how they are devised. In order to evaluate an assistive robotic
technology within a particular domain, clinical performance measures are needed to
lend validity to the device.

Clinical evaluation is the mechanism used to determine the clinical, biological, or
psychological effects of an intervention. Clinical evaluations use The Good Clinical
Practice Protocol, which requires clearly stated objectives, checkpoints, and types
and frequency of measurement [101]. Well-established domains have developed
generally agreed-upon performance measures over time. For example, the Fugl-
Meyer motor assessment, created in 1975, is commonly used in evaluating upper
limb rehabilitation for patients post-stroke recovery [40]. On the other hand, FIM
(formerly known as the Functional Independence Measure) is popular for measuring
a person’s functional independence with respect to activities of daily living (ADLs)
[65]. The two evaluations have little, if any, relation to each other, because they
emerged from different domains. However, they are both used broadly, albeit for
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different user populations, and thusly can serve as a means for assessing perfor-
mance relative to an established baseline.

In this paper, we explore contemporary end-user evaluations and the performance
measures used in evaluating assistive robotic technologies. We present case stud-
ies from the University of Massachusetts Lowell and the University of Southern
California. These studies illustrate the evolution of performance metrics in their re-
spective domains: assistive robotic arms and Autism Spectrum Disorders. We also
discuss the ubiquity of functional performance measures throughout all of the sur-
veyed domains; we say that a performance measure is functional if it relates to an
activity of daily living and is administered in a realistic setting. Finally, we present
guidelines for incorporating human performance metrics into end-user evaluations
of assistive robotic technologies.

2 Assistive Robotic Technologies

Assistive technology encompasses both “low-tech” and “high-tech” solutions. As a
new technology is developed, new and/or improved assistive devices can be created.
For example, the concept of a wheelchair was documented in China in the 6th cen-
tury [108]. The manual self-propelled wheelchair was patented in 1894 [108]. The
power wheelchair was invented during World War II [8].

As the field of robotics has matured, researchers began to apply this newest tech-
nology to surgery and rehabilitation. More recently, robots are being used to enhance
the functional capabilities of people with physical and/or cognitive disabilities. For
example, the first commercially available intelligent wheelchair entered the market
in 2000 [14].

In 2002, Haigh and Yanco surveyed assistive robotics [47]. A historical survey
of rehabilitation robotics through 2003 can be found in Hillman [49]. Simpson sur-
veyed intelligent wheelchairs through 2004 [83]. We present a contemporary survey
of assistive technologies that have been evaluated by end-users. We believe that the
primary focus of end-user evaluations should be on the human performance mea-
surements with secondary focus on the performance of the robot. This section high-
lights six areas of assistive robotic technology development. We discuss assistive
robots used in intervention for Autism Spectrum Disorders, eldercare, post-stroke
recovery, and independent living through intelligent wheelchairs, assistive robotic
arms, and prosthetic limbs. For each area, we describe a few examples of perfor-
mance metrics and how they have been employed or applied.
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2.1 Autism Spectrum Disorders (ASD)

An increasing number of research institutions are investigating the use of robots
as tools for intervention and therapy for children with Autism Spectrum Disor-
ders (ASD), including the University of Hertfordshire [77, 78, 76], the Université
de Sherbrooke [66, 81], the National Institute of Information and Communications
Technology [56], the University of Southern California [34], and the University of
Washington [88].The goal of these systems is typically to use robots as catalysts for
social behavior in order to stimulate and train social and communicative behaviors
of children with ASD for either assessment or therapeutic purposes.

2.1.1 End-User Evaluations

Researchers at the University of Hertfordshire have conducted several observational
studies with children with ASD [77]. In one such study, four children interacted
with Robota, a robot doll, over a period of several months. Post-hoc analysis of
video footage of interaction sessions yielded eye gaze, touch, imitation, and prox-
imity categories. Performance measures included frequency of the occurrence of the
categories. Another study used the hesitation and duration of a drumming session
as a task-specific measure of engagement with a drumming robot [78]. In addition,
measures for observing social behavior were taken from the ASD research commu-
nity; in particular, video coding for observing social behavior [94] was applied to
determine if a robot was an isolator or mediator for children with ASD [76].

Researchers at the Université of Sherbrooke conducted an observational study
of four children with ASD over seven weeks [66]. The children interacted with
Tito, a human-character robot, three times per week for five minutes. Video was
collected during the interactions. In post-hoc analysis, the interactions were cate-
gorized into shared attention, shared conventions, and absence of either; all video
data were coded using twelve-second windows. Performance measures included fre-
quency of the occurrence of categories. Other work involved the use of automated
interaction logs in order to model a user’s play behavior with the robot [81]. Perfor-
mance measures included correlation of recognized play with observed behavior.

The National Institute of Information and Communications Technology (NICT)
conducted a longitudinal observational study in a day-care setting [56]. Groups of
children interacted with a simple character robot, Keepon, in twenty-five three-hour
sessions over five months. Each session was a free-play scenario that was part of the
regular day-care schedule. Children were given the opportunity to interact with the
robot, or not, and children were allowed to interact with the robot in groups. Video
data of these interactions were analyzed in a qualitative fashion.

Researchers at the University of Southern California (USC) conducted a study
with children with ASD interacting with a bubble-blowing robot [33]. This research
used a repeated-measures study model to compare two types of robot behavior: con-
tingent (the robot responds to the child’s actions) and random (the robot executes
an action at random times). The scenario involved the child, the robot, and a par-
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ent, all of whom were observed for forty-five minutes. Post-hoc analysis of video
data was used to identify joint-attention, vocalizations, social orienting, and other
forms of social interaction, as well as the tagged by target (parent, robot, or none) of
the interaction. These behaviors were taken from a standard ASD diagnostic exam,
the Autism Diagnostic Observation Schedule (ADOS) [61], which uses a similar
scenario to the one used in the experiment, providing a key for identifying relevant
evaluative behavior. Performance measures included frequency and richness of the
interaction observed between sessions.

Researchers at the University of Washington developed a study that compared a
robot dog, AIBO, to a simple mechanical stuffed dog [88]. After a brief introductory
period, the participants (i.e., parent and a child with ASD) interacted with the one
of the artifacts for a period of thirty minutes. The sessions were video recorded
and coded. The behavior coding included verbal engagement, affection, animating
artifact, reciprocal interaction, and authentic interaction. The performance measure
used was the amount of coded social behavior observed.

2.1.2 Discussion

Video coding is a commonly used technique for analyzing behavioral experi-
ments [79]. Categories may be set prior to coding or may be the result of post hoc
analysis, in which the categories are defined from keywords, phrases, or events. The
data, such as open-ended responses to questions or comments, is then annotated
with the categories. To ensure reliability, multiple coders (or raters) are trained on
the units and definitions. When multiple coders are used, inter-coder reliability must
be established, such as by using a kappa statistic.1 However, in each experiment de-
sign, the basic unit of time for behavior data could be vastly different, ranging from
tenths of a second (e.g., [77]) to twelve seconds (e.g., [66]) to assessments of the
entire session (e.g., [56]). The resulting performance measures use the number of
occurrences within the categories.

While these assessments are in most cases driven by existing tools used in devel-
opmental or ASD-specific settings, there is little evidence to date that the measures
used that translate well to real-world improvements in learning, social skill devel-
opment, and psychosocial behavior. ASD is considered a spectrum disorder with a
great deal of symptom heterogeneity in the population [39], which creates a major
challenge for diagnosis and treatment as well as research. Since assistive robotics
studies to date have shown some effects for small groups of tested children, it is im-
portant to analyze how generalizable their results are. One strategy for ensuring that
the observed data are somewhat grounded in the field of ASD research is to draw the
analysis metrics from existing ASD diagnostics (e.g., [79] and [33]). This remains
an open challenge for the growing field of socially assistive robotics for ASD.

1 Cohen’s kappa provides the level of agreement for nominal data between two raters [21]. For
more than two raters Fleiss’ kappa must be used [37].
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2.2 Eldercare

Studies have shown that the elderly population is growing world-wide [11]. Roboti-
cists from research institutions, including NICT [103], the University of Missouri
[105], and USC [92], among others, are investigating robots for use as minders,
guides, and companions for the elderly.

2.2.1 End-User Evaluations

Researchers at NICT conducted a five-week study of twenty-three elderly women
in an eldercare facility. The participants interacted with Paro, the therapeutic care
robot seal, one to three times per week [103]. Performance measures included self
assessment of the participant’s mood (pictorial semantic differential scale [71] of 1
= happy to 20 = sad) both before and after the interaction with Paro; questions from
the Profile of Mood States questionnaire [64] to evaluate anxiety, depression, and
vigor (semantic differential scale of 0 = none to 4 = extremely); and stress analysis
of urinary specimens.

Researchers at the University of Missouri, together with TigerPlace, an indepen-
dent living facility for the elderly, studied assistive technology for aging in place
[105]. At TigerPlace, elderly people who would otherwise be required to have full-
time nursing-home care are able to live in their individual residences and have health
services brought to them. As part of this effort, the researchers developed a fuzzy
logic-based augmentation of an existing day-to-day evaluation, the Short Physical
Performance Battery (SPPB) [45]. SPPB measures the user’s performance on bal-
ance, gait, strength, and endurance tasks. The fuzzy logic augmentation provided
finer-grained performance measure for day-to-day monitoring. The team conducted
observational studies of two elderly people recovering from surgery in their apart-
ments at TigerPlace [98]. Sensors were placed in their apartments for a period of
14 and 16 months, respectively. Performance measures included a number of cat-
egorizations of restlessness (i.e., time vs. event frequency) and quality of life (i.e.,
ability to complete activities of daily living).

Researchers at the University of Southern California have developed a robot for
exercise therapy for adults with dementia and Alzheimer’s Disease [92, 93]. The
experiment was designed based on the existing music therapy sessions conducted at
a Silverado Senior Living community. In the experiment, the participant sat in front
of a panel with large, bright, labeled buttons, and a mobile robot with an expressive
humanoid torso and head. The robot played music and encouraged and coached the
participant to “name that tune” by pushing the correct button. The complexity of
the experiment was controlled by the amount of information provided by the robot
(from no information, to the name of the song, to hints about the name of the song,
to prompts for pushing a button). The performance measures included compliance
with the game, enjoyment of the game (evaluated based on the type and amount of
vocalizations and facial expressions of the participant), and response time in pushing
the buttons, and correctness of responses. The experiment occurred twice per week
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for eight months and the challenge level of the exercise was progressively adjusted
in order to retain the participant’s interest over multiple sessions.

2.2.2 Discussion

Most of the above systems are currently at the feasibility stage of implementation,
an important stage of evaluation for determining if the technology is ready for de-
ployment in a real-world environment. User evaluations and behavioral studies of el-
dercare systems, such as the studies with Paro, describe the effects that such systems
have on users and their environment. By emphasizing social interaction and fitness,
these performance measures implicitly gauge the changes in quality of life (QoL).

Current evaluations of eldercare systems occur over a period of days or weeks. As
these systems become more permanent fixtures in eldercare environments, the as-
sessment of QoL will become increasingly important. Standardized questionnaires
for observing QoL over time can be employed to observe any long-term effective-
ness of such interventions in the eldercare environment [113]. For example, the
SF-36 survey [1] is used to assess health-related QoL, while the 15-D [85] survey is
used to measure QoL along several elements of a participant’s lifestyle.

2.3 Stroke Rehabilitation

The use of robots is being investigated for gait training at Arizona State Univer-
sity [106], upper-limb recovery at the Rehabilitation Institute of Chicago and North-
western University [51], and wrist rehabilitation at Hong Kong Polytechnic Univer-
sity [52]. It is well-documented that stroke patients regain most of their mobility
through repetitions of task training [53]. The need for technology, such as robots,
for supervising and guiding functional rehabilitation exercises is constantly increas-
ing due to the growing elderly population and the large number of stroke victims.
Matarić et al. [62] described the two sub-fields: hands-on rehabilitation systems
which apply force to guide the affected limb in rehabilitation exercises and hands-
off socially assistive systems that provide monitoring and coaching through verbal
and gestural feedback without any physical contact. The two methods play comple-
mentary roles at different stages of the rehabilitation process.

2.3.1 End-User Evaluations

Pilot experiments are conducted with a small number of study participants in the
study design to determine what needs to be altered. The results of a pilot experi-
ment are used to justify a full-scale clinical trial. An example of a pilot experiment is
Wada et al.’s case study (n = 1) of their Robotic Gait Trainer [106]. Twice per week
for eight weeks, the participant walked on a treadmill with the Robotic Gait Trainer
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assistance. The supination and pronation position of the participant’s foot was mea-
sured to determine the quality of her gait. Other performance measure included the
six-minute walk test (6MWT) [46] and the timed get-up-and-go test (TGUG) [104].

An example of a small-scale clinical study is Housman et al.’s evaluation of the
Therapy Wilmington Robotics Exoskeleton (T-WREX) conducted at the Rehabil-
itation Institute of Chicago (RIC) and Northwestern University [51]. This clinical
trial is an example of typical contact-based rehabilitation robot study with stroke
patients. The team conducted a clinical evaluation of twenty-three stroke survivors
over sixteen weeks comparing robot-assisted therapy to a traditional rehabilitation
therapy regiment [51]. The researchers observed functional arm movement, quality
of affected arm use, range of motion, grip strength, a survey of patient satisfaction
of therapy, and the use of the affected arm in the home when not undergoing ther-
apy. Performance assessments with or without the robot included Fugl-Meyer [40]
and Rancho Functional Test for Upper Extremity [109] to measure ability to use the
arm. In addition, they measured use of the arm outside of the experimental setting
by using the Motor Activity Log [102], a self-report, to determine how the arm was
used in the home. Finally, to assess the costs of using the robot, they measured the
amount of time that the user needed assistance in order to use the T-WREX.

The primary assessment of post-stroke rehabilitative robotics involves the use
of clinical assessments of patient function. Discussed above were the Fugl-Meyer,
Rancho Functional Test, 6MWT, and TGUG assessments. However, there are many
others in clinical use today. At at Northwestern University and RIC, Ellis et al.
supplemented the Fugl-Meyer with several other measures, including the Chedo-
kee McMaster Stroke Assessment, the Reaching Performance Scale, and the Stroke
Impact Scale [28]. At Hong Kong Polytechnic University, Hu et al. used four other
measures [52]: the Motor Status Score (MSS, used to assess shoulder function) [35],
the Modified Ashworth Scale (MAS, used to measure of increase of muscle tone)
[7], the Action Research Arm Test (ARAT, used to assess grasp, grip, pinch, and
gross movement) [26], and FIM (used to asses functionality in ADLs) [65]. These
performance measures exemplify the clinical definition of effectiveness.

2.3.2 Discussion

Stroke rehabilitation is an established medical domain. The evaluations of assistive
robot experiments in this domain must use relevant clinical evaluations to deter-
mine the effectiveness of the robot-augmented therapy. The scope of rehabilitative
robotics for stroke-recovery patients is quite large, ranging from upper-limb recov-
ery to gait training and wrist rehabilitation. Even within a domain, the specific per-
formance measures differ depending on the therapy and may not translate well to an-
other sub-domain. For example, the MSS, which is used to assess shoulder function,
is applicable to the T-WREX [51] upper-arm rehabilitative aid but not to evaluating
gait rehabilitation.

Functional evaluations, such as the Fugl-Meyer [43] and Wolf Motor Function
[110], are crucial to comparing the effectiveness of robot-augmented therapies to
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one another in addition to comparing them with non-robot augmentations for cur-
rent therapies. It is through these comparisons that robots can truly be evaluated as
a rehabilitative device.

2.4 Intelligent Wheelchairs

Intelligent wheelchairs have the potential to improve the quality of life for peo-
ple with disabilities. Research has focused on autonomous and semi-autonomous
collision-free navigation and human-robot interaction (i.e., novel input devices and
intention recognition) and has been conducted by both research institutions and
companies.

2.4.1 End-User Evaluations

In 2005, MobileRobots (formerly ActivMedia) and researchers from the University
of Massachusetts Lowell (UML) evaluated the Independence-Enhancing Wheel-
chair (IEW) [69, 68] with several end-users at a rehabilitation center. The original
testing design planned to use a maze-like obstacle course constructed with card-
board boxes. However, this scenario did not work well for the participants. They
were frustrated by a maze that was not like their regular driving environments and
viewed boxes as movable objects.

Instead, the participants operated the IEW as they would typically use a wheel-
chair in their everyday lives (e.g., going to class which entailed moving through
corridors with other people and passing through doorways). The performance mea-
sures included the number of hits and near misses and time on task.These measures
were compared to the same metrics gathered during a similar length observatin of
the participant using his/her own wheelchair.

End-user trials have also been completed by intelligent wheelchair companies,
such as DEKA [25] and CALL Centre [14] for government approval of the safety of
those systems. Researchers at the University of Pittsburgh conducted an evaluation
of DEKA’s iBOT stair-climbing and self-balancing wheelchair with end-users [22].

2.4.2 Discussion

In the domain of intelligent wheelchairs, the majority of user testing has been in the
form of feasibility studies with able-bodied participants. As noted by Yanco [114],
able-bodied participants are more easily able to vocalize any discomforts and stop a
trial quickly. These pilot experiments pave the way for end-user trials.

One barrier to end-user trials of robotic wheelchair systems is the need for the
participant’s seating to be moved onto the prototype system. While seating can be
moved from the participant’s wheelchair to the prototype system (if compatible)
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and back, such seating switches can take thirty to sixty minutes in each direction,
making multiple testing sessions prohibitive.

We discuss performance measures commonly used thus far in feasibility studies.
One of the most common tests of an autonomous intelligent wheelchair is pass-
ing through a doorway [84]. Passing through a doorway without collision is one of
seven “environmental negotiations” that a person must perform in order to be pre-
scribed a power wheelchair for mobility [100]. Other tasks include changing speed
to accommodate the environment (e.g., cluttered = slow), stopping at closed doors
and drop-offs (e.g., stairs and curbs), and navigating a hallway with dynamic and
stationary objects (e.g., people and furniture).

In the case of these power mobility skills, the user is rated based on his/her ability
to safely complete the task. In contrast, robotic performance measures are not binary.
Performance measures include time to completion (i.e., time to pass through the
doorway), number of interactions, and number of collisions. Recent performance
measures include accuracy, legibility, and gracefulness of the motion [15, 91].

2.5 Assistive Robotic Arms

Robotic arms can improve a person’s independence by aiding in activities of daily
living (ADLs), such as self-care and pick-and-place tasks. Such arms can be used in
fixed workstations, placed on mobile platforms, or mounted to wheelchairs. Ongo-
ing research focuses on both the design of the arms and the human-robot interaction.
The pick-and-place task, retrieving an object from a shelf or floor, is of particular
interest as it is one of the most common ADLs [90]. Institutions where researchers
are investigating assistive robotic arms include Georgia Institute of Technology [20],
University of Pittsburgh [19], Clarkson University [41], University of Massachusetts
Lowell [97], Delft University [95], and TNO Science & Industry [95].

2.5.1 End-User Evaluations

The Georgia Institute of Technology conducted an evaluation of laser pointers and a
touch screen to control a mobile assistive robot arm, El-E [20]. Eight Amyotrophic
Lateral Sclerosis (ALS or Lou Gehrig’s Disease) end-users directed El-E to pick
up objects from the floor in 134 trials. Performance measures included selection
time for the participant to point to the object, movement time of the robot to the
object, grasping time of the robot to pick up the object, and distance error. A post-
experiment questionnaire with eight satisfaction questions yielded seven point Lik-
ert scale ratings. The participants’ physical conditions were also assessed by a nurse
using the Revised ALS Functional Rating Scale (ALSFRS-R) [17].

University of Pittsburgh researchers evaluated the effects of a Raptor arm, a com-
mercially available wheelchair-mounted robotic arm, based on the independence of
eleven users with spinal cord injury [19]. Participants first completed sixteen ADLs



Performance Evaluation Methods for Assistive Robotic Technology 11

without the Raptor arm, then again after initial training, and once more after thir-
teen hours of use. At each session, the participants were timed to task completion
and classified as dependent, needs assistance, or independent.

Clarkson University researchers evaluated eight users with multiple sclerosis
(MS) over five ADLs with and without the Raptor arm [41]. The participants in
the study all required assistance with self-care ADLs. They were evaluated before
and after training on the Raptor arm. At each session, the participants were timed
to task completion and interviewed. They also rated the level of difficulty of task
performance and the Psychosocial Impact of Assistive Devices Scale (PIADS) [24].

Researchers at the University of Massachusetts Lowell conducted an experiment
of a new visual human-robot interface for the Manus Assistive Robotic Manipu-
lator (ARM) [29]. Eight individuals who used wheelchairs and had cognitive im-
pairments participated in an eight-week experiment to control the robot arm in a
pick-and-place task. Performance measures included time to task completion (i.e.,
object selection time), level of attention, level of prompting, and survey responses
(i.e., preference of interface, improvements).

TNO Science & Industry and Delft University researchers conducted a four-
person case study [95]. The end-users were people who used power wheelchairs
and had weak upper limb strength and intact cognition. TNO Science & Industry
evaluated their graphical user interface for the Manus ARM. The performance mea-
sures included number of mode switches, task time, Rating Scale of Mental Effort
(RSME) [115], and survey responses including the participants’ opinions about the
tasks, the robot arm control methods, and impression of the user interface [95].

2.5.2 Discussion

As demonstrated by Tsui et al. [97], Tijsma et al. [95], and Fulk et al. [41], it is also
important to account for the user’s experience with respect to cognitive workload
and mental and emotional state. The basis for the user’s experience performance
measure must be derived or adapted from an existing clinical measure.

In Tsui et al. [97] and Tijsma et al. [95], the participants were rated or rated them-
selves with respect to cognitive workload. In Tsui et al. [97], the level of prompting
was a cognitive measure based on FIM, a measurement of functional independence
[65], where in the user is rated on a semantic differential scale (1 = needs total
assistance to 7 = has complete independence) on a variety of ADLs. Choi et al.
[20] indirectly investigated cognitive workload using an human-computer interac-
tion inspired survey. The participants rated statements such as “It was easy to find
an object with the interface” and “It was easy to learn to use the system” on a seven
point Likert scale [60] (-3 = strongly disagree to 3 = strongly agree).

FIM may also be applied as a cognitive measure to activities such as “comprehen-
sion, expression, social interaction, problem solving, and memory” [65]. In Tijsma
et al. [95], RSME was used as a cognitive performance measure. RSME is a 150
point scale measuring the mental effort needed to complete a task, where 0 = no



12 Katherine M. Tsui, David J. Feil-Seifer, Maja J. Matarić, and Holly A. Yanco

effort and 150 = extreme effort. The Standardized Mini-Mental State Examination
[70] is another cognitive performance measures used in older adults.

In Fulk et al. [41], participants ranked the perceived difficulty of the task and their
mental and emotional state were recorded using PIADS. PIADS is a twenty-six item
questionnaire in which a person rates their perceived experience after completing a
task with an assistive technology device [23]. It measures the person’s feelings of
competence, willingness to try new things, and emotional state. PIADS is well es-
tablished and significantly used in the US and Canada [23]. An alternative emotional
measure is the Profile of Mood States [64] used in Wada et al. [103].

2.6 External Limb Prostheses

Robotic prostheses can serve as limb replacements. Researchers have investigated
creating novel robotic prostheses and control strategies. A number of prosthesis
evaluations conducted have been feasibility studies on healthy subjects. As such,
the focus of the experiments has largely been on the performance of the prostheses
themselves. The performance measures include joint angle, joint torque, and power
consumption. However, several research institutions have conducted end-user eval-
uations, including RIC [67, 57], Northwestern University [67, 57], Massachusetts
Institute of Technology [4, 5], and Hong Kong Polytechnic University [58].

2.6.1 End-User Evaluations

RIC and Northwestern University conducted a clinical evaluation of six individuals
who underwent targeted muscle reinnervation (TMR) surgery [67]. After the upper
limb prosthetic device was optimally configured for each patient’s electromyogra-
phy signals (EMG), functional testing occurred after the first month, third month,
and sixth month. The functional testing was comprised of a series of standard tests:
box and blocks, clothespin relocation, Assessment of Motor and Process Skills
(AMPS) [36], and the University of New Brunswick prosthetic function [82]. Per-
formance measures included time to complete task, accuracy, and AMPS score.

Another RIC and Northwestern University study evaluated the effectiveness of
the TMR procedure when controlling robotic prostheses with EMG signals [57].
Five participants with shoulder-disarticulation or transhumeral amputation who had
the TMR procedure and five able-bodied participants controlled a virtual prosthetic
arm to grip in three predetermined grasps. The performance measures included mo-
tion selection time (time from when motion began to correct classification), motion
completion time, and motion completion rate.

Additionally, three of the participants who had undergone TMR also used physi-
cal robotic upper-limb prostheses (i.e., DEKA’s ten degree-of-freedom “Luke arm”
and a motorized seven degree-of-freedom prosthetic arm developed at John Hopkins
University) using EMG signals [57]. The training and testing ran for two weeks with
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one session in the morning and another in the afternoon; session lasted two to three
hours. The participants were able to operate the prostheses in ADL-type tasks and
controlling grasps. These results are largely anecdotal.

Researchers at the Massachusetts Institute of Technology (MIT) conducted a
clinical evaluation with three unilateral, transtibial amputees [4]. Data collection
included oxygen consumption, carbon dioxide generation, joint torque, and joint
angle. Kinematic and kinetic data were collected using a motion capture system for
the ankle-foot prosthesis and unaffected leg. The resulting performance measures
were metabolic cost of transport, gait symmetry between the legs, vertical ground
reaction forces, and external work done at the center of mass of each leg.

Hong Kong Polytechnic University researchers conducted a clinical evaluation
with four transtibial amputees over the course of three consecutive days [58]. Data
collected included motion capture and open-ended responses about the participant’s
comfort and the prosthesis’ stability, ease of use, perceived flexibility, and weight.
Stance time, swing time, step length, vertical trunk motion, and average velocity
were derived from the motion capture data. Performance measures included ranking
of the prostheses used (with respect to comfort, stability, ease of use, perceived
flexibility, and weight), gait symmetry, and ground force reactions.

2.6.2 Discussion

Performance measures involving ADLs can be used in evaluating prostheses be-
cause ADLs include functions such a locomotion and self-care activities. Locomo-
tion includes walking and climbing stairs, and self-care activities involve a high level
of dexterity. Heinemann et al. [48] proposed the Orthotics and Prosthetics Users’
Survey (OPUS). Burger et al. [12] in turn evaluated the Upper Extremity Functional
Status of OPUS with sixty-one users with unilateral, upper limb amputations and
found that the scale was suitable for the measuring functionality of the population.
The Upper Extremity Function Status is comprised of twenty-three ADLs, rated in
a semantic differential scale fashion (0 = unable to complete to 3 = very easy to
complete. AMPS is also comprised of ADLs but in a more flexible fashion; there
are eighteen categories of ADLs with up to eleven choices within a category [2].

The clinical evaluations conducted with transtibial amputees discussed above
used performance measures of the robotic system itself (i.e., gait symmetry and
ground force reactions). Additionally, Hong Kong Polytechnic University admin-
istered a questionnaire asking about the participant’s perception of the lower limb
prosthesis, and, in an indirect manner, MIT measured the ease of use of the prosthe-
sis by a biological means. In order for a prosthesis to gain clinical validity, perfor-
mance of the device must also have a measure of use in daily life.
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3 Case Studies

Next, we further explore two examples detailing the evolution of performance met-
rics on two different ongoing studies involving assistive robotics. At the University
of Massachusetts Lowell (UML), we have conducted one able-bodied experiment
and three end-user experiments with people who use wheelchairs involving an as-
sistive robotic arm in the “pick-and-place” activity of daily living. At the University
of Southern California (USC), we have conducted three preparatory experiments
with end-users and are in the process of conducting an end-user experiment using a
socially assistive robot designed to provoke or encourage exercise or social behavior
in children with Autism Spectrum Disorders (ASD).

3.1 Designing Evaluations for an Assistive Robotic Arm

At UML, our research focuses on providing methods for independent manipula-
tion of unstructured environments to wheelchair users using a wheelchair-mounted
robot arm. Our target audience consists of people with physical disabilities who
may additionally have cognitive impairments. We have investigated a visual inter-
face compatible with single switch scanning [96], a touch screen interface [97], a
mouse-emulating joystick [97], and a laser pointer joystick device [75]. By explic-
itly pointing to the desired object, it may be possible to expand the end-user popula-
tion to include people with low cognition. We conducted a preliminary experiment
with able-bodied participants as an evaluation baseline in August 2006 [96]. The
first field trial was conducted with users who use wheelchairs and additionally had
cognitive impairments in August and September 2007 [97]. The second field trial
was conducted in August and September 2008. Our third field trial will begin in
mid-July 2009 and run through the end of October 2009. In this section, we discuss
our design of the end-user experiments.

In our first end-user evaluation, we compared the visual interface presentation
(stationary camera vs. moving camera) and input device (touch screen vs. joystick)
[97]. We collected data from video, manual logs, post-session questionnaires, and
computer generated log files. We collected both qualitative and quantitative data.
The qualitative data included the post-experiment questionnaire administered after
each user session and the observer notes. The questionnaire posed open-ended ques-
tions about which interface the user liked most to date, which interface he/she liked
least to date, and suggestions for improving the interface. The observer notes con-
tained additional relevant data about the session, including length of reorientation.

The quantitative data included an attentiveness rating, prompting level, trial run
time, close-up photos of the object selected, and computer-generated log files. The
attentiveness rating and prompting level were developed by our clinicians. The ex-
perimenter, who was an assistive technology professional, rated the user’s prompt-
ing level per trial based on the FIM scale, where 0 = no prompting needed and 5 =
heavy prompting needed [65]. The experimenter also rated the user’s attentiveness
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to the task on a semantic differential scale, where 0 = no attention and 10 = com-
plete attention. Two separate scales were used because it is not necessarily the case
that a person who requires high levels of prompting is unmotivated to complete the
task. Also, for each trial, the run time was recorded, specifically the time from object
prompt to participant selection, the time from the Manus ARM movement to the ob-
ject being visually confirmed, and the fold time. We focused on the object selection
time, prompting level, and attention level as our primary performance metrics and
computed paired t-tests to determine statistical significance.

In our second end-user evaluation, we compared a custom laser pointer device
against the touch screen interface with stationary view2 [75]. We were very satisfied
with quality of the primary performance metrics from the first end-user evaluation.
Thus, we based the next version of our data collection tools from the previous exper-
iment and made several modifications. We recorded only the object selection time
by the participant since the remainder of the process time is a robot system perfor-
mance measurement. The post-session surveys were also based on the ones from
the first end-user evaluation. Because the participants used two interfaces in the sec-
ond end-user evaluation, we modified the post-session survey to investigate which
aspects of each interface the participants liked and did not like, comments about the
laser joystick and touch screen, and which interface they liked better.

At the suggestion of our clinicians, we updated the semantic differential scales
to have the same range (i.e., [1, 5], where 1 = no prompting needed and 5 = heavy
prompting for the prompting level, and 1 = not attentive and 5 = very attentive
for attention level) which provided the same granularity across the performance
measurements. We introduced a tally box for the number of prompts given by the
experimenter which provided the ability to better understand what an experimenter
considered a “high” level of prompting versus “low.” In our observations of the first
end-user evaluation, we noticed that the participants would seem quiet on one day
and excited on another. To better understand how the performance of our robotic arm
system was perceived by the participants, we added a mood and arousal level rating
(i.e., 1 = very bad and 5 = very good for mood, and 1 = less than normal and 5 =
more than normal) to be administered at the start of the session, before the condition
change, and after the session. We added a health rating (i.e., 1 = poor and 5 = good)
to be administered at the start of the session. These mood, arousal, and health ratings
were items previously noted by the experimenter in the first end-user evaluation.

Our upcoming third end-user evaluation will investigate how different levels of
cognition (i.e., high, medium, and low as classified by our clinician) impact a per-
son’s ability to use the robotic arm. We will continue to use the selection time and
prompting, attention, mood, arousal, and health levels. We found that the second
end-user experiment’s ratings scales were not as effective as those in the first end-
user evaluation. The second end-user experiment’s rating scales were relative to
each participant’s typical performance, and we did not see much change. For the
upcoming evaluation, we will instantiate the semantic differential scales in a con-
crete manner (i.e., for arousal, 1 = low and 5 = high). We will also incorporate

2 The touch screen interface with the stationary camera view had the best overall performance from
the first end-user evaluation [97].
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aspects of the Psychosocial Impact of Assistive Devices Scale (PIADS), in which
the participants will rate their perceived experiences with the Manus ARM [24].

3.2 Designing Evaluations for Socially Assistive Robots

At USC, our research focuses on the use of socially assistive robots that provide
assistance through social interaction rather than physical interaction [31]. We are
developing robot systems for encouraging and training social behavior for children
with ASD. Our work focuses on the following goals: the automatic identification
of social behavior; the creation of a toolkit of interactive robot behavior that can be
used in order to provoke and encourage social interaction; and the determination of
therapeutic effectiveness of socially assistive robots.

The robot we have developed is a humanoid torso (with movable arms, neck,
head, and face) on a mobile base. The robot has microphones and speakers, so that
it can make and recognize vocalizations, buttons that the user can press, and a bub-
ble blower (typically used as part of standardized ASD evaluation and intervention
[61]). The robot “rewards” a user’s social behavior with its own social behavior, in-
cluding gestures, vocalizations, and movements (approach, spinning in place, facing
the user). Additionally, we use a camera and microphones in the experimental room
at the clinic to collect high-fidelity multi-modal data of all aspects of the study.

We are developing a system that observes a child with ASD and automatically
identifies social behaviors (e.g., approach, turn-taking, social referencing, appropri-
ate affect, and/or vocalizations). Our long-range goal is to use the frequency and
context of those behaviors in order for the robot to determine autonomously if the
child is socially engaging with the robot or another person. Our studies use an over-
head camera system to track and interpret the child’s movement as he/she interacts
with the robot [32]. The goal is for the overhead camera to autonomously iden-
tify the movement behavior of the robot and the child (such as A approaches B,
B follows A, etc.). We conducted a preliminary experiment in which we collected
supervised overhead camera data. We created a data set in which the person and the
robot executed known actions.The system then performed an automated analysis of
the data which was accompanied by blind human coding. Because the actions were
known a priori, we were able to determine an absolute measure of the automatic
coding mechanism’s performance. We compared the accuracy of the automatic ob-
servations to human coding of the same actions which provided a relative measure
of the systems performance. Our larger experiments employ a similar experimental
data collection, coding, and evaluation model.

After validating that the socially assistive robot system is both effective at inter-
acting with the child with ASD (i.e., it successfully elicits social behaviors) [34] and
that our analysis of its effectiveness is valid (i.e., the coding and analysis algorithms)
[32], the next step in validation must address any possible therapeutic benefits of the
human-robot interaction. Our goal is not to presume or aim for a clinical benefit, but
to validate reliably that such a socially assistive robot could have a potential thera-
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peutic impact in order to plan follow-up studies. We are working with clinicians to
determine if there are any therapeutic applications for such a robot system.

We are currently planing a validation experiment with end-users. The experiment
will involve multiple sessions in which a child with ASD will participate in free-
play with a trained therapist. Participants will be split into control and experimental
groups. The control group will interact only with the therapist, while the experi-
mental group will interact with the therapist and the robot for five sessions. The
participants will be given a pre- and post-experiment evaluation consisting of the
WISC-III Intelligence Test [107], the communication portion of the Vineland Adap-
tive Behavior Scales (VABS) [72], and an ADOS-inspired quantitative observation.
These measures are used for repeated administration and comparison. Hypothesis
testing will then involve comparing any change from the pre- and post-experiment
evaluations between the control and experimental groups. Paired t-tests will be used
to compare each test and any applicable sub-test. The variety of scales to be used
in this upcoming study provides a rich range of measures pertaining to the social
ability of the end-user.

4 Incorporating Functional Performance Measures

Evaluation of assistive robotic technology varies widely, as has been demonstrated
by our exploration of several domains. It is clear that in order for assistive robotic
technology to be accepted by clinicians at large, end-user evaluations must incorpo-
rate a functional performance measure based on the “gold standard” of the specific
domain, if one has been established. We say that a performance measure is func-
tional if it relates to an activity of daily living and is administered in a realistic
setting. In this survey, we have found examples of functional performances used in
the majority of the surveyed domains.3

Feil-Seifer et al. consulted the Autism Diagnostic Observation Schedule (ADOS)
in their evaluation [33]. ADOS is one of the ASD “gold standard” assessment
tools; it investigates “social interaction, communication, play, and imaginative use
of materials” [61]. The Vineland Adaptive Behavior Scales (VABS) are a group-
ing of assessment tools for ASD and developmental delays [72, 16]. Unlike ADOS,
VABS contains functional components, such as Daily Living Skill items and Mo-
tor Skill items. VABS has also been used in the domains of stroke (children) [63],
wheelchairs (children) [27], prostheses (children) [73], and eldercare (developmen-
tally disabled) [54].

3 A functional performance measure was not surveyed for the domain of Autism Spectrum Disor-
ders (ASD).
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We discussed the quality of life (QoL) measurements in the context of the el-
dercare domain. QoL measurement scales contain functional components to them,
such as walking, climbing stairs, and self-care activities. The SF-36 [74] is a generic
health measure which includes evaluations of physical function and limitations due
to physical health. The SF-36 contains 36 items in total, including one multi-part
question focused specifically on typical daily activities; see Table 1. The SF-36 has
been used for assessment of eldercare [42], wheelchairs [13], stroke [3, 50], and a
prosthesis [59]. The 15-D measures QoL as a profile with 15 dimensions; see Table
1. Mobility and eating are included as profile dimensions [86]. The 15-D has been
used in the eldercare, orthopedic, and stroke rehabilitation domains [86].

The FIM scale [9] by definition is a functional performance measure; see Table
1. The FIM ADLs include “eating, grooming, bathing, dressing (upper body), dress-
ing (lower body), toileting, bladder management, bowel management, transferring
(to go from one place to another) in a bed, chair, and/or wheelchair, transferring
on and off a toilet, transferring into and out of a shower, locomotion (moving) for
walking or in a wheelchair, and locomotion going up and down stairs” [65]. FIM has
been used largely in stroke rehabilitation [38] and to some extent in eldercare [55].
WeeFIM [99] is used for children between the ages of six months and seven years
(present with functional abilities of or below age seven).WeeFIM has recently been
used in clinical Autism studies in Hong Kong [111, 112]. FIM has been adapted
for wheelchair users [87]. As described in Section 3.1, FIM inspired a scale for
recording a user’s prompting level while doing a task [97].

Currently, there is a large gap between robotic performance measures and func-
tional performance measures. Robotic performance measures typically consider
metrics such as time on task and number of collisions, while functional perfor-
mance measures mentioned above do not employ such a fine level of granularity.
The functional performance measures examine tasks and categorize a person’s abil-
ity to complete those tasks in a n-nary manner (e.g., Motor Assessment Scale is
ternary with “was able to complete easily,” “was able to complete with some diffi-
culty,” “was not able to complete” [6]); see Table 1. To create finer granularity in
functional performance measures, intermediate layers can be added. For example,
Stineman et al. added intermediate layers to FIM in order to understand the causal
relationship between impairments and disabilities [89].

Functional performance measures take a significant amount of time to administer,
ranging from 20 to 60 minutes or more. The “gold standard” functional measure for
a given domain thus should be administered once before the experiment and once
after. However, a subset of the functional performance measures relevant to the spe-
cific area investigated can be used during each testing session, as has been done
in some of the studies references above. Furthermore, robotic performance mea-
sures derived from this subset can provide continuous monitoring. These functional
robotic performance measures may then help to bridge the gap between the strictly
robotic performance measures and the functional performance measures commonly
employed in clinical domains.
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Table 2 Summary of Assistive Robotic Technology Performance Measures

Domain Applicable Performance Measures

General AT Activities of daily living, coding, instantiated Likert-type
ratings, mood, quality of life, stress, time on task

Autism Spectrum Disorders Behavior coding, correlate sensor modeling of behavior to
human-rated behavior, standardized assessments (e.g., ADOS,
Vineland Adaptive Behavior Scales)

Eldercare Activities of daily living (e.g., FIM, SBBP), mood (e.g., Profile
of Mood States), quality of life (e.g., 15-D, SF-36), response
correctness, response time, stress (e.g., Standardized
Mini-Mental State)

Post-Stroke Rehabilitation Functional performance measures (e.g., FIM, Motor Activity
Log, Motor Assessment Scale), quality of life (e.g., 15-D,
SF-36), standardized assessments (e.g., ARAT,
Chedoke-McMaster, Fugl-Meyer, Modified Ashworth Scale,
MSS, Reaching Performance Scale, Wolf Motor)

Intelligent Wheelchairs Accuracy, functional performance measures (e.g., FIM),
gracefulness, number of hits/near misses, quality of life (e.g.,
SF-36), time on task

Assistive Robotic Arms Activities of daily living (e.g., ALSFRS-R, FIM), attention,
level of prompting, mental state (e.g., RSME, Profile of Mood
States, PIADS), mood, quality of life, time to task completion

Prostheses Accuracy, biological measures of effort (e.g., oxygen
consumption), comfort, ease of use, functional performance
measures (e.g., AMPS, OPUS, FIM), quality of life (e.g.,
SF-36), time to complete task

5 Conclusions

To be useful, performance measures should be specific to the domain and relevant to
the task. Domains with clear, well-established medical or therapeutic analogs should
leverage existing clinical performance measures. Domains without such strong ther-
apeutic analogs can appropriately borrow and adapt clinical performance measures.
Alternatively, they may draw inspiration from a clinical measure to create a new one
or augment an existing one if none of the existing measures are appropriate [45].

Evaluations conducted with end-users should focus at least as much on human
performance measures as they do on system performance measures. By placing the
emphasis on human performance, it becomes possible to correlate system perfor-
mance with human performance. Celik et al. examined trajectory error and smooth-
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ness of motion with respect to Fugl-Meyer in the context of post-stroke rehabilita-
tion [18]. Similarly, Brewer et al. have used machine learning techniques on sensor
data to predict the score of a person with Parkinson’s disease on the Unified Parkin-
son Disease Rating Scale (UPDRS) [10, 30].

Existing performance measures for most of assistive robotic technologies do not
provide sufficient detail for experimental and clinical evaluations. We have provided
a summary of applicable performance measures (see Table 2) and offer the following
guidelines for choosing appropriate and meaningful performance measures:

• Consult a clinician who specializes in the particular domain.
• Choose an appropriate clinical measure for the domain. A domain’s “gold stan-

dard” will provide the best validity to clinicians, if one exists.
• Include a functional performance measure appropriate for the domain.
• Choose an appropriate method to capture a participant’s emotional and mental

state.
• Consider an appropriate quality of life measurement.
• Administer the human performance measures at least once before and after the

experiment or study.
• Consider coding open-ended responses, comments, and/or video.
• Concretely define each enumeration on Likert and differential semantic scales.

By choosing meaningful performance measures, robotics researchers provide a
common ground for interpretation and acceptance of robot-assisted therapy systems
by the clinical community. In addition, the robotic system developers are also given
clear guidelines for how to define, observe, and evaluate system performance.

In this paper, we have sought well-established performance measures to apply to
assistive robotic technologies and encourage the practice of their use in our field.
Common performance measurements will allow researchers to compare the state of
the art approaches within specific robotics domains and to compare against the state
of the practice within the relevant clinical field outside of the robotics community.
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