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ABSTRACT
We examine affective vocalizations provided by human teach-
ers to robotic learners. In unscripted one-on-one interac-
tions, participants provided vocal input to a robotic dinosaur
as the robot selected toy buildings to knock down. We find
that (1) people vary their vocal input depending on the
learner’s performance history, (2) people do not wait until a
robotic learner completes an action before they provide in-
put and (3) people näıvely and spontaneously use intensely
affective vocalizations. Our findings suggest modifications
may be needed to traditional machine learning models to
better fit observed human tendencies. Our observations of
human behavior contradict the popular assumptions made
by machine learning algorithms (in particular, reinforcement
learning) that the reward function is stationary and path-
independent for social learning interactions.

We also propose an interaction taxonomy that describes
three phases of a human-teacher’s vocalizations: direction,
spoken before an action is taken; guidance, spoken as the
learner communicates an intended action; and feedback, spo-
ken in response to a completed action.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Experimentation, Human Factors
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1. INTRODUCTION
As robots enter human environments as our teammates,

assistants, guides, and therapeutic partners, their value will
depend on their ability to adapt to users and their environ-
ments. For adults, verbal communication is both readily
available and powerful, lending itself naturally as a primary
input modality for robot learners. In this study, we exam-
ine how untrained people naturally teach by observing their
vocalizations as they teach a robot a simple task.

While there are many technologies for automatic speech
recognition (the process of transcribing spoken words into
written words), interpreting the meaning of these words is
beyond the current state of the art for all but limited vo-
cabularies or under very restricted environments. Fortu-
nately, for many utterances directed by an instructor to a
learner, the meaning of the words is often mirrored by the
affect being conveyed. In other words, even without know-
ing what is said, how we say it carries much of the speaker’s
intent. Domesticated animals such as dogs learn from their
caretakers’ approving and prohibitive vocalizations, and it
has been suggested that exaggerated affective expressions in
infant-directed speech (Parentese) are an important learning
input for pre-verbal infants. Affective expressions have been
shown to be useful as an input to artificial learners [5,17].

Automatic affect recognition from voice and other modali-
ties has succeeded in approaching or meeting levels of human
agreement in judgments of affect, within closed application
domains [1,4,17–19,23]. Currently these systems are limited
by constraining users to atypical interaction patterns, or by
training to recognize affect only within constrained applica-
tion scenarios. While these studies offer impressive technol-
ogy, they are technology-driven accounts of affective inter-
action; none directly provides evidence for how untrained
users naturally provide input to a computational or robotic
agent. Nevertheless, as these automatic classifiers approach
human recognition of affect, we expect that robotic learners
will be able to use automatic affect recognition to sustain



natural social interaction with people, eliciting natural af-
fective communications from which to learn.

This paper presents an experiment that attempts to char-
acterize how untrained people freely provide input to a robot
when asked to teach it to perform a simple task. While the
teaching strategies we observe are based on affective vocal-
izations, we expect that they may reflect teaching behaviors
that people apply more generally, not only through affective
vocalizations.

2. BACKGROUND

2.1 Learning from Human Interaction
Natural human social behaviors have been studied by many

communities as inputs to robotic learners. Non-affective in-
put has been used in the form of gestures for imitative learn-
ing (e.g., [21]), speech for word learning (e.g., [11, 25]), and
pet-directed touch for a robotic dog learning to behave po-
litely [25]. Natural affective expressions have also been used
as input by robotic learners [5,17].

To help focus our discussions, we will compare the find-
ings of this paper with one popular computational tech-
nique, reinforcement learning, which has often been used to
model learning from social input (for surveys of reinforce-
ment learning, see [14,24,27]). While there are many other
techniques available, reinforcement learning is both widely
used in social learning experiments and will serve to high-
light how our experimental results on feedback from a human
instructor differ from the assumptions often used in machine
learning.

In reinforcement learning, the learner’s environment it-
self, or a knowledgeable instructor, provides positive and
negative feedback to the learner without necessarily provid-
ing the appropriate answer. For example, if attempting to
instruct an agent to play checkers, the instructor might say
“good” or “no”or “bad move”but would not provide the best
move to the learner. Researchers have used various forms of
social cues as feedback in reinforcement learning systems, in-
cluding affective facial expressions [5] and affective vocaliza-
tions [17], as well as non-affective“clicker” stimuli to robotic
dogs [3,26] and other non-affective inputs [13,15,28].

Reinforcement learning can be thought of as both a prob-
lem framework and a group of techniques. In the rein-
forcement learning framework, the learner assigns value to
problem states based on a reward signal it receives as feed-
back, which it receives in response to actions which tran-
sition the learner from one state to another. In contrast
to the supervised learning problem framework, in which
learner performance is good whenever the learner correctly
labels an example (whether the label is “good” or “bad”), in
the reinforcement learning framework, performance is bad if
the learner acts to transition to a state having low (“bad”)
value. Reinforcement learning problems have been formal-
ized as Markov Decision Processes, and classical reinforce-
ment learning techniques have tended to be based on dy-
namic programming algorithms that require reward signals
to be both stationary (the reward for a particular state
and action pairing does not change over time) and path-
independent (the reward applied depends only on the cur-
rent state, not the sequence of states visited en route to
that state). In this paper, our observations of human teach-
ing behavior suggest that the reinforcement learning frame-
work neglects useful input from people. Our observations

suggests a mismatch between human-produced rewards and
the assumptions of stationarity and path-independence that
classical reinforcement learning techniques make on reward
signals.

2.2 Affect Recognition
Automatic vocal affect recognizers have approached or

met the performance criteria of human listener agreement
using a variety of methods. Breazeal and Aryananda [4],
Kim and Scassellati [17], and Robinson-Mosher and Scassel-
lati [23] have used statistical methods over acoustic-prosodic
features (pitch, duration, and intensity). In addition to
acoustic-prosodic features, Litman and Forbes-Riley [19],
Lee and Narayanan [18], and Ang et al. [1] also used ad-
ditional word features (e.g., “no,” which is commonly cor-
related with negative affect) and other application-specific
features, such as discourse cues (e.g., the words “start over”
uttered during interaction with an automated phone ser-
vice [18]). The affect types classified and the resulting per-
formance have varied over different application domains, and
several studies caution that performance suffers unless clas-
sifiers are domain-specific [1, 18, 19]. For instance, Litman
and Forbes-Riley note that in student-tutor dialogs“turn du-
ration was always among the most useful acoustic-prosodic
predictors of emotion, and that longer durations were gener-
ally predictive of the negative emotion class” [19]. The du-
ration of one speaker’s turn in a conversation is a domain-
specific feature. We can imagine, in other contexts, that
longer turn durations may not correlate to negative affect.
For instance, in this paper’s experimental context, in which
a human intermittently provides directions to a robotic task
learner, turn duration may correlate with affectively neutral
instruction. Furthermore, Litman and Forbes-Riley note
that “the usefulness of particular acoustic-prosodic features
varied across experiments; indeed across prior research more
generally, the usefulness of particular acoustic-prosodic fea-
tures is often domain-dependent” [19]. A recent survey of
affect recognition algorithms concurs that no single “optimal
feature set”has yet been agreed upon by existing voice-based
affect models [31].

The addition of facial expressions and other physiologi-
cal measurements to vocal features tends to improve perfor-
mance in automatic affect classifiers [6, 16, 31]. However, in
our post-experiment data analysis (further detailed in Sec-
tion 4.3), we focus on vocal expressions only, providing our
human affect annotators with only audio data, because we
expect that for future applications, voice will be the most
generally accessible of the multiple, redundant modalities
used to express affect. Voice is in itself rich in affective
expression, and audio recording is easily accessible (in con-
trast, facial affect recognizers tend to require specialized vi-
sual tracking devices). We expect that our findings based
on voice will apply to learning systems which measure affect
through other modalities as well.

We used the human judgment of a hidden Wizard of Oz
operator instead of automatic affect recognition. We pro-
vided the Wizard with both live audio and video streams for
judgment of voice and facial expressions. Our choice is moti-
vated by our expectation that we could not achieve sufficient
automatic affect recognition performance to sustain natural
human responses during interaction with the robot without
first amassing a large collection of training data from our
specific task domain. At the same time, we expect that ap-



plications which seek to leverage our findings about natural
variations in human affect may currently or soon be able
to achieve such high-quality automatic recognition within
closed application domains. We use human judgment as a
baseline for automated affect recognition, which we expect
to be feasible in the near future.

3. HYPOTHESES
Hypothesis 1: Näıve instructors will provide affec-

tive guidance and feedback. Explorations into interactive
machine learning have observed the need to modify classi-
cal machine learning models to fit natural human teaching
preferences [29]. We hypothesized that näıve speakers, given
the opportunity to comment on a robotic learner’s intended
action, would vocalize about the intended action before the
action is completed. We expected less intensity in affect ex-
pressions voiced before an action is completed then those
voiced after.

Hypothesis 2: Näıve instructors will use affective
vocalizations without explicit instruction. In previous
studies of näıve speakers talking to robots, affective prosody
has been elicited only when participants were explicitly “in-
structed to express each communicative intent (approval,
attention, prohibition, and soothing) and signal when they
felt that they had communicated it to the robot” [4]; they
were instructed to act as though talking to a child or pet.
Based on our own anecdotal observations of näıve people
interacting with Pleo robots, we hypothesized that näıve
people would use affective prosody when talking to a robot
without explicit instruction.

Hypothesis 3: Vocalizations will vary with respect
to the history of a robotic learner’s performance.
Our predictions fell into two categories. (a) We expected dif-
ferences in comparing a consistently successful learner with
one that initially struggled. Specifically, we hypothesized
that näıve speakers would produce more intensely positive
prosody in response to a robotic learner’s correct choice if it
followed a series of wrong choices, then if it followed a series
of correct choices. (b) We expected that people would speak
less, and with weaker affective prosody, as a robotic learner
consistently succeeded. We hypothesized that for a robot
that made a series of correct choices, both the amount of
vocalization and the strength of affect in prosody would fall
as its successful streak continued.

4. METHODOLOGY
To investigate these hypotheses, we designed an experi-

ment in which participants were asked to help two robot di-
nosaurs pick the right buildings to demolish as they walked
through a model city. Unbeknownst to the participant, the
dinosaur robots were being controlled by a remote operator;
this experiment model is called “Wizard of Oz” (WOz) [9].

4.1 Participants
We recruited 27 participants, 9 male and 16 female, 18

years of age and above, from the Yale University and New
Haven communities. Our exclusion criteria were based on
English proficiency and previous research or coursework ex-
perience in artificial intelligence.

4.2 Experiment Design and Conduct

4.2.1 Interaction Protocol
A testing session lasted approximately 30 minutes. Par-

ticipants gave informed consent to be recorded. The partici-
pant was brought into the room containing the two dinosaurs
and the demolition training course. The participant stood
at the edge of a table and clipped a lapel microphone to
his/her shirt collar. Fred and Kevin, our robots, stood in
front of the demolition training course, close to and facing
the participant.

The participant was told the following:
These are our dinosaurs, their names are Kevin and Fred.

Kevin is the one with the red hat with the “K” on it. Fred is
the one wearing a bandanna. Today they’re going to train to
join a demolition crew. They’ll be knocking over buildings
with their heads. Behind them is the training course that
they’ll be running today. They’ll go one at a time: Fred
will be first and I’ll take Kevin and leave the room. When
Fred’s done, then it’ll be Kevin’s turn. (The ordering of the
dinosaurs varied per participant.)

You are going to help them pick the red “X”-marked build-
ings in the training course to demolish. In the training
course, you’ll see there are three pairs of colored buildings
standing across from one another – the purple pair at the
far end, the silver pair in the middle, and the orange pair
closest to us. The robots will do the training course sequen-
tially, starting at the purple buildings and walking towards
us. For each pair, you’ll see that one is marked with an
“X.” Kevin and Fred can see the “X”s too. For each pair
of buildings it’s important that they knock down the building
with the “X” and that they don’t knock down the unmarked
building.

They already know how to knock down buildings. We want
you to help them understand that they should only knock
down the buildings with the red “X”s and all of the ones
with the “X”s. You’re going to help them by talking with
them. We encourage you not to make any assumptions about
how this might work. Just act naturally and do what feels
comfortable. Please stay in this area [demarcated by caution
tape]. The training is complete when an orange building
falls.

The experimenter then engaged the participant by asking
him/her to say hello to the dinosaurs and explain to them
the task, in his/her own words. The dinosaurs returned
the greetings with growls and acknowledged the receipt of
instructions by looking and vocalizing at the participant in
time with his/her words. The experimenter then solicited
questions or provided additional clarification for the task
from the participant.

Once the participant was comfortable with the task, the
experimenter placed one of the dinosaurs at the start po-
sition, between the first pair of buildings, facing the par-
ticipant. The experimenter left the room with the other
dinosaur. Then the participant guided the first dinosaur
in training. The first dinosaur gave a “Charge!” vocaliza-
tion indicating the start of the trial. The dinosaur slowly
(over 4 seconds) communicated his intent to topple a pur-
ple (first pair) building, by slowly turning his head towards
it while vocalizing a slowly increasing growl. If the partic-
ipant did not vocalize negatively towards the dinosaur, he
concluded his intention communication (head-turn and in-
creasing growl) by pushing the building over. Otherwise,



Figure 1: Participant talks to Fred as he runs the
demolition training course. (Best viewed in color.)

the dinosaur discontinued the intention towards the current
building, turned his head towards the other purple building
and again vocalizing his intention to knock-down the other
purple building. After the “X”-marked purple building fell,
the dinosaur walked forward to the next pair of buildings.
The dinosaur repeated his vocalization on knock down inten-
tion again for the silver pair of buildings and then the orange
pair. The experimenter returned to the training room when
either the participant indicated the end of the training or a
period of time elapsed (approximately 30 seconds) after the
orange building fell.

When the training was complete, the participant was given
a few minutes’ break while the experimenter reset the de-
molition training course. The participant then engaged in
a training session with the other dinosaur while the exper-
imenter and the first dinosaur waited outside. The second
training session proceeded the same as the first, other than
the initial indicated intents of the robot. Fred always chose
the correct building for every pair, whereas Kevin chose the
wrong building the first and second time, but correctly in
his third trial.

Once the second training session was complete, the partic-
ipant completed a survey. Then the experimenter debriefed
the participant by showing him/her the WOz control room,
explaining the technology, explaining the purposes of the
study, and answering any questions.

4.2.2 Setup
Pleo is an 8-inch tall, 21-inch long dinosaur robot, sold

commercially as a toy by UGOBE Life Forms [30]. In this
experiment, we named our Pleo robots Kevin and Fred, each
with a distinct voice we recorded to distinguish them as
social actors [20]. Fred completed the training course first
in 33% of the testing sessions.

Our robots’ task was set on a table about 3 feet off the
ground, on which sat a “demolition training course” of 8- to
12-inch tall toy, cardboard buildings (shown in Figure 2).
The training course consisted of 3 pairs of two identically

10 inches

Figure 2: The overhead view used for Wizard of
Oz control of the robot’s locomotion. North of this
frame, a participant is standing at the end of the
table. Building pairs, from bottom (beginning) to
top (end) are: purple, silver, and orange. (Best
viewed in color.)

sized and painted buildings. In each pair, one of the two
buildings was marked with red “X”s; the other building was
unmarked. The pairs of buildings were placed on either side
of a straight, yellow double-lined road: one building stood
to the dinosaur’s left, the other to the dinosaur’s right. The
three pairs of buildings were separated from each other along
the road by spaces of 3 inches. From the dinosaur’s perspec-
tive, the “X”-marked buildings were the right purple build-
ing, the right grey building, and the left orange building.
The markings were constant for all participants. The yellow
double-lines were raised, providing a track for the dinosaurs
to walk along. The road was 10 inches wide by 30 inches
long.

The participants stood facing the robot, looking down the
course’s road, about three feet from the the closer end of
the course throughout their entire interactions with Kevin
and Fred. The dinosaur approached the participant as it
progressed through the training course.

4.2.3 The Wizard
The WOz design was necessary to ensure a real time in-

teraction between the participant and the robot dinosaurs.
Autonomous robot control may not have provided a fluid
interaction because we did not construct narrowly defined
expectations of participants’ interactions with the robot.
Thus, WOz control allowed us to simulate the application
domain. Each robot was alone with the participant, so par-
ticipant talked directly to the robot, and not to the person
operating the robot. The deception of WOz was approved
by Yale Institutional Review Board.

For WOz supervision, we used an overhead webcam for
accurate estimation of the robot’s range to strike buildings
(shown in Figure 2) and a video camera aimed at the par-
ticipant for viewing facial expression (shown in Figure 1).
The wizard was also able to hear the participant through
the clip-on lapel microphone.

The robot dinosaurs were controlled using infrared (IR)
signals. The IR receiver was located in the dinosaur’s nose.



IR signals were sent from long distance IR beacons through
an IguanaIR USB-IR transceiver [12], controlled in Linux
using LIRC (Linux Infrared Remote Control) software [2].

The wizard controlled the robot dinosaur’s motions and
vocalizations using a combination of scripted behaviors which
were mapped to inputs on a USB handheld gaming pad.
For example, pressing the joystick forward caused the robot
dinosaur to walk forward, and pressing to the left or right
caused the robot to move his head in the respective direction.
These scripts were created and modified using UGOBE’s
software development kit and MySkit [10].

To appear autonomous and life-like, the robot dinosaurs
were programmed with idling behaviors. Affective vocal and
motor responses provided a heightened sense of communica-
tion. For example, the dinosaur would put his head down
and make a sad“oh”sound when reprimanded. To ensure re-
sponsiveness, the walk and idle behaviors were short. Also,
the intention script (dinosaur moving head towards a build-
ing and roaring) was interruptible, in the event that the
participant reprimanded or corrected the robot.

4.3 Analysis of Vocal Input

4.3.1 Three Types of Vocalizations
Each participant’s interaction was both video and audio

recorded. The resultant audio recordings were segmented
and analyzed. We noted participants’ vocalizations fell into
three cycling phases based on the robot’s progress in each
trial. All three phases occured for each trial: direction, oc-
curring before the dinosaur picked a building; guidance, oc-
curring while the dinosaur swung its head to knock over a
building; and feedback, occurring after the building fell or
the dinosaur abandoned his effort. We segmented our audio
data along this dimension.

For each robot, the first of the three trials began with the
robot placed between the first pair of buildings, where he
would indicate his readiness by vocalizing. He would then
signal his intent, lasting a few seconds. Then, if he was not
reprimanded or corrected, he knocked over the building he
intended to. In this case, the first sentence describes the
direction phase, the second describes guidance and the last
is feedback.

In this manner, phases cycled from direction to guidance
to feedback, then back to direction. Sometimes there was one
cycle per trial: the robot got to the building pair, motioned
towards the correct building, and knocked it down. Other
times, there were two: the robot got to the building pair,
motioned towards the wrong building (and received repri-
mand), then replied to the reprimand (this phase falls we
categorized as direction), then motioned towards the cor-
rect building (guidance), and knocked it down (feedback).

We performed the audio segmentation according to these
guidelines and exported them our coders. The segmenta-
tion was performed by recognizing the dinosaur sounds we
heard on the recording that uniquely identified the phases
of each trial. The only phases for which that rule did not
apply were between trials: separating the last phase of one
trial (feedback) and the first of the next trial (direction).
We waited for a two-second pause in our participants’ vo-
calizations, and if there was none, we divided based on the
transcription of the words used such that once they stopped
using disparaging words (e.g. “no,” “stop”), that moment
divided the trials.

4.3.2 Annotating Affect
Our coders were not informed of the content of the au-

dio nor the experimental design. We randomized our audio
files split by phase (average length approximately 20 sec-
onds) and asked two coders separately to rate each audio
clip’s prosodic affect as either positive, negative, or neither.
Positively affective prosody was described to the coders as
sounding “encouraging,”“approving,” or “pleasant,” whereas
negative affect was described sounding “discouraging,”“pro-
hibiting,” or “disappointing.” We also asked the coders to
rate the intensity of the affect on a differential semantic
scale [22] from 0 (mild) to 2 (very strong), and their re-
spective confidences for each judgement on a differential se-
mantic scale from 0 (not sure) to 2 (quite sure). Word count
was also extracted from the audio clips.

5. RESULTS AND DISCUSSION
Twenty-seven people participated in this experiment; how-

ever, we excluded data from three participants from post-
experiment data analysis. The reasons for exclusion were
technical failure of the robot and/or recording devices and
gross misunderstanding of protocol by participants. None
of the participants guessed, in the survey or debriefing, that
the robots had secretly been controlled by a human.

For each audio clip which was segmented by phase, we
analyzed word counts, prosody ratings, prosodic intensity
ratings, and post-experiment survey responses. The ratings
of two näıve coders of affective prosody (prosody ratings and
prosody intensity ratings) showed high agreement (κ = 0.84
using Cohen’s quadratically weighted, normalized test [8]).
Most phase clips were short and contained few words, with
7.71 words/clip on average (1.26 words/sec) and a standard
deviation of 8.43 words/clip (1.36 words/sec).

5.1 Instructors vocalize before, during, and
after a learner’s actions

We hypothesized that participants would speak more dur-
ing feedback than guidance and more during guidance than
direction (H1). Interestingly, we found that subjects pro-
vided an almost equal number of words throughout. (See
box-and-whisker plots in Figure 3.) Over all phases, the fre-
quency of words spoken was on average 1.26 words/sec, with
a standard deviation of 1.36 words/sec.

Classical reinforcement learning algorithms tend only to
include reward inputs which arrive as feedback after an ac-
tion is taken. We conclude that valuable direction and guid-
ance reward inputs are being neglected by machine learning
systems.

5.2 Instructors express affect during and
after a learner’s actions

We hypothesized that näıve people would use affective
prosody when speaking to a robot (H2). Although we did
not specifically instruct participants to use prosody, they
vocalized with intensely affective prosody during guidance
(affective intensity mean = 1.28, std. dev. = 0.93) and feed-
back (affective intensity mean = 1.89, std. dev. = 0.78).
(See plot in Figure 4.) Subjects showed no positive or neg-
ative affect for direction (affective intensity mean = 0.47,
std. dev. = 0.68). The phase-to-phase differences in af-
fective rating and affective intensity were both significant
(p < 0.001 for both ANOVA tests, F [2] = 58.2, 19.2).
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Figure 3: The distributions show similar vocaliza-
tions rates across all phases. (The boxes in the plot
contain the middle 50% of the observations, and the
whiskers extend to the outer quartiles.)

These distinct amounts of affect intensity are consistent
with the intuition that positive and negative affect are used
to provide reinforcement as feedback on an ongoing or fin-
ished behavior, whereas reinforcement is not given before a
behavior begins.

5.3 Instructors say less as a learner
continually succeeds

We hypothesized that for näıve speakers, both the amount
of vocalization and strength of affect would fall for the robot
that always chose the correct building (H3b). Indeed, peo-
ple did talk less after subsequent successful trials. During all
phases of interaction with Fred, the robot who thrice initially
intended to topple the correct building, words/sec fell from
one trial to the next (p = 0.002, linear regression). Examin-
ing individual phases, we find significantly fewer words/sec
for guidance (p = 0.018) and for feedback (p = 0.038), but
not for direction (p > 0.1). The downward trend for both
guidance and feedback is shown in Figure 5.

We verified that these trends could not be explained by the
dinosaur ordering. In a two-way ANOVA, we found a highly
significant main effect for trial number (p = 0.0018, F [1] =
10) and for order (p = 0.0004, F [1] = 13), but not for their
interaction (p = 0.38, F [1] = 0.7). We conclude from this
that while word/sec may have dropped off after talking with
the first and then second robot due to familiarity or boredom
(dinosaur ordering effect), this had no bearing on the more
interesting result: regardless of whether they encountered
(always correct) Fred first or second, people spoke less to
him with subsequent trials. A similar test for (wrong-wrong-
correct) Kevin, showed no trend of decreasing word/sec over
trials (p = 0.57, F [1] = 0.38).

5.4 Instructors say more to a previously
struggling learner

We compared direction, guidance, and feedback phases
during the third trial for Kevin against those for Fred. Re-
call that in the first two trials, Kevin initially communicated
intent to topple the wrong buildings, while Fred only com-

Feedback

Guidance

Direction

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Distributions of Prosodic Intensity

Prosodic Intensity Rating

Figure 4: The distributions of the intensity of the
prosody during each phase demonstrate that people
use prosodic reinforcement as feedback on an ongo-
ing or previously finished behavior.

municated intent to topple correct buildings in the first two
trials. In the third trial, both Kevin and Fred initially com-
municated intent to topple the correct building.

We hypothesized that prosody would be more intensely
positive in response to Kevin’s than to Fred’s third trial in-
tent (H3a), since this would showcase the participants’ rel-
ative excitement at Kevin improvement. Considering only
guidance and feedback phase audio clips, we found that par-
ticipants voiced marginally significantly more words/sec to
Kevin than to Fred (p = 0.089, F [1] = 3). We found neither
a main effect of dinosaur order nor an interaction between
learning condition with dinosaur order. Figure 6 shows the
trend for participants to give more guidance and feedback to
Kevin than to Fred. We found no such difference for affect
or affective intensity ratings.

We believe that even for the same state in the task, hu-
man vocal reward signals differ depending on the learning
history of the robot. This disagrees with the assumption of
path-independence made by standard reinforcement learn-
ing algorithms.

6. CONCLUSIONS
We designed and conducted an experiment in which näıve

teachers helped a dinosaur robot Pleo learn to topple marked
buildings in a demolition training course. Our goal was to
investigate how people intuitively talk without explicit in-
struction when teaching robots. We found that näıve vo-
calizations during human-teacher/robot-learner interaction
appear to segment into three distinct phases, providing dis-
tinct input content to the learner. These three phases are
direction (before the learner acts), guidance (as the learner
indicates intent) and feedback (after the learner completes
a task-action). We observed that näıve human teachers vo-
calize readily throughout all three phases. Our experiment
showed that people are affectively expressive as they direct
the robotic learner well before it approaches the learning
task, as the learner communicates its intention to act (ef-
fectively querying the teacher), and in giving feedback for
actions the learner has taken. Thus, we have affirmed an in-
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Figure 5: The rate of vocalizations decreases with
successive trials for Fred, the dinosaur that doesn’t
make mistakes. The differences are significant for
guidance (p = 0.018, linear regression) and feedback

(p = 0.038, linear regression).

tuition held by human-robot interaction (HRI) researchers
that näıve speakers do spontaneously use strongly positive
and negative affective prosody when talking to a robot.

We have also found that some human teaching behav-
iors do not fit well within classical machine learning models
of interactive learning. Specifically, we found that human
teachers tailor their feedback to account for the history of
the learner’s performance. In terms of a machine learning
model, we view the affective vocalization reward signal as
neither stationary nor path-independent, two assumptions
made by standard algorithms. We found this to be true
in two ways. First, the robotic learner that performs the
correct action in a third trial will receive significantly more
guidance and feedback if it previously made wrong choices
then if it has been consistently correct. This shows that hu-
man feedback to a robotic learner is not path-independent.
Second, for a learner who is consistently successful, guidance
and feedback wane.

We suggest to HRI researchers interested in implementing
machine learning from human vocalization that they model
human reinforcement signals as dependent on the progress of
the learner. Furthermore, we suggest that machine learning
from human teaching should make use of currently neglected
vocalizations giving direction to the robot before it acts as
well as guidance to the robot as it indicates its intent to act.
Direction has traditionally been ignored, and guidance has
only recently been explored in standard machine learning
models [28].

Our findings bear on reinforcement learning, which has
been a popular approach to learning from human interac-
tion [3, 5, 13, 15, 26, 28]. Reinforcement learning has been
viewed in two senses, (1) as a broad framework of the prob-
lem of learning from rewards in an environment, and (2)
as a collection of specific techniques [27]. Our results sug-
gest that the reinforcement learning framework should be
applied flexibly to learning from human interaction in or-
der to take advantage of non-reward inputs arriving before
learning-task-specific actions are taken. Such flexibility has

Fred

Kevin

0.0 0.5 1.0 1.5 2.0 2.5

Guidance Vocalization on the Third Trial

Words / Second

Figure 6: These are the distributions of the number
of words spoken per second during the third trial’s
guidance phase. In the first two trials, Fred has
consistently intended to topple only correct build-
ings, while Kevin has intended to topple the wrong
buildings. In this third trial, both dinosaurs initially
intend to knock down the correct building. In guid-

ance during intent in the third trial, Kevin receives
more utterances than Fred, with marginal signifi-
cance (p = 0.051).

been demonstrated in the form of guided action selection,
utilizing näıve people’s guidance input to a learner which
communicates its consideration of action options [28]. Fur-
ther, we suggest a need to reconsider the characterizations
of reward feedback used in classical reinforcement learn-
ing techniques based on Markov Decision Processes because
we have found that human reward signals are not station-
ary with learning states, which stands in conflict with con-
straints imposed by classical algorithms [24].

Finally, our results are consistent with previous obser-
vations of human teachers’ behaviors toward fellow-human
learners, showing a correlation between children’s improv-
ing language skills and declines in feedback from their par-
ents [7]. As with infant learners, our findings demonstrate
that people modify their inputs to a robotic learner depen-
dent on the learner’s progress.
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