
Hand and Finger Registration for Multi-Touch
Joysticks on Software-Based Operator Control Units

Mark Micire, Eric McCann, Munjal Desai, Katherine M. Tsui, Adam Norton, and Holly A. Yanco
University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854

{mmicire, emccann, mdesai, ktsui, anorton, holly}@cs.uml.edu

Abstract—Robot control typically requires many physical joy-
sticks, buttons, and switches. Taking inspiration from video game
controllers, we have created a Dynamically Resizing, Ergonomic,
and Multi-touch (DREAM) controller to allow for the develop-
ment of a software-based operator control unit (SoftOCU). The
DREAM Controller is created wherever a person places his or
her hand; thus we needed to develop an algorithm for accurate
hand and finger registration. Tested with a set of 405 hands from
62 users, our algorithm correctly identified 97% of the hands.

Index Terms—Robot teleoperation, multi-touch joystick, finger
registration, hand detection

I. INTRODUCTION

For the purposes of robot teleoperation, there are several
ways to control the movement of the platform and all of its
various sensors, effectors, and lighting. The most common
control method involves a mix of a large number of joysticks,
switches, dials, buttons, and sliders that each manage some
degree of freedom or functionality (e.g., Foster Miller’s TALON
shown in Fig. 1 (left)). These widgets are physical entities that
provide tactile feedback to the operator. However, the operator
control unit (OCU) layout is static and redesigning it to change
its layout or add functionality can be quite costly.

A software-based OCU (SoftOCU) using multi-touch dis-
plays (shown in Fig. 1 (right)) will be a powerful replacement
for traditional OCUs. Because the display is the interface,
prototyping layouts is as simple as creating a paper prototype
[?], and the cost to add a new button is just a few lines of
code. Another benefit is dynamic adaptation for an individual

Fig. 1. The Foster Miller TALON robot controller (left) is operated through
three two degree of freedom joysticks and a large array of switches, selectors,
and dials. (Photos courtesy of iRobot Corporation and the National Institute
of Standards and Technology.) Our SoftOCU (right) is shown running a multi-
touch interface for a flight simulation that includes the DREAM Controller. The
SoftOCU uses 3M Multi-Touch Technology, based on 3M Projected Capacitive
Touch Technology, using two 22-inch 3M Multi-Touch Display M2256PW
monitors.

user’s hand size, range of motion, and hand placement.
We have been developing an adaptive user interface for a

SoftOCU using our Dynamic Resizing Ergonomic And Multi-
touch (DREAM) Controller. The DREAM Controller provides
an intuitive method for analog input with four total degrees
of freedom (two on each thumb) and a wide range of other
inputs via two highly customizable control panels. Because it
is dynamically generated wherever a person places his or her
hand on the multi-touch screen, tactile feedback is not required.
The input possibilities provided by DREAM Controllers and
multi-touch technologies for a SoftOCU could revolutionize
the future design of operator control units.

To spawn a DREAM Controller, the fingers touching the
screen need to be reliably and efficiently identified as digits of
either a left or right hand with each finger registered correctly.
This paper describes our hand and finger detection algorithm for
performing this task and its accuracy. The algorithm is versatile
in terms of the platforms on which it can be implemented, as
its input is a single Cartesian point for each finger tip. We have
implemented our hand and finger detection algorithm on the
Microsoft Surface (diffuse infrared illumination) and 22-inch
3M Multi-Touch Display M2256PW monitors (3M Projected
Capacitive Touch Technology).

II. RELATED WORK

The algorithms used in most multi-touch interfaces do not
consider which finger is touching the contact surface. For most
applications, this design is preferred since users have been
shown to regularly use any finger or combination of fingers
for interface operations like dragging, selection, and zooming
[1] [2]. However, in our design of a multi-touch controller,
registration of the individual fingers and the identification of the
hand as a right or left hand is needed. The thumb, index, middle,
ring, and little finger are vital to the position, orientation and
sizing of the joystick.

Agarwal et al. [3] applied machine learning techniques to
accurately find fingertips and detect touch on regular tablet
displays using an overhead stereo camera. Researchers have
also investigated machine learning for hand poses, which does
not take fingertip detection into consideration [4]. While these
approaches are robust and able to find fingers using overhead
cameras, it is not clear that the fingers themselves were labeled
in terms of thumb, index, etc. The Surface and 3M monitors
are able to easily find the finger tips and return the centroid
points, so the finger tip detection problem was solved for us by

the hardware and software provided with the device. Instead,
our algorithm needed to specifically label the fingers relative
to the anatomy of the hand.

Wang et al. [5] developed an algorithm for detecting the
orientation of finger pads for camera-based multi-touch devices.
The orientation is derived from the angle of the vector from
the contact center in the previous frame through the current
frame which points away from the user’s palm. This algorithm
has been shown to work well for individual fingers. However,
we needed to be able to uniquely identify finger types for our
controller. Finger orientation for multiple fingers can be used
to help determine if the fingers are on the same hand, but this
does not necessarily indicate handedness. Additionally, people
have varying flexibility to spread their fingers (e.g., a pianist or
a person with arthritis), and it is difficult to robustly identify
fingers based directly on contact orientation when this surface
area may change dramatically while on the tips of the fingers.

Dang et al. [6] developed an algorithm to map fingers to
unique hands also based on ellipses created by fingertip contact
regions. Like [5], the researchers first detect the individual
fingers’ orientations using the major and minor axes of the
ellipse and the angle of orientation of the major axis vector.
A combination of heuristics allows for accurate detection of
fingers mapped to a unique hand even when not all of the
fingers from a given hand are placed on the surface. While
their approach is robust, the reliance on ellipses makes it a
difficult choice when we expect a portion of our users to use
the tips of their fingers while learning the system’s behaviors.

Matejka et al. [7] successfully emulated a mouse on a multi-
touch platform using simplistic and elegant heuristics for finger
tracking. In their paper, they describe a method that uses four
primary methods for interaction: Chording, Side, Distance, and
Gesture. They constructed a state machine that used timing
for registration of the initial tracking finger or fingers. For
subsequent contacts they measured the distance in pixels to
identify which fingers were in contact. While their method is
not computationally expensive, it makes the base assumption
that the user knows to begin with the index finger before
any subsequent finger contact. It also assumes that the user’s
hands conform to these static offsets. Since explicit finger
identification, handedness, and automatic sizing was needed
for our application, the technique in this research was not
appropriate despite other benefits in its design.

III. DESIGN OF A MULTI-TOUCH JOYSTICK

Leveraging video game paradigms is a powerful tool an
interface designer can employ to improve ease of learning.
Familiarity with a different interface that uses a similar input
method is practically free experience, at least in terms of
how long it will take a new user to perform passably and,
eventually, to become proficient. Fortunately, the capabilities
of real robots closely mirror those of virtual game characters:
cameras can look left, right, up, and down, while the robot
can drive forward, backward, turn left, and turn right. A
popular controller paradigm established in the late 1990’s by
the Sony Playstation R© and the Microsoft R© XBox R© for video

Fig. 2. A dual-thumb joystick modeled after the Sony Playstation controller
(left) inspired the design of a paper prototype (center) that was selected for
the design of the multi-touch DREAM Controller (right).

games used a dual-thumb joystick design that allowed each
thumb to manipulate two degrees of freedom, with various
buttons located in locations comfortably reachable by the thumb
and the player’s hand’s other digits. First-person games often
employ a mapping where the left thumb joystick controls
lateral movement of the camera, with the rotation of the
perspective of the camera, controlled by the right. As both
robots and first-person games have such similar capabilities,
employing this game mapping for robot control makes adapting
to DREAM Controller-based interfaces even easier for video
gamers, without sacrificing learnability for non-gamers [8].

The general stages of the design process we used are
illustrated in Figure 2. As multi-touch screens are large and flat,
we decided to make use of the real-estate such an input device
provides in order to alleviate some of the ergonomic issues that
a flattened-out video game controller could produce. Rather
than forcing close left and right hand positions, as in the case
of a physical game controller, we decoupled the two halves of
the controller. This independence allows for the joysticks to be
used on different areas of the screen, at different angles, and
even allowing them to be different sizes. An unintentional, but
powerful, side-effect is that the joysticks need not be the only
functional part of the interface. As the user can choose to have
both, either one, or neither of the joysticks on the screen, the
window itself can still be a functional multi-touch interface in
complete parallel with the use of the joysticks.

In designing the DREAM Controller, we took into account
both human-computer interaction (HCI) criteria derived from
Nielsen’s five usability attributes (learnability, efficiency, mem-
orability, errors, and satisfaction) [9] and ergonomic criteria
based on the anatomy of the human hand. (Details about the
HCI criteria are discussed in [10].) We engineered the controller
with a significant respect for the resting poses for the human
arm, wrist, and hand. The paper prototypes in the early design
process helped minimize flexion (decrease of angle), extension
(increase of angle), and pronation (downward rotation) of the
muscles in the wrists and fingers [11]. We also considered that
the movements of the thumb, index finger, and little finger
have been shown to have much more individualized movement
characteristics than the middle or ring fingers [12]. In particular,
the movement of the thumb for managing the two degrees of
freedom for robot movement and camera positioning must be
appropriate for accurate and long-term use.

Two sources of information were important in establishing
the ergonomic requirements of the DREAM Controller. A

wealth of ergonomic information related to gestural interfaces
can be found in [13]. The six key principles of ergonomics
that were used in the design of the controller were: avoid
outer positions, avoid repetition, relax muscles, relaxed neutral
position is in the middle between outer positions, avoid staying
in static position, and avoid internal and external force on
joints and stopping body fluids. Each one of these principles
was evaluated during the prototyping phase and influenced
our design. Another source of anatomical information (and
inspiration) was found in the 1955 book by Henry Dreyfuss
titled Designing for People [14]. The book contains composite
figures of human anatomy gathered from years of research and
data collection. It was with the aid of his technical drawings that
we began decomposing the anatomy of the hand and recognized
that the fingers were limited in their lateral deflection angles.
Even in extreme stretching, there were key characteristics that
we could exploit to identify the components of the hand.

IV. HAND DETECTION ALGORITHM

The hand detection algorithm needs to have a low error rate
in order for the DREAM Controller to be usable. Our original
algorithm (Version 1), described in [8], [10], correctly identified
91.6% hands (371 of 405, collected from 62 people). In this
algorithm, when a user puts five fingers down, we check to
see if the distance between point pairs is less than a threshold
based on Dreyfuss’ measurements [14] and empirically refined
to 8 inches. If so, we create a bounding box around the five
points with its sides parallel to the major axes. The centroid of
this box roughly represents the center of the palm. A sorted list
of angles between adjacent points and the centroid is calculated.
The largest angle is between the thumb and little finger; the
second largest angle is between the thumb and index finger.
The remaining points can be enumerated, and handedness can
be determined based on the sign of the angle between the
thumb and index finger.

In validating Version 1 of the algorithm, we discovered
a disproportionate number of the incorrect identifications
occurred when the user was oriented at the screen from an
off-axis direction (positions 1, 3, 5, and 7 in Figure 4 (left)).
As shown in Table I, these placements were identified correctly
85.2% (167 of 196) in comparison to hand placements where
the user was directly facing one side of the screen (97.6%;
204 of 209). An analysis of our original algorithm revealed
that when the user was along the side of the screen (positions
0, 2, 4, of 6), the bounding box around their five fingers was
approximately a square, and the centroid was approximately
at the center of the physical hand. However, when the user
rotated his or her hand about 45 degrees (i.e., standing at a
corner), the resulting bounding box was an elongated rectangle,
thereby causing the centroid of the bounding box to deviate
from its intended location relative to the physical hand. This
small deviation didn’t affect the thumb identification, but the
handedness and other finger identifications would be incorrect.
In our improved hand detection algorithm (Version 2), the
bounding box rotates with the hand to resolve this.

In Version 2, when a finger touches the device, the contact’s
center point is added to a list of candidates. When there are
five candidates in the list, the candidate list is passed through
a heuristic to determine if those points pass a preliminary
hand test (Fig. 3a), based upon the 8 inch maximum distance
threshold. If the candidates fail this heuristic, the handedness
is declared to be unknown, which is a terminal state for this
algorithm. Otherwise, the rotated bounding box around all five
of the fingers is calculated.

The bounding box is rotated so that two sides are parallel
to and two are perpendicular to the best-fit line through the
non-thumb fingers. We use two levels of distance-based sorting
to make an educated guess about which four points could be
the non-thumb fingers. In the first pass, the “thumb” is found
by finding the point that has the highest total distance from
the other four points (Fig. 3b). We then order the remaining
four points using a breadth-first strategy, beginning with the
finger closest to the thumb.

We then calculate the average slope of the three lines that
join adjacent pairs of points (Fig. 3c). If the slope is 0 or
undefined, then the centroid is found using the coordinates of
the fingers themselves instead of the coordinates of the corners
of the rotated bounding box (as was done in the Version 1
algorithm). If the slope is defined, we compute the equation of
the line parallel to the average non-thumb slope for the each of
the fingers (Fig. 3d). Similarly, we compute the equation of the
line perpendicular to the average non-thumb slope for the each
of the fingers (Fig. 3e) The two lines with the maximum and
minimum y-intercept from each group form the sides of the
bounding box around the five fingers. To find the four corners
of the bounding box, we calculate all of the intersections of
those four lines. The corners are then used to compute the
centroid (Fig. 3f).

After the centroid is located, we calculate the maximum and
minimum distance between it and any candidate (Fig 3g). If
the ratio of the maximum over the minimum is more than 2,
we determine that the handedness is unknown, as we found
empirically that valid hand placements usually have a ratio
between 1 and 1.5. Otherwise, the finger registration algorithm
attempts to figure out which of the five points correspond to
specific fingers. First, a sorted list of angles between adjacent
points and the centroid of the bounding box is populated
(Fig. 3h). The largest angle in this list represents the angle
between the thumb and the little finger. The second largest
angle represents the angle between the thumb and the index
finger. The thumb is the only point that occurs in both the
largest and second largest angle. The complimentary point of
the largest angle is the little finger and the complimentary point
of the second largest is the index finger. The middle and ring
finger can then be identified logically.

Once the specific fingers are identified, two additional tests to
ensure the candidates correspond to a hand are performed. The
first calculates the average distance between any two adjacent
fingers. If there are more than two inter-finger distances above
that average, then the hand is declared to be unknown (Fig.
3i). The second calculates the distance between the fingers

5 fingers in
candidate list

Min+Max centroid
distance ratio test

Above avg.
adjacent finger
distance test

Minimum thumb index
distance test

RightLeft Unknown

failfail fail

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

pass

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

A. B.

C. D.

E. F.

Thumb

Average slope

Centroid

G. H.

Clockwise
= Right

Counter
= Left

Index
Middle

Ring

Little

Largest

Second
Largest

Thumb

> 8 in

pass

pass pass

neg.pos.

fail

B C D E F

HK

< 8 in

A

GIJ

Fig. 3. Improved hand detection algorithm. a. Maximum hand size threshold verification. b-e. Calculating the rotated bounding box. f. Finding the centroid. g.
The minimum/maximum centroid-finger distance ratio test. h. Determining the two largest angles. i. The above average adjacent finger distance test. j. The
minimum thumb-index distance test. k. Determining whether the five points are from a left or right hand.

0 1

2

345

7

6

0 0

0

000

0

0

Fig. 4. Left: The eight screen positions users stood at in the experiment
used to validate the success of our original algorithm. Right: The three hand
positions used for each of their hands.

identified as the index finger and thumb. If the distance is less
than 1 inch, then the hand’s handedness is unknown (Fig. 3j).
Otherwise, the hand can be identified as a left or right hand. If
the rotation around the centroid from the thumb to the index
finger is clockwise, then it is the right hand. If that rotation is
counterclockwise, then it is the left hand (Fig. 3k). To determine
the direction of rotation, we take a property of the cross product
of two vectors. For the purpose of derivation, we define the
vector from the centroid to the thumb as ~a and the vector from
the centroid to the index finger as ~b. Assuming that ~a and ~b are
in the XZ plane, the cross product vector will be positive (point
upwards) if the rotation from ~a to ~b is counterclockwise, or
negative (point downwards) if the rotation is clockwise. Since
these are simply two dimensional vectors, the cross product
derivation expands to Equation 1 where subscripts c, t, and i,
refer to the coordinates of the centroid, thumb’s center point,
and index finger’s center point, respectively.

(xc − xt) · (yi − yc)− (yc − yt) · (xi − xc) (1)

If the hand identification and finger registration process
reaches this point, then all of the information necessary to
begin building the DREAM Controller underneath the user’s
hand has been determined.

V. ALGORITHM VALIDATION

We previously collected a data set of hand placements on
our Microsoft Surface. Sixty-five people were each asked to
stand at one of eight positions around the screen (Fig. 4 (left)
and to place each hand on the screen once in each of three
different hand positions (Fig. 4 (right)). We used the Microsoft
Surface Simulator to record Surface Contact Scripts, which
are key frame animation-like XML files that allow every touch
that occurred on the screen to be played back in real time.
Due to recording issues, the data set only contains the contact
scripts for 62 participants.1

We tested both algorithms with the 62 Surface Contact
Scripts to see how accurate they were at identifying hands
(Table I). We first manually coded the 62 Surface Contact
Scripts to determine at what time each hand detection in our
original manual logs occurred and noted the handedness of any
touch combinations that appeared to be a left or right hand.
The raw data set contains 405 hand placements. We ran the
raw data set through the Version 1 and Version 2 hand and
finger detection algorithms. Each detected hand was logged
with the playback time at which the detection had occurred.
The two logs were then compared with the human-determined
identifications of that very same data. “Correct” is defined as
the algorithm returning the same handedness as was manually
coded within the same second of playback as the manually
coded hand.

Table I shows the percentage of correctly identified hand
placements (# correct/total placements). The Version 1 hand
detection algorithm correctly detected 91.6% (371 of 405) of
the hands for those 62 users’ contact scripts, and the Version
2 correctly detected 97.0% (393 of 405) of the hands.

1The 62 Surface Contact Scripts are available at
http://robotics.cs.uml.edu/handdetection/HandSurfaceData.zip

Index to

Thumb

Clear Function Labels

2DOF Proportional Control

Button width + padding

Buttons for tracking and movement

Basis for Circle

1/3 Distance

Index to Thumb

Dead Band

Zoom Speed Reset

ADR

Up

Down

Left Right

Fig. 5. Users have a wide variety of hand characteristics. The DREAM
Controller adjusts several parameters to tailor the size, orientation, and position
of the controller to maximize comfort and performance.

VI. DREAM CONTROLLER

The hand geometry and handedness is used to adjust
the size, orientation, and arrangement of the DREAM
Controller elements. As shown in Figure 5, there are some key
measurements that determine these features. First, the angle
from the thumb to the index finger determines the orientation
of the controller and the control panel. The top right corner of
the control panel is placed at the index finger and the lower
right corner is placed at the thumb. The width of the grid
is determined by the size of the buttons and sliders with the
addition of padding for layout and visual balance. The height
is simply the distance between the thumb and the index finger.

A circumscribed circle is calculated around the triangle
formed by the points corresponding to the thumb, index finger,
and little finger. Its purpose is both aesthetic and functional,
in that it provides a feedback to the user that the controller is
tailored to their specific hand size, but also plays an important
role in hit detection in the application. It protects user elements
in lower panels from detecting the touches from fingers of the
hand that the joystick is under.

Two circles are placed under the center of the index and
middle fingers. These are analogous to the “shoulder” buttons
used on dual-thumb joystick controllers. The circles can receive
their own events and thus can easily be used as momentary or
toggle buttons if needed. Additionally, these have the potential
to be used as pressure sensitive buttons since the relative size of
the finger blob detected can be determined as the user changes
the amount of pressure placed on the surface.

A circle is placed under the thumb representing analog
control for two fully proportional degrees of freedom (DOF).
Much like the Playstation controller, the thumb is then moved
up, down, left, and right corresponding to the desired movement.
The circles have their function clearly labeled within the
boundaries of the circle. The user has full proportional control

and can mix the analog ranges for both degrees of freedom.
Lifting the thumb from the analog control pad is analagous to
letting go of a physicial joystick, in that the virtual joystick is
returned to its origin when that occurs.

When the thumb is in contact with the analog pad, the
joystick widget’s angle and position are locked. When the
thumb is not in contact with the thumb circle, the index and
middle finger can be moved to adjust the angle and position
of the controller. The shunting of movement is important for
safety and continuity of control. Many secondary movements
are transferred to the index and middle finger when the thumb
muscles are actuated. The thumb position relative to the analog
control pad changes if this movement of the index finger
and middle finger then rotate or translate the position of the
controller. This, in turn, causes the user to move their thumb,
which causes the index and middle finger to again move. This
feedback loop quickly becomes very frustrating to the user and
results in the user pushing down on the screen surface to limit
secondary movement. Muscle fatigue will quickly occur and the
user experience will be severely negative. By simply stopping
movement on thumb contact, the controller maintains position
and allows the user to relax his or her hand muscles without
consequence. At any time during the use of the controller, the
user can lift or lower their ring and little finger with no effect
on operation, added for the comfort of the user after we noticed
this relaxation behavior with the early paper prototypes.

VII. DISCUSSION AND FUTURE WORK

The hand and finger identification and registration algorithm
described above has successfully been used to control real and
simulated robots with DREAM Controllers. In a user study of a
search and rescue task with first responders (n=6), we observed
people who had never interacted with a multi-touch device or
a video game controlling an ATRV-JR’s movement and the
robot’s camera’s pan tilt without looking at their hands during
their 25 minute runs [8], [10]. In a multi-robot command and
control interface, the DREAM Controller provided a means of
taking control of one of multiple simulated robots [10].

We are currently fine-tuning our heuristics and investigating
others that could be added, as we strive for 100% accuracy,
all while allowing the detection of hands when there are more
than 5 touches on the screen. However, with its current 97%
accuracy rate, the algorithm has shown itself to be effective
for controlling robots using the DREAM Controller. Our next
steps are to continue development of the SoftOCU to allow
for its deployment in the field with real robots.

VIII. ACKNOWLEDGMENTS

This research has been funded in part by the National Science
Foundation (IIS-0546309) and Microsoft Research. The 22-inch
3M Multi-Touch Display M2256PW monitors were provided
courtesy of 3M Touch Systems. The hand detection algorithm
and DREAM Controller are patent pending.

TABLE I
HAND AND FINGER RECOGNITION RATES (#correct/total) BY BOARD POSITION FOR 405 HAND PLACEMENTS FROM 62 PARTICIPANTS

Position 0 Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7

Overall
V1 65 of 65 42 of 52 51 of 51 49 of 52 47 of 49 33 of 39 41 of 44 43 of 53

(100%) (80.8%) (100%) (94.2%) (95.9%) (84.6%) (93.2%) (81.1%)

V2 64 of 65 49 of 52 50 of 51 52 of 52 47 of 49 37 of 39 43 of 44 51 of 53
(98.5%) (94.2%) (98%) (100%) (95.9%) (94.9%) (97.7%) (92.2%)

Right overall
V1 35 of 35 21 of 25 27 of 27 26 of 27 22 of 23 14 of 19 22 of 23 24 of 29

(100%) (84%) (100%) (96.3%) (95.7%) (73.7%) (95.7%) (82.8%)

V2 35 of 35 24 of 25 27 of 27 27 of 27 22 of 23 18 of 19 22 of 23 27 of 29
(100%) (96%) (100%) (100%) (95.7%) (94.7%) (95.7%) (93.1%)

Right tips
V1 13 of 13 6 of 8 9 of 9 7 of 7 7 of 8 4 of 6 7 of 7 7 of 10

(100%) (75%) (100%) (100%) (87.5%) (66.7%) (100%) (70%)

V2 13 of 13 7 of 8 9 of 9 7 of 7 7 of 8 5 of 6 7 of 7 8 of 10
(100%) (87.5%) (100%) (100%) (87.5%) (83.3%) (100%) (80%)

Right pads
V1 12 of 12 7 of 8 9 of 9 8 of 9 7 of 7 5 of 6 7 of 7 6 of 8

(100%) (87.5%) (100%) (88.9%) (100%) (83.3%) (100%) (75%)

V2 12 of 12 8 of 8 9 of 9 9 of 9 7 of 7 6 of 6 7 of 7 8 of 8
(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%)

Right stretch
V1 10 of 10 8 of 9 9 of 9 11 of 11 8 of 8 5 of 7 8 of 9 11 of 11

(100%) (88.9%) (100%) (100%) (100%) (71.4%) (88.9%) (100%)

V2 10 of 10 9 of 9 9 of 9 11 of 11 8 of 8 7 of 7 8 of 9 11 of 11
(100%) (100%) (100%) (100%) (100%) (100%) (88.9%) (100%)

Left overall
V1 30 of 30 21 of 25 24 of 24 23 of 25 25 of 26 19 of 20 19 of 21 19 of 24

(100%) (84%) (100%) (92%) (96.2%) (95%) (90.5%) (79.2%)

V2 29 of 30 25 of 25 23 of 24 25 of 25 25 of 26 19 of 20 21 of 21 24 of 24
(96.7%) (100%) (95.8%) (100%) (96.2%) (95%) (100%) (100%)

Left tips
V1 10 of 10 6 of 8 8 of 8 7 of 9 8 of 8 6 of 6 5 of 7 5 of 8

(100%) (75%) (100%) (77.8%) (100%) (100%) (71.4%) (62.5%)

V2 10 of 10 7 of 8 7 of 8 9 of 9 8 of 8 6 of 6 7 of 7 8 of 8
(100%) (87.5%) (87.5%) (100%) (100%) (100%) (100%) (100%)

Left pads
V1 10 of 10 6 of 8 8 of 8 7 of 7 8 of 9 6 of 6 7 of 7 7 of 8

(100%) (84%) (100%) (100%) (88.9%) (100%) (100%) (87.5%)

V2 10 of 10 8 of 8 8 of 8 7 of 7 8 of 9 6 of 6 7 of 7 8 of 8
(100%) (100%) (100%) (100%) (88.9%) (100%) (100%) (100%)

Left stretch
V1 10 of 10 9 of 11 8 of 8 9 of 9 9 of 9 7 of 8 7 of 7 7 of 8

(100%) (81.8%) (100%) (100%) (100%) (87.5%) (100%) (87.5%)

V2 9 of 10 10 of 11 8 of 8 9 of 9 9 of 9 7 of 8 7 of 7 8 of 8
(90%) (90.9%) (100%) (100%) (100%) (87.5%) (100%) (100%)

REFERENCES

[1] C. Snyder, Paper Prototyping: The Fast and Easy Way to Design and
Refine User Interfaces. Morgan Kaufmann Publishers, 2003.

[2] J. Wobbrock, M. Morris, and A. Wilson, “User-defined Gestures for
Surface Computing,” in Conf. on Human Factors in Computing Sys.,
2009.

[3] M. Micire, J. Drury, B. Keyes, and H. Yanco, “Multi-Touch Interaction
for Robot Control,” in Proceedings of the Intl. Conf. on Intelligent User
Interfaces, 2009.

[4] A. Agarwal, S. Izadi, M. Chandraker, and A. Blake, “High Precision
Multi-touch Sensing on Surfaces Using Overhead Cameras,” in 2nd

IEEE Intl. Workshop on Horizontal Interactive Human-Computer Sys.
(Tabletop), 2007, pp. 197–200.

[5] S. Izadi, A. Agarwal, A. Criminisi, J. Winn, A. Blake, and Fitzgibbon,
“C-Slate: A Multi-Touch and Object Recognition System for Remote
Collaboration using Horizontal Surfaces,” 2nd IEEE Intl. Workshop on
Horizontal Interactive Human-Computing Sys. (Tabletop), vol. 7, 2007.

[6] F. Wang, X. Cao, X. Ren, and P. Irani, “Detecting and Leveraging
Finger Orientation for Interaction with Direct-touch Surfaces,” in Proc.
of the 22nd Annual ACM Symposium on User Interface Software and
Technology (UIST), 2009, pp. 23–32.

[7] C. Dang, M. Straub, and E. André, “Hand Distinction for Multi-touch
Tabletop Interaction,” in Proc. of the ACM Intl. Conf. on Interactive
Tabletops and Surfaces, 2009, pp. 101–108.

[8] J. Matejka, T. Grossman, J. Lo, and G. Fitzmaurice, “The Design and
Evaluation of Multi-finger Mouse Emulation Techniques,” in Proc. of
the 27th Intl. Conf. on Human Factors in Computing Sys., 2009, pp.
1073–1082.

[9] M. Micire, M. Desai, J. Drury, E. McCann, A. Norton, K. Tsui, and
H. Yanco, “Design and Validation of Two-Handed Multi-Touch Tabletop
Controllers for Robot Teleoperation,” in Proc. of the Intl. Conf. on
Intelligent User Interfaces, 2011.

[10] J. Nielsen, Usability Engineering. San Diego, CA: Academic Press,
1993.

[11] M. J. Micire, “Multi-Touch Interaction for Robot Command and
Control,” Ph.D. dissertation, Computer Science Department, University
of Massachusetts Lowell, December 2010.

[12] D. Saffer, Designing Gestural Interfaces: Touchscreens and Interactive
Devices. O’Reilly Media, Nov 26, 2008.

[13] C. Hager-Ross and M. Schieber, “Quantifying the Independence of
Human Finger Movements: Comparisons of Digits, Hands, and Movement
Frequencies,” J. of Neuroscience, vol. 20, no. 22, p. 8542, 2000.

[14] M. Nielsen, M. Störring, T. Moeslund, and E. Granum, “A Procedure for
Developing Intuitive and Ergonomic Gesture Interfaces for Man-machine
Interaction,” Aalborg University, Tech. Rep., 2003, report no. CVMT
03-01. http://www.cvmt.dk/∼fgnet/docs/fgnet techreport.pdf.

[15] H. Dreyfuss, Designing for People. Allworth Press, 2003.

