


Abstract

Throughout the history of automation, there have been numerous accidents attributed

to the inappropriate use of automated systems. Over-reliance and under-reliance on

automation are well documented problems in fields where automation has been em-

ployed for a long time, such as factories and aviation. Research has shown that one of

the key factors that influence an operator’s reliance on automated systems is his or her

trust of the system. Several factors, including risk, workload, and task difficulty have

been found to influence an operator’s trust of an automated system. With a model of

trust based upon these factors, it is possible to design automated systems that foster

well-calibrated trust and thereby prevent the misuse of automation.

Over the past decade, robot systems have become more commonplace and increas-

ingly autonomous. With the increased use of robot systems in multiple application

domains, models of trust and operator behavior for human-robot interaction (HRI)

must be created now in order to avoid some of the problems encountered by other

automation domains in the past. Since traditional automation domains and HRI are

significantly different, we reexamine trust and control allocation (operator’s usage of

autonomous behaviors) as it relates to robots with autonomous capabilities in order to

discover the relevant factors in HRI.

This dissertation examines existing work in traditional automation that is relevant

to HRI and, based on that information, builds an experimental methodology to closely

mimic real world remote robot teleoperation tasks. We also present results from multiple

experiments examining the relationship between the different factors being investigated



with respect to trust and control allocation. Based on these results, a model for hu-

man interaction with remote robots for teleoperation (HARRT) is proposed and design

guidelines to help improve overall performance are presented based on the model.
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Chapter 1

Introduction

Parasuraman and Riley define automation as “the execution by a machine agent (usually

a computer) of a function that was previously carried out by a human” [Parasuraman

and Riley, 1997]. Increases in autonomous capabilities of machines are sometimes seen

as a double edged sword, especially in the human factors community [Boehm-Davis

et al., 1983]. While the use of automation can help to ameliorate some problems that

are caused by manual control, it can also create a different set of problems, including

loss of skill and complacency [Boehm-Davis et al., 1983,Endsley and Kiris, 1995,Sarter

et al., 1997, Wickens and Xu, 2002, Norman, 1990] and these inevitably impact how

operators interact with the automated system. The key issue, however, is the over-

reliance or the under-reliance on automation. One of the known contributing factors to

improper reliance on automation is trust (e.g., [Muir, 1989,Lee and Moray, 1994]).

While it is difficult to conclusively state the root cause, over-reliance or under-

reliance on automated systems due to miscalibrated trust can often be inferred in inci-

dent reports from the aviation industry. For example:

“In December 1995, the crew of an American Airlines Boeing 757, descending
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through a mountain valey toward Cali, Columbia, attempted to route the aircraft

toward their destination by entering into the flight management system (FMS)

a substring of the code for a CaZi navigational beacon. The computer’s stored

database of navigational beacons contained two very similar codes. One code

denoted the beacon near Cali, which was several dozen miles ahead of the airplane.

The other code corresponded to a beacon at the Bogota airport, several dozen

miles behind the airplane. Presented by the FMS with a list of nearby beacons

matching the entered substring, the crew initiated an over-learned behavior and

selected the computer’s first presented alternative; unfortunately, the FMS had

presented the Bogota beacon first. The flight management computer dutifully

began turning the aircraft toward Bogota. Shortly after this, the aircraft crashed

into the side of a mountain, killing 151 passengers and 8 crew” [Phillips, 1999].

Researchers have investigated factors that influence trust and ultimately reliance on

automated systems [Muir, 1989,Lee and Moray, 1994,Riley, 1996] in order to prevent

such accidents and improve the performance of automated systems.

Just like the gradual increase in the number of automated plants and autopilots a

few decades ago, the number of robots in use is currently on the rise. Approximately 2.2

million consumer service robots were sold in 2010, an increase of 35% over 2009 [IFR,

2011]. There is a desire for robots to be more autonomous, especially in domains like

the military and search and rescue, where there is a push to have fewer operators con-

trol more robots [Lin, 2008]. Robots with autonomous behaviors are not as capable

as some of the automated systems used in traditional automation. For example, auto-

pilot systems can control the plane from take-off to landing, whereas the state of the

practice in domains like urban search and rescue is teleoperation [Burke et al., 2004a].

Also, there are other key differences between traditional automation and robotics (e.g.,
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reliability and autonomous capability); however, autonomous robots, much like tradi-

tional automated systems, face the same problems of inappropriate operator reliance

on automation [Baker and Yanco, 2004]. Hence, it is important to visit the issue of

appropriate automation usage in robotics sooner rather than later. While there is some

research that examines an operator’s trust of robots [Freedy et al., 2007], it is very

cursory. There does not exist a comprehensive model of trust in robotics.

1.1 Research Focus

Robotics encompasses a very wide range of domains ranging from medicine (e.g., [In-

tuitive Surgical, 2012], [Intouch Health, 2012]) to space (e.g., [Lovchik and Diftler,

1999], [Hirzinger et al., 1994]) to consumer (e.g., [VGO Communications, 2012], [Tsui

et al., 2011a]) to military (e.g., [iRobot, 2012], [Chen, 2009]). The human-robot inter-

action (HRI) involved in these domains also differs greatly, so it is important to narrow

down the domain for which research must be conducted. For the research presented in

this thesis, we selected the remote robot teleoperation (RRT) task, specifically due to

the high level of difficulty and the relatively low situation awareness. These differences

make RRT one of the more difficult domains in HRI and also presents a stark contrast

when compared to the typical human-automation interaction (HAI) systems that are

commonly used for research. While this domain selection will limit the generalizability

of this thesis, it will, however, examine an important domain.
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1.2 Problem Statement

Research in traditional automation fields such as plant automation, process automation,

and aviation automation1 has shown that automation is beneficial only if used under

the right circumstances. Under-reliance or over-reliance on automation can impact

performance [Wickens and Xu, 2002,Lee and See, 2004] and can even cause catastrophic

accidents [Sarter et al., 1997,Phillips, 1999]. Research has also shown that reliance on

automation is strongly influenced by the operator’s trust of the automated system

[Muir, 1989, Lee and Moray, 1994] and that there are several factors that influence

an operator’s trust of the system (e.g., reliability [Riley, 1996], risk [Perkins et al.,

2010], and individual biases [Riley, 1996]). Trust models for HAI have been created

based on such research, and guidelines have been proposed for designing automated

systems [Atoyan et al., 2006] to ensure appropriate trust calibration and reliance on

automation. Trust models can help to design autonomous systems that foster better

calibrated operator trust.

As autonomous robots become more commonplace, the issue of inappropriate re-

liance on or use of autonomous behaviors of robots becomes ever more important.

However, the trust models developed for HAI can not be directly applied in human-

robot interaction (HRI) due to the differences between the two fields (e.g., operating

environments, sensor noise, automation reliability, and automation capability)2. These

differences can significantly impact control allocation. Control allocation is the strategy

that an operator employs to transfer control of the system between different agents ca-

pable of controlling the systems. For example, researchers have observed that operators

often prefer to not switch autonomy modes even under poor performance [Baker and
1Henceforth, collectively referred to as human-automation interaction or HAI.
2More information about the differences between the two fields is explained in Chapters 2 and 3.
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Yanco, 2004], thereby making the task of designing autonomous behaviors for robots

more challenging. Such a problem can be further compounded by the fact that robots

can operate under varying levels of autonomy [Bruemmer et al., 2002,Desai and Yanco,

2005] rather than the usual two levels typically observed in HAI. These differences

between HAI and HRI necessitate validating the relationship of existing factors that

influence trust and investigating other potential factors that can impact operator trust

and control allocation in HRI.

This research investigated characteristics that distinguish HRI from HAI and their

influence on operator trust and on an operator’s decision to allocate control of the

robot to the autonomous behaviors with the ultimate goal of better understanding the

different factors at play to be able to better design robots for HRI.

1.3 Approach

The work presented in this thesis has been conducted in two parts. The first part

involved creating a list of factors that could potentially influence an operator’s trust

of the robot. This step was accomplished by collecting information from existing HAI

literature on operator trust and literature on HRI that can highlight potentially im-

portant factors. Additional insight was gained by posing typical scenarios in a survey

to expert and novice users. Information combined from these sources provides a list of

potential factors. A second survey based on these factors was conducted to examine

the relative importance of those factors. A set of factors based on these surveys were

selected to be experimentally validated as part of the second part of the research.

Contrary to most experimental methodologies used to investigate trust in HAI

(e.g., [Muir, 1989, Lee and Moray, 1994]) and HRI (e.g., [Freedy et al., 2007]), this
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research used a real robot that was remotely operated by participants. Unlike most

prior experiments conducted [Dzindolet et al., 2003, Riley, 1996, Muir, 1989], where

only one factor was examined at a time, we used multiple factors to closely replicate

real world systems. For example, Bliss and Acton conducted a series of experiments,

each with a different level of reliability [Bliss and Acton, 2003]. Such experiments pro-

vide useful insight on how reliability influences trust; however, they do not represent

real world systems where there can be multiple factors at play simultaneously. Hence,

for this research, the experiments had varying reliability levels under which the different

factors were examined. Such a methodology better resembles real world systems where

reliability is not always constant; hence the data should help to provide a better un-

derstanding of operator trust and control allocation. Once the influence of prominent

factors was examined, a model of human interaction with an autonomous remote robot

for teleoperation (HARRT) was developed based on the data collected.

1.4 Thesis Statement and Research Goal

The primary goal of this thesis was to create a better understanding of the different

factors that impact operator trust and control allocation while interacting with an au-

tonomous remote robot. We also wanted to investigate how certain attributes central to

remote robot teleoperation (e.g., situation awareness, workload, task difficulty) impact

operator behavior. By observing the variations in the different factors and how they

affect operator trust and control allocation strategy, a model of operator interaction

specifically for teleoperation of an autonomous remote robot has been constructed and

is used to create a set of guidelines that can improve the overall system performance.

6



1.5 Contributions

The contributions of this thesis are as follows:

• A methodology for measuring real-time trust that can be utilized in other exper-

iments by researchers.

• The area under the trust curve (AUTC) metric that allows for quantification and

comparison of real-time trust.

• A metric to measure an operator’s control allocation strategy relative to the ideal

strategy.

• The importance of timing of periods of reliability drops on operator interaction.

• The consistency in operator behavior over long term interaction.

• The impact of familiarity with robots.

• The impact of different factors (dynamic reliability, situation awareness, reduced

task difficulty, and feedback) on trust and control allocation.

• Design guidelines to improve human interaction with remote autonomous robots.

• The human interaction with remote robots for teleoperation (HARRT) model.

1.6 Organization

The thesis is organized as follows. Chapter 2 details existing research relevant to trust

and control allocation in human-automation interaction and human-robot interaction.

Chapter 3 presents results from the first survey that investigate different factors that
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might be relevant to expert and novice participants. Based on this list of factors, Chap-

ter 4 examines how participants rank them. Based on the results of these surveys, the

experimental methodology is finalized and presented in Chapter 5. Chapter 6 presents

the results of the baseline experiment. These results are then compared with the results

from the low situation awareness experiment presented in Chapter 7. Based on the data

collected from these two experiments, the need to modify the experimental methodol-

ogy to measure real-time trust was observed. Hence, Chapter 8 presents details about

the new experimental methodology and the new baseline study conducted with that

methodology. The results of that new baseline study are then compared with the data

from studies examining the impact of providing feedback (Chapter 9), reducing task dif-

ficulty (Chapter 10), and long term interaction (Chapter 11). Chapter 12 presents the

combined results from all the experiments to show trends that are observed across all of

the experiments and the differences between the experiments. Finally, Chapter 13 looks

at the relationship between the different factors that influence operator behavior and

performance and describes the HARRT model. Chapter 14 merges the effects observed

in the different experiments with the HARRT model and provides a set of guidelines

that can help improve human interaction with robots and overall performance.
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Chapter 2

Background

The past couple of decades have seen an increase in the number of robots and the trend

is still continuing. According to a survey, 2.2 million domestic service robots were sold

in 2010 and the number is expected to rise to 14.4 million for 2011 to 2014 [IFR, 2011].

Not only are the number of robots being used increasing, but also the domains that use

robots. For example, autonomous cars or self-driving cars have been successfully tested

on US roads and have driven over 300,000 miles autonomously [Google Cars, 2011a,

Dellaert and Thorpe, 1998]. Telepresence robots in the medical industry is another

example of a new application domain for robots [Michaud et al., 2007,Tsui et al., 2011b].

There is also a push to introduce or add additional autonomous capabilities for these

robots. For example, the Foster-Miller TALON robots used in the military are now

capable of navigating to a specified destination using GPS and the unmanned aerial

vehicles (UAVs) deployed by the military are also becoming more autonomous [Lin,

2008].

Utilizing autonomous capabilities can provide different benefits such as reduced

time, workload, and cost. However, existing research in the field in plant automation,
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industrial automation, aviation automation, etc., highlights the need to exercise caution

while designing autonomous robots. Research in HAI shows that an operator’s trust

of the autonomous system is crucial to its use, disuse, or abuse [Parasuraman and

Riley, 1997]. This chapter discusses research in HAI that is relevant to HRI and also

briefly highlights some of the differences between HAI and HRI that necessitate further

investigation of trust in HRI.

There can be different motivations to add autonomous capabilities; however, the

overall goal is to achieve improved efficiency by reducing time, reducing financial costs,

lowering risk, etc. For example, one of the goals of the autonomous car is to reduce the

potential of an accident [Google Cars, 2011b]. A similar set of reasons was a motivating

factor to add autonomous capabilities to plants, planes, industrial manufacturing, etc.

However, the end results of adding autonomous capabilities was not always as expected.

There have been several incidents in HAI that have resulted from an inappropriate use

of automation [Sarter et al., 1997]. Apart from such incidents, research in HAI also

shows that adding autonomous capabilities does not always provide an increase in

efficiency. The problem stems from the fact that, when systems or subsystems become

autonomous, the operators that were formerly responsible for manually controlling those

systems get relegated to the position of supervisors. Hence, such systems are often called

supervisory control systems.

In supervisory control systems, the operators perform the duty of monitoring and

typically only take over control when the autonomous system fails or encounters a

situation that it is not designed to handle. A supervisory role leads to two key problems:

loss of skill over time [Boehm-Davis et al., 1983] and the loss of vigilance over time in

a monitoring capacity [Endsley and Kiris, 1995,Parasuraman, 1986]. Due to these two

reasons, when operators are forced to take over manual control they might not be able
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to successfully control the system. The following quote by a pilot training manager

helps to highlight the issue [Boehm-Davis et al., 1983]:

“Having been actively involved in all areas of this training, one disturbing side

effect of automation has appeared, i.e. a tendency to breed inactivity or compla-

cency.

For example, good conscientious First Officers (above average) with as little as 8-9

months on the highly sophisticated and automated L-1011s have displayed this

inactivity or complacency on reverting to the B-707 for initial command training.

This problem has caused us to review and increase our command training time for

such First Officers. In fact we have doubled the allotted en route training time.”

Apart from these issues, another significant issue of control allocation arises with

supervisory control systems. Control allocation is the strategy that an operator em-

ploys to transfer control of the system between different agents capable of controlling

the systems. In the simplest and the most often observed case, the agents involved

would be the autonomous control program and the operator. Control allocation is not

only crucial in achieving optimal performance but also in preventing accidents. There

have been several documented cases of accidents due to poor control allocation by the

operators [Sarter et al., 1997,Boehm-Davis et al., 1983]. Optimizing the performance

of a supervisory control system not only involves improving the performance of the au-

tonomy, but also ensuring appropriate control allocation. To ensure appropriate control

allocation, it is important to examine the process involved in control allocation.

Sheridan and Verplank were among the first researchers to mention trust as an

important factor for control allocation [Sheridan, 1978]. According to Sheridan and

Verplank, one of the duties of the operator was to maintain an appropriate trust of
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Figure 2.1: The duty of appropriate trust as hypothesized by Sheridan and Verplank
(from [Sheridan, 1978]).

the automated system (Figure 2.1). However, the first researcher to investigate the

importance of trust on control allocation was Muir [Muir, 1989]. According to Muir,

control allocation was directly proportional to trust: i.e., the more trust the operator

had on a system, the more likely he/she was to rely on it and vice versa. If the operator’s

trust of the automated system is not well calibrated then it can lead to abuse (over-

reliance) or disuse (under-reliance) on automation. Since this model of trust was first

proposed, significant research has been done that indicates the presence of other factors

that influence control allocation either directly or indirectly via the operator’s trust of

the automated system. Some of the factors that are known to influence trust or have

been hypothesized to influence trust are explained in brief below and are also shown in
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Figure 2.2: The model of operator reliance on automation hypothesized by Riley (from
[Riley, 1996]). Solid lines indicate relationships that have been verified and the dashed
lines indicate hypothesized relationships.
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Figure 2.2.

• Reliability: Automation reliability is one of the most widely researched and one

of the most influential trust factors. It has been empirically shown to influence an

operator’s trust of an automated system [Dzindolet et al., 2003,Riley, 1996,deVries

et al., 2003]. Typically, lower reliability results in decreased operator trust and

vice versa. However, some work with varying reliability indicates that the timing

of the change in reliability can be critical [Prinzel III, 2002].

• Risk and reward: Risk and reward are known to be motivating factors for achiev-

ing better performance. Since lack of risk or reward reduces the motivation for

the operator to expend any effort and over-reliance on automation reduces oper-

ator workload [Dzindolet et al., 2003], the end result for situations with low or no

motivation is abuse of automation.
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Figure 2.3: The model of trust created by Lee and Moray (from [Lee and Moray, 1991]).

• Self-confidence: Lee and Moray found that control allocation would not always

follow the change in trust [Moray and Inagaki, 1999]. Upon further investigation,

they found that control allocation is dependent on the difference between the

operator’s trust of the system and their own self-confidence to control the system

under manual control. Based on further investigation, they created the model

shown in Figure 2.3.

• Positivity bias: The concept of positivity bias in HAI research was first proposed

by Dzindolet et al. [2003].They borrowed from the social psychology literature,

which points to a tendency of people to initially trust other people in the absence

of information. Dzindolet et al. showed the existence of positivity bias in HAI

through their experiments. The theory of positivity bias in the context of control

allocation implies that novice operators would initially tend to trust automation.

• Inertia: Researchers observed that when trust or self-confidence change, it is not

immediately followed by a corresponding change in control allocation [Moray and

Inagaki, 1999]. This delay in changing can be referred to as inertia. Such inertia in

autonomous systems can be potentially dangerous, even when the operator’s trust

is well calibrated. Hence, this is an important factor that warrants investigation
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to help design systems with as little inertia as possible.

• Experience: In an experiment conducted with commercial pilots and undergradu-

ate students, Riley found that the control allocation strategy of both populations

was almost similar with one exception [Riley, 1996]: pilots relied on automation

more than the students did. He hypothesized that the pilots’ experience with

autopilot systems might have resulted in a higher degree of automation usage.

Similar results were found in this thesis when participants familiar with robots

relied more on automation than those participants not familiar with robots (Chap-

ter 11).

• Lag: Riley hypothesized that lag would be a potential factor that could influence

control allocation [Riley, 1996]. If there is a significant amount of lag between the

operator providing an input to the system and the system providing feedback to

that effect, the cognitive work required to control the system increases. This in-

creased cognitive load can potentially cause the operator to rely on the automated

system more.

2.1 Trust Models

In the process of investigating factors that might influence operator’s trust and control

allocation strategy, researchers have modeled operator trust on automated systems

(e.g., [Farrell and Lewandowsky, 2000,Muir, 1987,Lee and Moray, 1992b,Cohen et al.,

1998,Riley, 1996,Moray et al., 2000]). Over a period of two decades different types of

model have been created. Moray and Inagaki classified trust models into five categories

and explain the pros and cons of the different types of models in brief: regression
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models, time series models, qualitative models, argument based probabilistic models,

and neural net models [Moray and Inagaki, 1999].

Regression models help identify independent variables that influence the dependent

variable (in most cases trust). These models not only identify the independent variables

but also provide information about the relationship (directly proportional or inversely

proportional) between each of the independent variables and the dependent variable and

the relative impact of that independent variable with respect to that of other variables.

The model presented in Section 6.1.7 is an example of a regression model. These

models, however, cannot model the dynamic variances in the development of trust and

hence must be used only when appropriate (e.g., simply identifying factors that impact

operator trust). Regression models can be used to identify factors that impact trust but

do not significantly vary during interaction with an automated system, and, based on

this information, appropriate steps can be taken to optimize overall performance. This

information can potentially be provided to the automated system to allow it to better

adapt to each operator. Regression models have been utilized by other researchers [Lee,

1992,Lee and Moray, 1992b,Muir, 1989].

Time series models can be used to model the dynamic relationship between trust

and the independent variables. However, doing so requires prior knowledge of the

factors that impact operator trust. Lee and Moray [1992b] used a regression model

to initially identify factors and then used a time series model (Autoregressive moving

average model ARMAV) to investigate the development of operator trust. The time

series trust model by Lee and Moray is shown in Figure 2.3. Through that model, Lee

and Moray found that the control allocation depends on prior use of the automated

system and individual biases, along with trust and self-confidence. Using a time series

model requires a large enough data set that can be discretized into individual events.
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For example, in the experiment conducted by Lee and Moray, each participant operated

the system for a total of four hours, which included twenty eight individual trials (each

six minutes long). Qualitative data was collected at the end of each run which might

have had had a faulty system throughout the run. Unlike most other types of models,

time series model can be used online to predict future trust and control allocation and

perhaps initiate corrective action if needed. However, to our knowledge no such models

exist.

In qualitative models, the researchers establish relationships between different fac-

tors based on quantitative data, qualitative data, and their own observations. As

Moray and Inagaki [1999] point out, such models can provide valuable insight into how

trust, control allocation, and other factors interact. A model of trust partly based on

the human-human model of trust developed by Muir [1989] and the model of human-

automation interaction by Riley [1994] are two well established qualitative models.

Given the heuristic nature of these models they cannot be used to make precise predic-

tions about trust and control allocation; however, they can and often have been used to

create a set of guidelines or recommendations for automation designers and operators

(e.g., [Muir, 1987] and [Chen, 2009]).

Farrell and Lewandowsky [2000] trained a neural net to model operator’s control

allocation strategy and be able to predict future actions by the operator. The model

based on connectionist principles was called CONAUT. Their model received digitized

information as sets of 10 bits for each of the three tasks. Using that model, the authors

predicted that operator complacency can be eliminated by cycling between automatic

and manual control. While such models can accurately model trust and control alloca-

tion strategies, they require large data sets. Due to the very nature of neural networks,

it is not feasible to extract any meaningful explanation about how the model works.
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Based on existing research in HAI, it is prudent to visit the topic of control allo-

cation and trust in human-robot interaction (HRI). Understanding trust in HRI can

help in designing autonomous robots that foster well calibrated trust and help improve

performance.

2.2 Trust in HRI

HRI is a diverse field that spans from medical robots to military robots. While it would

be ideal to create a model of trust that generalizes to all of HRI, for this thesis it is

important to narrow the scope of the research because we hypothesize that the appli-

cation domain is a significant factor in the trust model. Various taxonomies have been

defined for HRI [Dudek et al., 1993,Yanco and Drury, 2004]. One such taxonomy for

robots defines the system type by their task [Yanco and Drury, 2004]. Another possi-

ble classification for robots is their operating environment: ground, aerial, and marine

robots. The scope of this research in this thesis is limited to remotely controlled un-

manned ground robots that are designed for non-social tasks. Unmanned ground robots

represent a significant number of robots being developed and hence the contributions

of this thesis should impact a significant number of application domains within HRI.

Several application domains within the realm of unmanned ground robots are classi-

fied as mobile robots (e.g., factory robots [Kiva Systems, 2011,CasePick Systems, 2011],

consumer robots [Roomba, 2011,Neato Robotics, 2011], and autonomous cars [Google

Cars, 2011a,Dellaert and Thorpe, 1998]). However, one of the more difficult domains

is urban search and rescue (USAR). USAR robots typically operate in highly unstruc-

tured environments [Burke et al., 2004b], involve a significant amount of risk (to the

robot, operating environment, and the victims), and are remotely operated. These fac-
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tors that make operating USAR robots difficult also make USAR the ideal candidate

for examining different factors that influence trust in HRI.

Along with the models of operator reliance on automation [Riley, 1996], the models

of trust, the list of known factors, and the impact of these factors on operator trust have

been well researched in HAI (e.g., [Muir, 1989,Moray and Inagaki, 1999,Dzindolet et al.,

2001]). However, the automated systems used for research in HAI and in real world

applications differ from the typical autonomous robot systems in HRI and therefore

necessitate investigating trust models in HRI. Some of the key differences between

typical HAI systems and HRI, along with unique characteristics of HRI relevant to

operator trust, are explained in brief below:

• Operating environment: The operating environment of most systems in HAI is

very structured and well defined (e.g., automated plant operation or automated

anomaly detection). On the other hand, the operating environment for USAR

can be highly unstructured [Burke et al., 2004b] and unfamiliar to the operator.

The lack of structure and a priori knowledge of the environment can limit the

autonomous capabilities and can also impact the reliability of the autonomous

robots.

• Operator location: When operators are co-located with the autonomous system,

it is easy for the operator to assess the situation (e.g., auto-pilots). However,

with teleoperated robots, the operator can be up to a few hundred feet or more

away from the robot. This physical separation between the robot and the oper-

ator makes it difficult to assess the operating environment and can impact the

development of trust. While sensors and actuators are not unique to robots, re-

motely controlling actuators is more difficult with noisy sensors. In most of the
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experimental methodologies used in HAI, noisy sensors are not used and hence

their impact on automation or the operator are not investigated.

• Risk: The level of risk involved in HAI domains varies widely, ranging from

negligible (e.g., automated decision aids [Madhani et al., 2002, Dzindolet et al.,

2001]) to extremely high (e.g., autopilots, nuclear plants). However, the research

that does exist mostly involves low risk scenarios [Muir, 1989,Riley, 1996,Sanchez,

2006]. In contrast, domains like USAR carry a significant amount of risk that the

operator needs to understand and manage accordingly.

• Lag: Unlike HAI, where the input to the system and the feedback from system

is immediate, the delay in sending information to the robot and receiving in-

formation from the robot can vary based on the distance to the robot and the

communication channel. This delay, ranging from a few hundred milliseconds to

several minutes (e.g., in the case of the Mars rovers) can make teleoperating a

robot incredibly difficult, forcing the operator to rely more on the autonomous

behaviors of the robot.

• Levels of autonomy: Automated systems typically studied in HAI operate at one

of two levels of autonomy on the far ends of the spectrum (i.e., completely manual

control or fully automated). In HRI, robots can often be operated at varying levels

of autonomy (e.g., [Bruemmer et al., 2002,Desai and Yanco, 2005]).

• Reliability: Due to the nature of noisy and often failure prone sensors used in

robotics, the reliability of automated behaviors that rely on those sensors is of-

ten lower than typically high reliability levels used for HAI research [Dixon and

Wickens, 2006,Bliss and Acton, 2003,Dixon and Wickens, 2006].
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• Cognitive overload: Teleoperating a remote robot can be a cognitively demanding

task. Such demands can impact other tasks that need to be carried out simulta-

neously. Cognitive load can also result in operators ceasing to switch autonomy

modes [Baker and Yanco, 2004].

Along with these differences, the experimental methodology used for most of HAI

research have either been abstract systems, micro-worlds, or low fidelity simulations

[Moray and Inagaki, 1999]. These setups cannot be used to investigate the subtle ef-

fects of different characteristics listed above. Hence, a real-world experimental scenario

will be used to examine trust in HRI. Chapter 5 explains the details of the experimental

methodology along with the different factors that will be examined and a motivation

for examining them.
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Chapter 3

Initial Surveys

Before starting the robot experiments to identify the influences of different trust factors,

we decided to seek input from subject matter experts and novice users. To this end, we

conducted an online survey (S1:Expert) to investigate how the different factors influence

trust for expert users. We also wanted to investigate how expert users would initially

interact with an autonomous robot system in a domain they were familiar with.

As mentioned before, for unmanned ground robots, urban search and rescue (USAR)

is one of the more challenging domains because it is highly unstructured and often has

an unknown operating environment. These factors also make USAR very different from

traditional automation scenarios. Hence we selected USAR as the application domain

for this survey. We classified expert users as people trained in USAR with significant1

exposure to robots.

Human automation interaction research has shown that different groups of people

have different biases which cause them to interact differently with automation [Lee and

Moray, 1991, Singh et al., 1993,Riley, 1996]. To see if novice users would be different
1Nine out of the ten participants reported having at least 10 hours of experience controlling robots.
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from expert users in the USAR domain, we conducted a larger survey (S1:Novice) based

on the initial survey questions used for expert users (S1:Expert).

3.1 Participants

Expert users: We directly emailed potential participants the link to the survey and

received a total of 10 responses. All 10 of the participants satisfied our criteria for

expert users, with all of the participants reporting extensive knowledge of USAR and

use of robots. Nine participants reported having at least four years of USAR or other

types of emergency response experience, with an average of 10.7 years (SD=6.9). One

participant reported having no formal training, however, mentioned “experience working

with USAR personnel during robot response exercises.” Nine participants reported

having at least 10 hours of experience controlling robots, with five reporting more than

50 hours of experience. The average age of the participants was 42.6 years (SD=11.3).

Seven participants were male, and three were female. While ten participants is not

a large sample, there are very few people in the USAR community with experience

operating robots.

Novice users: For the survey with novice users we recruited participants through

Mechanical Turk [Turk, 2009]. We received 203 responses. The average age of the

participants was 29.9 years (SD=9.7); 46% of the participants were male and 54%

percent were female.
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3.2 Questionnaire

The questionnaire for expert users was organized into five sections. In section 1, we

asked participants questions regarding demographics, USAR, and robot experience. In

section 2, we asked the participants to list all of the factors that they thought would

influence their trust of a robot. In sections 3 and 4, we described two scenarios, listed

below; these scenarios were written with the assistance of an expert in USAR and

robots. The full version of the questionnaires can be found in Appendix A.

Hasty search (H): An explosion has occurred in a manufacturing plant. Your task

is to search for people injured by the blast in an adjacent office building. It has

been reported that hazardous materials may be present in the now demolished

manufacturing plant. The office building appears to be structurally sound, but

engineers have decided that a robot should do the initial primary (or hasty) search

of the office. Although the robot can navigate the building safely, only you can

perform the task of identifying injured people using the cameras and sensors on

the robot. You will be controlling the robot from a safe location outside the office

building. You have 30 minutes to complete your search and report your findings

to your search team manager.

Thorough search (T): A major earthquake has occurred in a large metropolitan

area on a week day in the mid-morning. You have responded to a small grocery

store that has collapsed and there are reports of survivors inside. The building

is concrete construction and rescue personnel have identified an entry point large

enough to get a robot through. The structure is highly unstable and aftershocks

are occurring at irregular intervals. The safety manager and engineers have de-

termined that the robot is the only safe option for reconnaissance at this time.
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Your task is to perform a very thorough search of the first floor of the store for

injured people. Although the robot can navigate the building safely, only you can

perform the task of identifying injured people using the cameras and sensors on

the robot. You will be controlling the robot from a safe location outside the store.

There are presently no time constraints.

The participants were asked to search for people using a robot that could be operated

in one of the following modes:

• Manual mode (m1)2: You will have complete control of the robot. The robot will

not prevent you from driving into objects.

• Safe mode (m2): You will be able to drive the robot wherever you want, and the

control software (automation) will safely stop before hitting objects.

• Shared mode (m3): You will be able to drive the robot wherever you want, but

automation will share control and attempt to steer the robot away from objects

and not let the robot hit objects.

• Waypoint mode (m4): You can set waypoints, and the robot will follow those

without the need for further control from you.

• Goal mode (m5): You select an area that you would like the robot to search, and

it will automatically plan a route through the world and ensure that maximum

coverage is achieved.

After presenting each search scenario, the participants were asked to state the order in

which they would use the different autonomy levels. We hypothesized that the ordering
2The superscripts indicate the level of autonomy. m1 represents the mode with the least amount

of autonomy and m5 represents the mode with the most.
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of autonomy levels would reflect the participants’ initial biases. The two scenarios were

not counter-balanced since an ordering effect was not expected with expert users.

In Section 5, the participants were asked to rank the following factors based on

how influential they thought the factors would be to their trust of the robot: error

by automation (Er), risk involved in the operation (Rs), reward involved in the oper-

ation (Rw), system failure (Sf), interface used to control the robot (I), lag (L), and

stress/mood (S). Apart from lag and the interface to control the robot, the influence

of other factors on trust and control allocation has been extensively investigated in the

field of human automation interaction. We added interface (I) to control the robot and

lag (L) since they are crucial to successfully operating a robot and have usually not

been considered in human automation interaction research.

The survey administered to novice users was similar to the survey administered to

the expert users with one exception. It had an additional section with one question:

Generic task scenario: There exists a hypothetical task that can only be performed

through a robot. The robot can be operated in one of two modes: (1) Manual

mode, where you will have complete control over the robot, or (2) Automatic

mode, where the robot will operate itself.

Based only on this information, the participants were asked to select one of the two

modes. The Hasty search and Thorough search scenarios were counter-balanced for

novice users. The ordering of the two search scenarios and the Generic task section was

also counter-balanced, resulting in four versions of the survey. Two versions had the

Generic task section before the Hasty search and Thorough search scenarios and two

after.
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Table 3.1: Autonomy modes ranked by expert and novice users in S1:Expert and
S1:Novice respectively.

Hasty Search Thorough Search
Expert Novice Expert Novice
mode mode mode mode

Autonomy modes rank rank rank rank
Manual mode m1 1 5 1 5

Safe mode m2 2 2 2 2
Shared mode m3 1 3 1 3

Waypoint mode m4 3 4 4 4
Goal mode m5 5 1 5 5

3.3 Results and Discussion

3.3.1 Preference for More Manual Control (Expert Users)

Table 3.1 shows the autonomous mode preferences for expert users in both search

scenarios. The Wilcoxon matched-pairs signed-ranks test was used to determine which

autonomy mode rankings were significantly different from each other. The results are

shown in Table 3.2. For both search scenarios, expert users indicated that they would

prefer goal (m5) mode last, only after using manual (m1), safe (m2), and shared (m3)

modes (p<0.05 for all; ZHasty = 25.0, 27.5, and 25.5; ZThorough = 23.5, 27.5, and 25.5

respectively).

The result indicates that expert users exhibit an initial distrust towards higher

levels of automation and would opt for manual control. Such an initial bias against

automation use can lead the operators to not fully explore the autonomous system’s

capabilities and limitations and can result in incorrect calibration of their trust of the

robots, potentially resulting in disuse of the autonomous features of the robots. A

similar bias was also observed in a study involving expert users controlling robots for

a simulated USAR task [Micire, 2010]. Six expert users spent more time controlling
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Table 3.2: Autonomy mode ranks for hasty search (H) and thorough search (T) ranked
by expert and novice users. Cells with an asterisk indicate the result was statistically
significant (p <0.05 using the Wilcoxon matched-pairs signed-ranks test). The ‘>’ sign
indicates the that autonomy mode to the left of the sign was preferred more than the
autonomy mode to the right of the sign.

Safe Shared Waypoint Goal
Expert Novice Expert Novice Expert Novice Expert Novice

Manual (H) m1> m2 m2 > m1* m1 = m3 m3 > m1 m1 > m4 m4 > m1 m1 > m5* m5 > m1

Manual (T) m1 > m2 m2 > m1* m1 = m3 m3 > m1 m1 > m4 m4 > m1* m1 > m5* m1 = m5

Safe (H) m3 > m2 m2 > m3* m2 > m4 m2 > m4* m2 > m5* m5 > m2*
Safe (T) m3 > m2 m2 > m3* m2 > m4 m2 > m4* m2 > m5* m2 > m5*

Shared (H) m3 > m4 m3 > m4* m3 > m5* m5 > m3

Shared (T) m3 > m4 m3 > m4* m3 > m5* m3 > m5*
Waypoint (H) m4 > m5* m5 > m4*
Waypoint (T) m4 > m5 m4 > m5

the robot in manual mode (x̄=71.5%, SD=32.8) than safe mode (x̄=20.5%, SD=31.4,

t(11)=-2.92, p=0.014) or shared mode (x̄=7.97%, SD=21.16, t(11)=-4.85, p<0.0005;

using a two tailed paired t-test).

3.3.2 Preference for Autonomy Modes (Novice Users)

The data in Table 3.1 shows that novice users preferred to use safe (m2) mode before

manual (m1), shared (m3), and waypoint (m4) modes for both search scenarios (p<0.05

for all; ZHasty = -4144.0, 2288.0, and 4656.5; ZThorough = -4601.5, 3344.0, and 5740.5

respectively). They also preferred shared (m3) mode over waypoint (m4) mode for both

scenarios (p<0.05 for both scenarios; ZHasty = 3485.5; ZThorough = 4054.0). This data

shows that novice users exhibited a bias towards the lower autonomy levels; however,

unlike expert users, novice users preferred manual (m1) mode the least for both search

scenarios. Such subtle differences in biases and their influence on control allocation have

not been investigated by the human automation interaction field, in large part due to

the fact that the systems used only operate in one of two modes (fully autonomous or

fully manual). The data also validates the existence of differences in bias and control
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allocation strategy between different groups of users in the field of HRI.

3.3.3 Non-sequential Control Allocation Strategy

The autonomy mode rankings by expert and novice users were not proportional (or

inversely proportional) to the level of autonomy at each mode. This non-sequential

preference for autonomy modes was unexpected and highlights the possibility of a non-

linear preference or bias towards autonomy modes. The possibility of a non-sequential

bias is a concept that has not been explored by the human automation interaction

community. Most systems used for human automation interaction research operate in

either manual mode or fully autonomous mode.

3.3.4 Positivity Bias

The initial inclination by novice users towards higher autonomy modes could highlight

the possibility of a positivity bias. Such a positivity bias could also result in inappropri-

ate calibration of trust and the abuse of the autonomous system. However, this positive

attitude, or the willingness to initially try automation, is at odds with their response

to the generic task question. More than half of the participants (59.6%) suggested that

they would prefer manual mode over automatic mode (�2=7.493, p=0.0062). This di-

chotomy indicates that the bias for or against automation use is more complex than is

usually assumed by the existing human automation interaction literature.

While most participants preferred to not relinquish control to the automatic mode,

they wanted some form of assistance from automation. This complex bias highlights

the need for a thorough investigation of how trust influences control allocation in robot

systems with adjustable autonomy.
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Table 3.3: Trust factors ranked by expert and novice users in S1:Expert and S1:Novice
respectively.

Expert Novice
Trust factor Mode rank Mode rank

Error (Er) 1 1
System failure (Sf) 2 3

Lag (L) 3 5
Interface (I) 4 5
Risk (Rs) 5 1

Reward (Rw) 6 7
Stress (S) 7 7

3.3.5 Factors that Influence Trust

The mode ranks for the factors influencing trust are shown in Table 3.3. We used the

Wilcoxon matched-pairs signed-ranks tests to determine which factor rankings were

significantly different from each other. Table 3.4 shows some of the significant results.

The expert users ranked system characteristics such as error, system failure, lag,

and interface higher than other factors. Their rankings indicate that they were well

aware of the circumstances in which the robots would be operating. Even though the

situation described to them involved a significant amount of risk, they did not consider

risk as being very important. We believe that trained domain experts would be well

aware of the risks and would prefer to do risk management on their own. This sense of

responsibility is also reflected in how the expert users preferred lower autonomy modes

in which they could override the robots actions.

Unlike expert users, novice users ranked risk as an important factor that influenced

their trust of the robot. Based on this information, we expect novice users would

change their control allocation strategy to reflect the changes in the risk involved in

the operation. Most systems in the field of automation operate in a static environment

and hence the level of risk is almost constant during operation. However, due to the
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dynamic operating environments in which the robots operate, the risk can dramatically

change thereby strongly influencing control allocation.
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Chapter 4

Expanded List of Factors for Novice

Users

The results from the S1:Novice survey in Chapter 3 and the Wizard of OZ (WoZ) study

from [Desai et al., 2012b] suggest that perceived risk, like damage or costs associated

with hitting objects, is an important factor for novice users. Hence, the goal of this

survey was to determine which factors novice users would rate as the most important

in situations demonstrating a span of implied risk. We created the following six short

video clips:

• NP-H: http://www.youtube.com/watch?v=1bAubp3sejg

• NP-L: http://www.youtube.com/watch?v=m30HOo528Xo

• P-H: http://www.youtube.com/watch?v=ISLqFPOnOKc

• P-L: http://www.youtube.com/watch?v=ZQxOL4C8jh8

• S-L: http://www.youtube.com/watch?v=SRBz5epnjIA
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• S-H: http://www.youtube.com/watch?v=D9iI1rdIPsU

The video clips were classified into three types: clips with people in them (P), clips

with no people in them (NP), and clips showing a simulated robot (S). To compare and

contrast the effect of performance, each type had two versions: low performance (L)

and high performance (H). In the low performance versions, the robot hit objects in the

environment and did not have a straight trajectory. In the high performance versions,

the robot had smooth movements and did not hit objects.

We also compiled a new list of sixteen factors that can influence trust in HRI by

including factors listed in the free responses from S1:Expert and S1:Novice surveys.

These factors are listed in Table 4.1.

4.1 Questionnaire

The survey had six sections and was administered using Amazon’s Mechanical Turk.

Section 1 had the same set of demographic questions as S1:Expert and S1:Novice. In

section 2 of the survey, we asked the participants to select the top five factors that

would influence their trust of a robot system from the list of sixteen. Each of the four

remaining sections had a link to a video showing the two performance levels (H, L) for

two of the three video types (P, NP, and S). After each video, the participants were

presented with Jian’s trust scales [Jian et al., 2000a], Muir’s trust scales [Muir, 1989],

and the same ranking question about the factors asked in section 2 of this survey. We

also asked them to rate the robot’s performance and how well they thought they would

perform, if operating the robot under the same circumstances. We counter-balanced the

three types of videos the participants watched (P, NP, or S), the sequence of videos, and

the initial performance levels (H, L) that they were shown, resulting in twelve different
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versions of the survey. We recruited 40 participants per survey and received a total of

386 valid responses. A sample questionnaire can be found in Appendix B. To provide

a consistent nomenclature, this survey will be referred to as survey S2 in this thesis.

4.2 Results and Discussion

4.2.1 Top Five Factors Influencing Trust in HRI

Research done in the automation domain has shown reliability to be an important factor

(e.g., [Dixon and Wickens, 2006,Dzindolet et al., 2003,Moray et al., 2000,Wickens and

Xu, 2002]). We found similar results for the robotics domain, with more participants

ranking reliability in the top five than any other factor for all scenarios (P-H, P-L,

NP-H, NP-L, S-H, and S-L). Table 4.1 presents the top five factors selected by the

participants across the different scenarios. A Chi square test for all the factors in each

of the six pairings showed significant values p<0.0001 (the last row of Table 4.1 has the

results of the test).

Trust in the engineer that built the system, which was a factor identified in the two

prior surveys, was in the top five for all pairings. To our knowledge, this factor has not

been previously considered by researchers. We speculate that, from the participant’s

perspective, this selection indicates uncertainty or unfamiliarity with the technology.

It is also likely that people are biased by years of pop culture where a company rolls

out a dangerous robot due to lack of competence or nefarious reasons. While this issue

is relevant in robotics it is not a common meme in pop culture for regular automa-

tion. Hence, familiarity with the organization or team that designed the system could

potentially help better calibrate trust by extension or proxy.

The other three factors rated in the top five were predictability, system failures (e.g.,
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Table 4.2: Performance ratings by participants in Survey S2 (1=poor, 7=excellent).
The significant differences are presented in Table 4.4.

Performance scenario Robot Their expected
performance

x̄ (SD) x̄ (SD)

People High 5.05 (1.86) 4.56 (1.77)
Low 2.93 (1.89) 3.75(1.95)

No people High 5.47 (1.4) 4.73 (1.69)
Low 2.46 (1.5) 3.72 (1.86)

Simulation High 5.72 (1.44) 5.31 (1.58)
Low 4.15 (1.85) 4.55 (1.73)

failing sensors, lights, etc.), and technical capabilities. The selection of predictability

is consistent with automation research, where similarities between the mental models

of the system and the system behavior result in high trust. Since system failures

contribute to reliability and predictability, it is not surprising to find this factor also in

the top five. However, the issue of technical capabilities has not previously been found

in the automation literature; a contributing factor may be that the term “robots” covers

many different types while the systems studied in automation are narrowly defined. We

also speculate that pop culture might have influenced this factors, since pop culture

is replete with robots which fail at tasks they were not designed to do (e.g., [Cooper,

2012]).

4.2.2 Perceived Risk

Prior to seeing any videos, participants were asked to select the top five factors they

thought would influence their trust of robots most. We wanted to see if participants

would rate factors differently after being introduced to the scenarios. Table 4.1 shows

how the participants rated the factors initially and after viewing each scenarios. Before

viewing the videos, 46% of the participants selected risk to be in the top five factors.
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Table 4.3: Trust ratings by participants in S2. The rating scale for Muir’s question
was 0 to 100 (low to high) and for Jian’s questionnaire was 1 to 7 (strongly agree to
strongly disagree).

Performance scenario Muir’s overall Jian’s trust
trust question questionnaire

x̄ (SD) x̄ (SD)

People High 62.87 (32.32) 4.65 (1.11)
Low 32.74 (31.72) 3.45 (1.16)

No people High 68.12 (30.35) 4.91 (0.95)
Low 27.28 (29.06) 3.4 (1.0)

Simulation High 72.59 (31.36) 5.02 (0.99)
Low 54.1 (34.47) 4.21 (1.16)

However, this dropped to 39% for P-H and 41% for P-L. The drop in the importance

of risk can indicate that people expected robots to be used in high risk situations, but

when they were shown videos of a robot moving in a lobby area they did not perceive the

situation to be as risky. For the videos that had no people present, 34% of participants

for NP-H and 35% for NP-L ranked risk in the top five. For the simulation videos, it

was almost identical at 33% for NP-H and 34% for NP-L.

4.2.3 Performance Measures

We compared the performance ratings provided by the participants for the robot and

their own expected performance. Results are shown in Table 4.2. Participants rated

the robots’ performance to be above 50% (4 on a 7 point Likert scale) in the high

performance scenarios (P-H, NP-H, and S-H). For two low performance scenarios (P-L

and NP-L) participants rated the robots’ performance below 50%. Hence, the robot’s

performance ratings for P-H, P-L, NP-H, NP-L, and S-H were as expected. However,

for S-L, the mean rating (4.15, SD=1.85) was higher than expected (above 50%) and

inconsistent with the ratings of the other two low performance scenarios (P-L and NP-
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L). Participants also rated the robot’s performance in simulation higher (5.72 for S-H

and 4.15 for S-L) than their counterparts (5.05 for P-H, 5.47 for NP-H, 2.93 for P-L,

and 2.46 for NP-L). This lack of consistency underscores some of the potential problems

with extrapolating results from simulation to real world systems in HRI. Table 4.4 shows

the results of a two-tailed unpaired t-test on the data presented in Table 4.2.

4.2.4 Trust Ratings

The Jian questions for this survey had a Cronbach’s alpha above threshold (0.89).

An ANOVA of this index on performance level (H, L) and type of video (P, NP, S)

resulted in significant differences for level (F=455, p<0.0001), type (F=36, p<0.0001),

and the interaction (F=15, p<0.0001). A Tukey post-hoc analysis of type showed

a significant difference for S over the other two conditions (P and NP), with about

a half point increase in trust. Higher level performance resulted in an increase of 1.2

points over low performance. When looking at the interaction, a Tukey analysis showed

significant differences between all combinations except S-H with NP-H and P-L with

NP-L. The most interesting nuance from this analysis was that, for the live action

videos, the absence of people boosted trust for the high performing robot but not the

low performing robot. The difference between NP-H and P-H was 0.26 points, which

might not be a functional difference when outside the lab.

We analyzed the overall trust question from Muir [1987] to see if the trust values

corresponded to the different scenarios. Table 4.3 shows the results for the overall trust

question. Strong significance was found in the difference in the trust ratings for P-H vs

P-L (p<0.0001, t(470)=10.22), NP-H vs NP-L (p<0.0001, t(616)=17.08), and S-H vs

S-L (p<0.0001, t(452)=5.97). This data shows that the Muir’s trust scale is capable of

differentiating gross differences in trust in HRI.
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Table 4.4: The results from the two tailed unpaired t-tests for the robot’s performance
ratings from Table 4.2.

Scenario P-L NP-H NP-L S-H S-L
P-H 0.0001 0.0035 n/a 0.0001 n/a
P-L - n/a 0.0021 n/a 0.0001

NP-H - - 0.0001 0.0441 n/a
NP-L - - - n/a 0.0001
S-H - - - - 0.0001

We also found a significant difference in the performance rating for P-H vs NP-H,

and P-L vs NP-L (Table 4.4), indicating that the participants observed the differences

between the two scenarios. Since risk was rated as being important, we expected

the presence or absence of people in the two sets of scenarios would influence risk

and ultimately the trust. However, a strong significant difference in trust ratings was

not observed for P-H vs NP-H (p=0.0523, t(543)=1.94) and P-L vs NP-L (p=0.0372,

t(543)=2.08). The lack of distinction between the scenarios with people and without

people shows that the overall trust rating scale is not well suited to discerning subtle

changes in trust when the perceived risk is mild, demonstrating that other methods

are needed for HRI. Since this research was conducted, new trust measures specifically

geared for HRI have been created [Yagoda, 2011] that can be used in future research.

Together, both sets of surveys (S1 and S2) show how risk, automation performance,

and trust are intertwined in HRI. Expert robot operators surveyed on issues related

to the use of automation and factors that affect trust showed a bias towards manual

control and trust factors central to robot performance (e.g., errors, lag, etc). The

experts’ low interest in factors like risk, reward, and stress, combined with the manual

bias, suggest they internalized the importance of risk and viewed risk management as

their responsibility.

While expert users highlighted factors that align with automation performance and
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had a bias towards manual control, novice users in the WoZ study [Desai et al., 2012b]

showed no change in trust as a result of automation performance level or manual vs.

automated mode. Likewise, there was no correlation between trust and interventions

during errors while the robot was automated. These findings suggest that a key element

was missing. Open ended survey comments regarding important trust factors included

items like safety and indirect representations of robot quality. These factors, taken

with the minimal risk of damage during the study, suggest that risk should have been a

more prominent characteristic in the experiment. This argument is reinforced by survey

findings from novices who completed the survey given to experts. The big difference

between experts and novices was that novices viewed risk as a top-tier factor. Unlike

expert users, novice users also showed a noticeable bias towards automation.

Survey S2 placed special attention on risk along with other factors that were sug-

gested by users from the previous surveys. Of the top five factors selected by the users,

some were expected based on prior research in automation: reliability, system failure,

and predictability. The rankings of trust in engineers and technical capabilities were

unexpected, but not surprising given the lack of details about the robot system and

years of robot pop culture. The influence of the different scenarios on risk and trust

was something not previously observed in the automation literature, but very relevant

to HRI.

Data from this survey also shows that while there are a handful of factors that are

very influential, the magnitude of their influence is dynamic. In most human automation

interaction (HAI) test platforms, factors like risk and situation awareness do not change

during the course of an experiment. The dynamic properties of the robot, the operating

environment, and their influence on trust factors, at the very least suggest that the trust

models from HAI must be revised and adapted for HRI.
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One important nuance between the WoZ experiment [Desai et al., 2012b] and S2 is

situation awareness. The videos shown to the users in the survey provided an almost

complete perspective of the situation, something not easily available in the real world.

However, in the WoZ study, the participants were provided a video from the robot’s

perspective; we hypothesize that the reduction in situation awareness reduces the ability

to assess the risk of the current situation. While this reduced risk assessment ability does

not reduce the importance of risk, it highlights the importance of situation awareness.

Since the WoZ study involved remote robot operation, the participants might not have

had good situation awareness, which could have lowered their perception of risk.

From a high level, the apparently strong influence of risk, and how it is managed by

robot operators, is a key difference between trust in traditional automation and HRI.

While existing instruments are a good starting point, they need to be adapted and used

in conjunction with methods that incorporate factors relevant to HRI like risk, lag, and

interfaces.
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Chapter 5

Experimental Methodology

From Chapter 2, it is clear that the experimental methodology is crucial in examin-

ing trust, especially for a domain like USAR. Unlike typical HAI experiments, USAR

has an unstructured and often unknown operating environment, making it particularly

challenging to teleoperate a robot. This section describes the methodology that will be

used for all the experiments conducted as part of this research (Chapter 6 and 7). The

motivations for decisions behind the different aspects of the scenario are also explained,

starting with the most important decision regarding the test platform1.

Moray and Inagaki [1999] are of the opinion that results obtained by using simulated

systems are less likely to be applicable to real systems and results obtained from mi-

croworld systems even less so. Table 5.1 lists four types of testbeds based on Moray and

Inagaki’s classification of experimental methodology used for examining trust. Moray

and Inagaki also classified the experimental platforms based on the type of task (Table

5.2). Using these two taxonomies we classified some of the existing research involving

operator trust (Table 5.3 and 5.4), and while it does not cover the entire literature, it
1Portions of this chapter appear in [Desai et al., 2012a].
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Type of system being investigated Abbreviation
Field studies of real or simulated systems such as aircraft or indus-
trial plant. REAL

Simulators which provide high fidelity physical and dynamic copies
of real systems, such as those used in aviation and nuclear power
plant training.

SIM

Microworlds which resemble real systems and include closed loop
coupling of humans and automated control in real time, involving
simulated physical causality, but are not in general simulations of
any real system.

MICROWORLD

Arbitrary lab tasks which may not have any control element, and
whose structure is arbitrary, designed simply to provide an exper-
imental environment for making behavioral measurements. No re-
alistic coupling or causality is involved.

ARBITRARY

Table 5.1: System classifications from [Moray and Inagaki, 1999].

Task description Abbreviation
Continuous closed loop systems with slow dynamics CLSD

Continuous closed loop systems with fast dynamics CLFD

Continuous closed loop discrete systems CLDS

Open loop cognitive decision making aids OLCA

Table 5.2: Task classifications from [Moray and Inagaki, 1999].

highlights the fact that most of the focus has been on microworld systems and some on

arbitrary systems. Through these systems, researchers have obtained important results

and valuable insight into an operator’s trust of automated systems, but we hypothesize

that these results will not transfer well to the real robot domain. Since the correlation

between data obtained from simulated systems and real systems in unknown in HRI,

we decided to opt for a real world remotely teleoperated robot system to accurately

model trust in HRI and specifically for USAR. According to Moray and Inagaki’s [1999]

system and task classification our system would be a ‘REAL’ system with continuous

closed loop with fast dynamics ‘CLDF’.
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Citation Task System
type type

A Connectionist Model of Complacency and Adaptive Recovery Under Au-
tomation [Farrell and Lewandowsky, 2000] CLFD Microworld

A Model for Predicting Human Trust in Automation Systems [Khasawneh
et al., 2003] OLCA Microworld

A Study of Real-time Human Decision-making using a Plant Simulator [Bain-
bridge et al., 1968] CLSD Microworld

Adaptive automation, trust, and self-confidence in fault management of time-
critical tasks. [Moray et al., 2000] CLSD Microworld

Assessment of operator trust in and utilization of automated decision-aids un-
der different framing conditions [Bisantz and Seong, 2001] OLCA Microworld

Automation Failures on Tasks Easily Performed by Operators Undermine Trust
in Automated Aids [Madhavan et al., 2006] OLCA Arbitrary

Automation reliability in unmanned aerial vehicle control a reliance compliance
model of automation dependence in high workload [Dixon and Wickens, 2006] CLFD Microworld

Factors that affect trust and reliance on an automated aid [Sanchez, 2006] CLFD Microworld

Operator reliance on automation theory [Riley, 1996] OLCA Arbitrary

Operators’ trust in and use of automatic controllers in a supervisory process
control task [Muir, 1989] CLSD Microworld

The dynamics of trust: comparing humans to automation [Lewandowsky et al.,
2000] CLSD Microworld

The role of trust in automation reliance [Dzindolet et al., 2003] OLCA Arbitrary

Trust control strategies and allocation of function in human-machine systems
[Lee and Moray, 1992b] CLSD Microworld

Trust, self-confidence and supervisory control in a process control simulation
[Lee and Moray, 1991] CLSD Microworld

Trust, self-confidence, and operators’ adaptation to automation [Lee and
Moray, 1994] CLSD Microworld

Type of automation failure: the effects on trust and reliance in automation
[Johnson et al., 2004] CLFD Microworld

The effects of errors on system trust, self-confidence, and the allocation of
control in route planning [deVries et al., 2003] OLCA Microworld

Under reliance on the decision aid a difference in calibration and attribution
between self and aid [van Dongen and van Maanen, 2006] OLCA Arbitrary

Performance consequences of automation induced complacency [Parasuraman
et al., 1993] CLFD Microworld

Measurement of human trust in a hybrid inspection for varying error patterns
[Madhani et al., 2002] OLCA Microworld

Not all trust is created equal dispositional and history based trust in human
automation interactions [Merritt and Ilgen, 2008] OLCA Arbitrary

Table 5.3: Classification of experimental platforms based on the taxonomy adapted
from [Moray and Inagaki, 1999].
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Real Simulation Mircoworld Arbitrary
CLSD
CLFD 5
CLDS 7
OLCA 4 5

Table 5.4: The count of experimental setups grouped by system and task classification.

Figure 5.1: The robot (ATRVJr) used for the experiments.

5.1 Robot

The robot used for all the experiments is an ATRVJr platform from iRobot (Figure

5.1). The ARTVJr has differential drive or tank steering and a wide array of sensors.
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These sensors include a front facing SICK LMS-200 laser range finder that can scan 180

degrees, a rear facing Hokuyo URG-04LX laser range finder with a field of view of 240

degrees, a Directed Perception PTU-D46-17 pan-tilt unit with a Sony XC-999 camera

mounted on it, and a rear facing Canon VC-C4 camera mounted on the back of the

robot. The robot also has a 3.0 GHz Intel Core2Duo processor with 4GB of memory

and runs Ubuntu 8.04. The robot also has a 802.11n radio capable of operating on both

the 2.4GHz and 5.0GHz range. The client code to control the robot is written in C++

using Player [Gerkey et al., 2003] and compiled using GCC.

5.2 Test Course

Figure 5.2 shows the course created for these experiments. The course is approximately

60 feet long and has 5 obstacles (boxes) placed about 9 feet from each other. The width

of the course is 8 feet. The clearance on either side of the boxes is 3 feet, and the robot

is approximately 26 inches wide. Therefore the clearance on either side of the boxes

makes it non-trivial to drive. The course has moderate foot traffic.

The robot starts and ends each run at the same location. For each run, the par-

ticipants have to follow a preset path. Since we expected five runs, we designed five

different paths (also referred to as maps) based on the following criteria:

• The length of each map must be the same (⇠200 feet).

• The number of u-turns in a map must be the same (3 u-turns).

• The number of transitions from the left side of the course to the right and vice

versa must be the same (3 transitions).

Since the maps were similar in difficulty and length they were not counter-balanced.

47



Figure 5.2: The course used for the experiments.

Instead, the maps were selected based on a randomly generated sequence. A sample

map is shown in green in Figure 5.2.

5.2.1 Path Labels

Each box in the course had text labels to provide navigational information to the

participants. Text labels were placed on top of the boxes to indicate the path ahead.

Since the boxes were wide, similar labels were placed on both edges of the face as

shown in Figure 5.2, to make it easy for the participants to read the labels as they go

past the boxes. The labels indicated one of three directions ‘left’, ‘right’, or ‘uturn’.

These directions were padded with additional characters to prevent the participants

from recognizing the label without reading them.

Two sets of labels were necessary to prevent the participants from driving in an

infinite loop. Figure 5.2 shows the two types of labels that were used. The labels with

white background (referred to as white labels) were followed for the first half of the

entire length and then the labels with black background (referred to as black labels)

for the second half. The transition from following the white labels to black labels was

indicated to the participants via the UI. When the participants were supposed to follow
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the black labels the background for the barcode values (shown in Figure 7.1) would

turn black.

The boxes also had barcodes made from retro-reflective tapes that the robot read

(Figure 5.2). While these barcodes were not used by the robot (localized pose of the

robot was used instead to encode the paths), the participants were told that the robot

reads the barcodes to determine the path ahead, just like they read the labels. The

robot displayed the contents of the bar code on the UI. The path for each run was pre-

defined via a set of navigation waypoints because the barcodes could not be consistently

read by the robot each time, making it difficult to have a controlled experiment. Based

on a constant video compression rate, sampling resolution, and the font size, the labels

could be read from about 3 feet away. The robot simulated reading the labels from

approximately the same distance, thereby reducing the potential for a bias to rely on

the robot or vice versa. The participants were informed that the robot at times might

make a mistake in reading the barcodes and that they should ensure that the direction

read by the robot was correct. The participants were also told that if the robot did

make a mistake in reading the barcode, it would then proceed to pass the next box

on the incorrect side, resulting in the participant being charged with an error on their

score (see below).

5.2.2 Victim Tags

The course also had four simulated victims. These victims were represented using text

labels like the one shown in Figure 5.2. The victim tags were placed only on the walls of

the course between 2.5 feet and 6 feet from the floor. The victim locations were paired

with the paths and were never placed in the same location for any of the participant’s

five runs. While there was a number associated with each victim, the participants were
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told to ignore the number while reporting the victims. Whenever participants found a

new victim, they were told to inform the experimenter that they have found a victim.

They were explicitly instructed to only report victims not reported previously. The

experimenter noted down information about victims reported by the participants and

also kept track of unique victims identified.

5.3 Autonomy Modes

Almost all of the research in HAI has focused on two autonomy modes on the far

ends of the spectrum. In accordance with existing research we decided to provide the

participants with two autonomy modes. One of those autonomy modes was at the high

end of the autonomy spectrum. Rather than selecting the second autonomy mode to be

manual teleoperation mode we decided to opt for a similar autonomy mode where the

robot would assist the participants. The key reason was to always keep the participant

informed about the robot’s behavior, something that would not be possible with a

pure manual teleoperation mode. The participants can operate the robot in one of two

autonomy modes: robot assisted mode or fully autonomous mode. The participants

were free to select either mode and could switch between them as many times as they

wanted. They were also told that there were no benefits or penalties for selecting either

mode. When each run was started, no autonomy mode was selected by default, thereby

requiring the participants to make an explicit selection. The maximum speed at which

the robot moved was the same in both modes and was restricted to approximately 0.41

feet per second. These configurations ensured that the performance of both autonomy

modes was similar.

In the fully autonomous mode, the robot ignored the participant’s input and fol-
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Figure 5.3: The user interface (left) and the gamepad (right) used to control the robot.

lowed the hard coded path. The obstacle avoidance algorithm ensured that the robot

never hits any object in the course. In the robot assisted mode, the participant had

a significant portion of the control and could easily override the robot’s movements,

which were based on the path it was supposed to follow. The robot’s desired vectors

were calculated the same way in both autonomy modes and were displayed on the UI

on the laser display to show the participant the robot’s desired direction.

5.4 User Input

Figure 5.3 shows the user interface (UI) used to control the robot. The video from the

front camera was displayed in the middle, the video from the back camera was displayed

on the top right (mirrored to simulate a rear view mirror in a car). The map of the

course with the pose of the robot was displayed on the left. The distance information

from both lasers was displayed on the bottom around a graphic of the robot just under

the video. There were vectors that originate from the center of the robot and extend

51



out. These vectors indicated the current magnitude and orientation of the participant’s

input via the gamepad and the robot’s desired velocity. The participant’s vector was

displayed in light gray and the robot’s vector was displayed in blue.

The participants provided input using the gamepad shown in Figure 5.3. Partici-

pants could drive the robot, control the pan tilt unit for the front camera, select the

autonomy modes, turn the brakes on or off, recenter the camera, and acknowledge the

secondary tasks.

5.5 Task

The participants were asked to drive the robot as quickly as they could along a specified

path, while searching for victims, not hitting objects in the course, and responding to

the secondary tasks. To create additional workload, simulated sensors for CO2 and

temperature were used. The participants were not told that the sensors were not real.

They were also told that the robot’s performance was not influenced in any way by

changes in temperature and CO2. The values from the sensors were displayed on the UI

(Figure 5.3), which the participants were asked to monitor. Participants were asked to

acknowledge high CO2 and temperature values by pressing the corresponding buttons

on the gamepad. The values were considered high when their values are above the

threshold lines on the secondary task indicators (Figure 5.3); values over the threshold

were indicated by changing the color of the bars from light blue to red, to assist the

participants in recognizing the change. The level of workload was varied by changing

the frequency with which the values cross the threshold. The simulated sampling rate

for the sensors was kept steady.
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5.6 Compensation

Using higher levels of automation can reduce workload and hence is desirable, especially

under heavy workload from other tasks. To prevent participants from using high levels

of autonomy all the time, regardless of the autonomous system’s performance, it is

typical to introduce some amount of risk. Hence, in line with similar studies (e.g., [Riley,

1996,Lee and Moray, 1992a,Dzindolet et al., 2002]), the compensation was based in part

on the overall performance. The participants could select a gift card to a local restaurant

or Amazon.com. The maximum amount that the participants could earn was $30. Base

compensation was $10. Another $10 was based on the average performance of 5 runs.

The last $10 was based on the average time needed to compete the 5 runs, provided

that the performance on those runs was high enough.

The performance for each run was based on multiple factors, with different weights

for each of these factors predetermined. The participants are told there was a significant

penalty for passing a box on the incorrect side, regardless of the autonomy mode. If the

participants passed a box on the wrong side, they were heavily penalized (20 points per

box). In addition to the loss of score, participants were told that time would be added

based on the the number of wrong turns they took, but the specific penalties were not

revealed. For the first box passed on the wrong side, no additional time was added,

to allow participants to realize that the reliability of the system had dropped. For

the second incorrect pass, 60 seconds were added, with an additional 120 seconds for

the third and an additional 240 for the fourth, continuing with a cumulative increase.

Finding the victims was also an important task, so 10 points were deducted for each
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victim missed. Equation 5.1 was used to calculate the score for each run.

Score =100� 20⇥|incorrectPasses|� 10⇥|victimsMissed|

� 5⇥|pushes|� 2⇥|bumps|� |scrapes|

� secondaryTaskScore/2 (5.1)

The scoring formula was not revealed to participants, although they were told about

the factors that influence their score. The score for each run was bounded between 0

and 100. If the score was 50 or more, the participants were eligible for a time bonus;

if they completed the runs in under 11:45 minutes average, they receive an additional

$10. If they had a score of 50 or more and took between 11:45 and 15 minutes, they

received a $5 bonus. Participants were told about this interdependence between score

and time, which was designed to prevent participants from quickly running through the

course, ignoring the tasks, while also providing a significant motivation to perform the

task quickly.

At the end of each run, the score was calculated and the participants were informed

about the amount of compensation that could be received based only on that run.

At the end of five runs, the average compensation was calculated and given to the

participant.

5.7 Questionnaires

There were three sets of questionnaires. The pre-experiment questionnaire was ad-

ministered after the participants signed the consent form; it focused on demographic

information (i.e., age, familiarity with technology similar to robot user interfaces, ten-
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dency towards risky behavior, etc). The post-run questionnaire was administered im-

mediately after each run; participants were asked to rate their performance, the robot’s

performance, and the likelihood of not receiving their milestone payment. Participants

were also asked to fill out previously validated trust surveys, referred to in this the-

sis as Muir [Muir, 1989] and Jian [Jian et al., 2000b], and a TLX questionnaire after

each run. After the last post-run questionnaire, the post-experiment questionnaire was

administered, which included questions about wanting to use the robot again and its

performance. The questionnaires administered are provided in Appendix C.

5.8 Procedure

After participants signed the informed consent form, they were given an overview of

the robot system and the task to be performed. Then, participants were asked to drive

the robot through the trial course in fully autonomous mode. The experimenter guided

the participants during this process, by explaining the controls and helping with tasks

if necessary. The trial course was half the length of the test course. Once participants

finished the first trial run, they were asked to drive the robot again through the same

course in the robot assisted mode. Since there were multiple tasks that participants

needed to perform, we decided to first show them the fully autonomous mode, as that

would be a less overwhelming experience. Once the participants finished the second

trial run, they were asked to fill out the post-run questionnaire. While the data from

this questionnaire was not used, it allowed participants to familiarize themselves with

it and also helped to reinforce some of the aspects of the run that they needed to

remember.

After the two trial runs, the participants were asked to drive the robot for five more

55



Figure 5.4: The different reliability configurations.
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runs. In each run, a different map was used. During these runs the reliability of robot

autonomy was either held high throughout the run or was changed. Figure 5.4 shows

the four different reliability configurations that were used. The changes in reliability

were triggered when the robot passed specific points in the course. These locations

were equal in length and there were no overlaps. For all four patterns, the robot always

started with high reliability. The length of each low reliability span was about one third
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the length of the entire course. Using different dynamic patterns for reliability allowed

us to investigate how participants responded to a drop in reliability at different stages

and how the changes influenced control allocation. Every participant started with a

baseline run under full reliability (Reliability A in Figure 5.4). Then, the four reliability

profiles were counter-balanced for the remaining four runs.

Part of the research presented here including the data analysis was conducted at

Carnegie Mellon University (CMU) by Dr. Aaron Steinfeld and his research team

(Marynel Vázquez, Sofia Gadea-Omelchenko, Christian Bruggeman). The sections that

are conducted at CMU are indicated as such. The experimental methodology, including

the robot, the software running on the robot, and the course structure, are similar to

the one described above.

5.9 Experiment Design

The methodology explained in this chapter was utilized for all of the experiments. Since

multiple factors (e.g., reliability, situation awareness, among others unknown as of now)

needed to be investigated, it was not feasible to design a within subjects experiment.

Hence, a between subjects experiment was designed. The overall concept was to conduct

multiple experiments, each with two independent variables (e.g., reliability, situation

awareness, task complexity). The dependent variables were the operator’s trust and

the control allocation strategy. To discern the influence of reliability and other factors

being investigated, a baseline experiment with dynamic reliability (DR) as the only

independent variable was conducted first (Chapter 6). Data from that experiment was

used as a baseline for comparison with data from other experiments (e.g., Chapter 7).
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Chapter 6

Baseline Reliability Experiment

In this research, the influence of all the factors was examined using a system where

the reliability is dynamic. However, to differentiate the effects of reliability on trust

and control allocation from that of the other factors being examined simultaneously, it

was important to independently examine the influence of reliability on operator trust

in HRI. Hence, in this experiment, the only independent variable was reliability.1

6.1 Results and Discussions

For the baseline experiment, the experimental methodology used was exactly as de-

scribed in Chapter 5. A similar methodology was also used at CMU and the results

reported here include the data from the 12 participants at CMU. While 12 participants

were run at CMU and 12 at UML, there were consistent behaviors across the sites

related to reliability and autonomy switching, so this data is reported in aggregate.

There were some site differences in terms of the trust scales used, which are discussed

below.
1Portions of this chapter appear in [Desai et al., 2012a]
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Unless noted, data from the practice and baseline runs were not included in the

analyses. No practice effects (run order) and map effects were found, suggesting that

the counter-balancing and map designs were adequate.

6.1.1 Positivity Bias

We found that 13 participants started all four runs by switching into the fully au-

tonomous mode and 17 participants started run 1 in the fully autonomous mode. Of

the 96 total runs, participants initially opted to start in full autonomy for 65 of them.

The breakdown for the individual runs was: run1 = 17, run2 = 15, run3 = 17, and run4

= 16, which is remarkably stable. The participants’ willingness to initially trust the

robot indicates the possibility of a positivity bias. These findings are consistent with

the findings of [Dzindolet et al., 2003] where they found that, given little experience or

information about an automated decision aid, people were willing to trust it.

6.1.2 Effect of Trust

The two trust survey methods (Muir, Jian) were highly correlated with each other (r =

0.84, p < 0.0001) suggesting either can be used for such experiments in the future. In

the analysis in later sections, we have elected to standardize on Muir due to its shorter

length.

The Muir and Jian post-run trust surveys were examined with REML (REstricted

or REsidual Maximum Likelihood) [Harville, 1977] on the effects of Site (CMU, UML),

Reliability (A, B, C, D), and Participants as a random effect and nested by Site. In both

cases, there were significant differences for Site and Reliability, but not the interaction.

UML trust responses were significantly higher than CMU for Muir, F (3) = 9.7 p <
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Figure 6.1: Impact of reliability on trust (higher number indicates more trust).

0.01, and Jian, F (3) = 9.7 p < 0.01. Student’s t post hoc tests of Reliability on Muir,

F (3) = 2.6 p = 0.059, and Jian, F (3) = 3.0 p < 0.05, showed Reliability A as being

significantly higher than Reliability C and Reliability D for both metrics (Figure 6.1).

These nearly identical results for Muir and Jian reinforce the earlier finding that using

just one approach is appropriate in the future.

These results mean that trust is highest in high reliability runs (A); slightly reduced

in runs with low reliability at the beginning of the run and high at the end (B); and

more reduced for runs where reliability was low in the middle or end of the runs (C and

D). This result indicates that timing is important for trust – drops in reliability after a

period of good performance are more harmful than early failures. Whether this is due to

memory recency or a breakage in the participant’s mental model of robot performance

is uncertain. Additional research needs to be conducted to investigate these results.
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Figure 6.2: Impact of reliability on mode switching.

The influence of Site on trust survey results is likely due to UML’s population being

slightly younger (mean of 7 years younger) and more predisposed towards risky behav-

ior (0.66 higher on a set of 7-point self-rating scales; question 10 of the demographic

questionnaire in Appendix C). Significance tests for both demographic features were

close, but not statistically significantly different. However, their combined effect may

have produced this Site effect.

6.1.3 Effect on Control Allocation

To obtain a high-level view, we performed a Restricted Maximum Likelihood (REML)

analysis of how many times participants switched autonomy level within a run on the

effects of Site (CMU, UML), Reliability (A, B, C, D), and Participants as a random

effect and nested by Site. This analysis resulted in a significant difference only for
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Reliability, F (3) = 4.7 p < 0.01, where a Student’s t post hoc revealed participants

switched considerably more within Reliability C, as compared to Reliability A and D

(Figure 6.2). Likewise, Reliability B was higher than Reliability A.

Of the 24 participants, five did not switch autonomy levels during any of their

runs, regardless of the reliability profiles. Two of these participants stayed in robot

assisted mode for all of their runs, two stayed in the fully autonomous mode, and one

participant used robot assisted mode for all but one run. Participants were binned

into three behavior groups: FullAuto, Mixed, and MostlyRobotAssisted. Sample sizes

for these groups were imbalanced and too small for statistical analysis (2, 19, and 3,

respectively), but there were several clear trends. The MostlyRobotAssisted group run

times were noticeably slower, and the FullAuto rated their own performance low in

comparison to the other two groups. There was a general trend of lower trust on the

Muir questions as autonomy use increased across the three groups (see Familiarity bias

below).

Of the 19 participants in the Mixed behavior category, nine did not change their

autonomy level during the baseline run, which was held constant at high reliability (3 in

robot assisted mode, 6 in autonomous). In the second run with high reliability, eleven

did not change their autonomy level (1 in robot assisted, 10 in autonomous). Seven of

these participants overlapped, meaning that during the high reliability runs, all but six

participants did not change their autonomy mode in at least one of those runs.

In contrast, during the runs with changing reliability, all Mixed participants switched

autonomy modes in at least one of the other three variable reliability conditions. Also,

14 of the 19 participants switched autonomy modes in all three of the variable reliability

conditions (B, C, and D). This data indicates that participants recognized they were

operating under dynamic reliability and adjusted their control allocation accordingly.
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Switch CMU,1 CMU,3 CMU,8 UML,11 UML,3 UML,5 UML,7
1 55.65 6.48 143.66 18.07 103.33 32.4 15.09
2 4.98 32.63 8.75 8.1 83.91 49.62 50.59

0

37.5

75

112.5

150

1 2

S
w

itc
h 

ba
ck

 to
 a

ut
on

om
y 

(s
ec

)

Exposure to reliability drop

CMU,1
CMU,3
CMU,8
UML,11
UML,3
UML,5
UML,7

0

38

75

113

150

1 2

Sw
itc

h 
ba

ck
 to

 a
ut

on
om

y 
(s

ec
on

ds
)

Exposure to reliability drop

CMU,1 CMU,3 CMU,8
UML,11 UML,3 UML,5
UML,7

Figure 6.3: Autonomy return by exposure to low reliability.

It also indicates that participants recognized the risk of decreased compensation and

tried to optimize the allocation strategy to obtain maximum compensation. To further

investigate how the participants used autonomy, we analyzed the participants’ behavior

during periods of low reliability.

6.1.4 Use of Autonomy During Periods of Unreliability

To examine behavior during low reliability, we focused on the scenario where partici-

pants entered a low reliability window during autonomy use. This window corresponded

to the point at which reliability decreased (t0) to when it increased (t1). By defini-

tion, runs with reliability A were not included, as reliability did not decrease during

those runs. For the 17 participants who switched during this window, the mean use of

autonomy during low reliability was 30 percent.

A total of 15 participants switched from autonomy to robot assisted mode after t0
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and from robot assisted mode to autonomy after t1. This behavior was constrained

to Reliability B and Reliability C (7 and 8 participants respectively); we conjecture

that participants did not have enough time to recover from the reliability drop in

Reliability D, where the drop occurred near the end of the run. Within this group, the

mean switching time after the reliability drop at t0 was 16.6 seconds (SD = 13.1). The

return to autonomy after reliability improved at t1 occurred a mean of 39.0 seconds later

(SD = 41.0). A one tailed t-test, t(14) = 2.04 p < 0.05) confirmed that participants

waited longer to switch back to autonomy than switching away from autonomy. While

only marginally statistically significant (one tailed, t(13) = 1.73, p < 0.1), there were

strong indications that participants switched away from autonomy at t0 twice as slowly

for Reliability C than Reliability B (means 22 and 11 seconds respectively). However,

there were no differences between Reliability C and Reliability B for switching back to

autonomy at t1.

Of these 15 participants, seven returned to the fully autonomous mode at t1 for

both the Reliability B and Reliability C conditions. Four of these seven switched back

to autonomy faster on their second exposure to a reliability change, while the rest

switched back more slowly (Figure 6.3). This results suggests that repeated exposure

to changing reliability impacts the speed at which people switch back to autonomy,

although we do not possess enough evidence to determine what causes this behavior.

6.1.5 Subjective Ratings

ANOVA analysis of participant ratings of robot performance across reliability levels

were inconclusive, F(3, 92) = 1.09 p = 0.36. However, participants did respond differ-

ently for ratings of their own performance, F(3, 92) = 3.4 p < 0.05, and were marginally

significant on the risk of not receiving a milestone payment F(3, 92) = 2.2 p < 0.1. Stu-
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Reliability N Rows Rating of Self Performance Rating of Robot Performance (1=Poor; 7=Excellent)Risk Not Receiving Milestone Payment Std Err(Rate Self Performance (1=Poor; 7=Excellent))Std Err(Rate Robot Performance (1=Poor; 7=Excellent))Std Err(Risk Not Receiving MilestonePayment (1=Very low; 10=Very high))
A 24 5.58333333333333 6.291666667 4.375 0.329232015160682 0.164616007580341 0.610335201320565
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Figure 6.4: Impact of reliability on self assessment ratings.

dent’s t post hoc analyses showed a higher rating of self performance and better odds of

receiving the milestone payment for reliability A, as compared to C and B, in both mea-

sures (Figure 6.4). Assessment of self performance was also sensitive when examining

trust, with a significant correlation to Muir (r = 0.43, p < 0.0001).

As has been seen in some of our prior experiments, participants were moderately

accurate in their assessment of milestone performance. Ratings of risk of not being paid

the extra money were inversely correlated with actual payment (r = �0.58, p < 0.01).

6.1.6 Familiarity Bias

The protocol was intentionally designed to promote use of autonomy. As expected,

higher use of autonomy was correlated with better performance on finding more victims

(r = 0.30, p < 0.01) and faster route completion time (r = �0.51, p < 0.0001). These
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results suggest that general use of autonomy had a perceptible, beneficial impact on

the task.

As mentioned, prior work shows that increased use of autonomy with positive per-

formance outcomes leads to higher trust (e.g., [Lee and Moray, 1992a]). However, the

Muir post-run trust ratings and the percentage of time spent in full autonomy were

inversely correlated (r = �0.20, p < 0.05). This fact, combined with the results above,

suggest that overall familiarity is less powerful than scenario factors.

6.1.7 Predicting Trust

An important question for human-robot interaction is whether trust can be predicted.

To examine this question, Muir trust ratings were examined in the context of cogni-

tive load (TLX) [Hart and Staveland, 1988], how many victims a participant found,

secondary task performance, payment (i.e., overall performance), number of switches

between autonomy and robot assisted modes, a collection of demographic features, and

the three post-run assessment ratings. A backwards stepwise regression on these in-

dependent measures accurately predicted Muir ratings (R2 = 0.84). Significant results

showed that higher trust was predicted by low cognitive load, poor victim performance,

lower payment, lower expected payment, high ratings of self performance, younger age,

and high risk tendencies (Table 6.1). Note that autonomy switching, secondary task

performance, ratings of robot performance, and percentage of time using full autonomy

do not predict trust. These results suggest that trust is heavily tied to factors with

semantic association to risk and personal feelings about performance, rather than robot

performance.
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Table 6.1: Backwards stepwise regression results for Muir trust ratings
Effect Estimate p
Cognitive load (TLX) -0.33 < 0.01
Victims found -1.58 < 0.01
Payment (performance) -0.22 < 0.01
Tendencies towards risky behavior 0.65 < 0.01
Risk of not receiving milestone payment 0.28 < 0.05
Participant age -0.05 < 0.1
Self performance rating 0.50 < 0.1
Robot performance rating removed x
Experience with robot-like UIs removed x
Autonomy switches removed x
Technology demographics removed x
Secondary task performance removed x
Percent autonomy removed x
Map time removed x
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Chapter 7

Influence of Low Situation Awareness

on Trust

While reliability is considered to be a significant influence on control allocation, there

are other factors such as complacency, trust, workload, and user interface design that

also influence the use of automation. For example, Wickens et al. [Wickens et al., 2000]

highlight the importance of user interfaces in automated systems and, according to

Atoyan et al. [Atoyan et al., 2006], interface design plays an important role in influ-

encing users’ trust in automation. While user interfaces used in industrial and aviation

automation are important, robot interfaces exert significant influence on remote robot

operation [Keyes, 2007], including a person’s use, misuse or disuse of robot autonomy

levels.

When teleoperating a remote robot, the operator is not co-located with the robot.

The operator must rely on the user interface to attain adequate situation awareness to

safely perform the task. The user interface is especially important in situations where

the operating environment is dynamic and unknown. Burke et al. [Burke et al., 2004b]
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determined that teleoperating a robot is common in application domains where robots

operate in unstructured or high risk environments. Hence the user interface is especially

important for these application domains.

Since Endsley [Endsley, 1988] defined situation awareness, significant work has been

done by researchers to examine the influence of situation awareness on performance in

supervisory control systems (e.g., [Dorneich et al., 2010,Cummings, 2004,Parasuraman

et al., 2009]). The interaction of situation awareness and workload with automation has

also been highlighted by Parasuraman et al. [Parasuraman et al., 2008]. There is also a

need for attaining better situation awareness in human-robot interaction (e.g., [Woods

et al., 2004,Chen and Thropp, 2007]).

To investigate the influence of low situation awareness on control allocation in a real

robot system with variable reliability under high workloads, we conducted an experi-

ment similar to the dynamic reliability (DR) experiment explained in Chapter 6. In this

experiment the user interface was modified slightly to reduce the operator’s situation

awareness. We hypothesized that operators would have to trust and rely on the robot

autonomy more compared to the DR experiment due to lowered situation awareness.

We also hypothesized that due to poor situation awareness the operators would switch

out of robot assisted mode faster after reliability increased when compared to the DR

experiment.This experiment is referred to as the low situation awareness experiment

(LSA).

7.1 Methodology

In this experiment, participants experienced the same four reliability conditions as

the DR experiment (Figure 5.4), but with an interface designed to provide reduced
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situation awareness compared to the DR experiment. The data from the experiments

conducted at CMU for the DR experiment is not used for analysis with data from the

LSA experiment. The participants for both experiments were approximately of the

same age range [DR=23.5 (6.4), LSA=28.08 (9.8), p=0.2, t(21)=1.29 (unpaired two

tailed t-test)].

Figure 7.1: The interface used in the dynamic reliability experiment (DR) is shown
on the left. The interface on the right, designed for the low situation awareness ex-
periment (LSA), reduced the operator’s situation awareness by removing the crosshairs
indicating the current pan and tilt of the camera and by providing less accurate distance
information around the robot.

The methodology used for this experiment was similar to the one used for the DR

experiment. The only difference was in the user interface (UI) that was modified slightly

to reduce the operator’s situation awareness. Figure 7.1 shows the user interface (UI)

used to control the robot. In LSA, three modifications to the UI were made. The first

was that the pan-tilt indicators that had been provided on the main video window in

DR were removed in LSA. For the second, the simulated sonar information (produced

by taking laser readings at specified locations and use that value for the “sonar cone”
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reading) replaced the more accurate laser range data provided in DR. Finally, the laser

display in DR rotated in accordance with the pan value of the front camera, but this

feature was disabled in the LSA interface: the robot always faced straight.

7.2 Results and Discussions

As planned, the altered user interface led to a noticeable difference in situation aware-

ness. Participant responses to questions testing situation awareness (SAGAT; Section

C.2.5) showed better results for the DR experiment when compared to the LSA exper-

iment, t(96)=-2.9 p < 0.01.

The objective performance and trust questionaire data were examined with REML

(REstricted or REsidual Maximum Likelihood) [Harville, 1977] on the effects of Exper-

iment (DR, LSA), Reliability (A, B, C, D), and Participants as a random effect and

nested by Experiment. Where appropriate, a Student’s t post hoc was used to identify

significant differences within effects. Of these, the highlights were as follows:

7.2.1 Effect on Trust

A two-way ANOVA showed a significant effect for Experiment, F (1,139)=5.50, p<0.05.

No significant effect was found for Reliability, F (3,139)=1.32, p=0.27 or the interaction,

F (3,139)=0.14, p=0.93. Trust was significantly higher in LSA (µ=7.03, �=2.02) than

DR (µ=6.14, �=2.22). This analysis shows that participants trusted the system more

when their situation awareness was lowered. We suspect this might be due to the forced

reliance on the fully autonomous mode.
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7.2.2 Effect on Control Allocation

To examine how much the participants relied on the fully autonomous mode in both

experiments we conducted a two-way ANOVA. The results of the analysis showed sig-

nificant effects for Experiment, F (1,135)=4.22, p<0.05. No significant effect was found

for Reliability, F (3,135)=2.37, p=0.07 or the interaction, F (3,135)=0.20, p=0.89. Par-

ticipants relied significantly more on the fully autonomous (FA) mode in LSA (µ=9.74,

�=3.37) than in DR (µ=8.20, �=4.74). This data indicates that participants did rely

more on the FA mode when their situation awareness was lowered.

We also wanted to examine if there was an increase in the autonomy mode switches

due to lower SA. A two-way ANOVA showed a significant effect for Reliability, F (3,136)

=7.39, p<0.01. No significant effect was found for Experiment, F (1,136)=2.78, p=0.09

or the interaction, F (3,136)=1.51, p=0.21. A post hoc Tukey’s HSD test showed that

there were significantly less autonomy mode switches in Reliability A (µ=2.47, �=3.39)

compared to Reliability B (µ=6.05, �=6.27, p<0.01) and Reliability C (µ=7.50, �=6.13,

p<0.01). While the difference between DR and LSA was only marginally significant, it

did show that participants in LSA had more mode switches. This data indicates that,

since the participants were forced to rely more on the FA mode, they might have been

more vigilant and hence switched modes more often. We suspect the higher autonomy

mode switches might also have led to a better control allocation strategy.

To examine the control allocation strategy we conducted a two-way ANOVA. The re-

sults of the analysis showed a significant effect for Experiment, F (1,135)=7.08, p<0.01.

No significant effect was found for Reliability, F (3,135)=0.78, p=.050 or the interac-

tion, F (3,135)=0.10, p=0.95. Control allocation strategy was significantly better in

LSA (µ=10.85, �=3.07) than DR (µ=9.21, �=3.60) (Figure 7.2). This analysis shows

that participants in LSA made better (more appropriate) use of the autonomous modes
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Figure 7.2: Control allocation strategy for DR and LSA experiments across reliability
conditions, ±1 st. error.

compared.

7.3 Performance

We analyzed the performance by looking at three metrics; the number of hits, the time

taken to finish the task, and the number of wrong turns.

7.3.1 Hits

A two-way ANOVA showed no significant effects for Reliability, F (3,136)=1.37, p=0.25,

Experiment, F (1,136)=0.22, p=0.63, or the interaction, F (3,136)=0.66, p=0.57. This

data shows that a drop in SA did not result in an increase in hits as expected. We

suspect this was the case because of higher reliance on FA mode, during which there

were no hits.
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7.3.2 Time

A two-way ANOVA showed significant effects for Reliability, F (3,136)=6.37, p>0.01,

Experiment, F (3,136)=9.05, p>0.01, or the interaction, F (3,136)=3.45, p>0.01. Par-

ticipants in LSA took significantly more time (µ=687, �=153) than participants in DR

(µ=626, �=102). A post hoc Tukey’s HSD test for Reliability showed that partici-

pants took less time in Reliability A (µ=593, �=92) then Reliability B (µ=677, �=151,

p<0.01) and Reliability C (µ=678, �=126, p<0.01). This data matches our expectation

that participants would need more time to perform their task when SA drops.

7.3.3 Wrong Turns

A two-way ANOVA showed significant a effect for Reliability, F (3,136)=11.95, p>0.01.

No significant effect was found for Experiment, F (1,136)=0.16, p=0.68 or the inter-

action, F (3,136)=0.03, p=0.99. A post hoc Tukey’s HSD test showed that there

were fewer wrong turns in Reliability A (µ=0.08, �=0.28) than Reliability B (µ=2.05,

�=1.67, p<0.01), Reliability C (µ=1.61, �=1.55, p<0.01), and Reliability D (µ=1.86,

�=1.69, p<0.01). This data indicates that even though participants in LSA had a

better control allocation strategy they did not show an improvement in the number of

wrong turns. We suspect this because they had a higher number of wrong turns in the

robot assisted (RA) mode due to the lowered SA and higher workload.

7.4 Subjective Ratings

To investigate the impact on workload we conducted a two-way ANOVA (Figure 7.3).

The results showed significant effects for Reliability, F (3,136)=3.69, p>0.05 and Ex-

periment, F (1,136)=8.09, p>0.01. No significant effect was observed for the interac-
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Figure 7.3: Workload for DR and LSA experiments across reliability conditions.

tion, F (3,136)=0.15, p=0.92. The workload was significantly higher for LSA (µ=10.85,

�=4.14) than DR (µ=8.85, �=4.03). A post hoc Tukey’s HSD test showed that the

workload was significantly lower for Reliability A (µ=7.43, �=3.98), than Reliability B

(µ=10.13, �=4.11, p<0.05), Reliability C (µ=10.44, �=4.19, p<0.05), and Reliability

D (µ=10.07, �=3.78, p<0.05). This data shows that participants in LSA felt higher

workloads due to lower SA and similarly, the workload was exacerbated when reliability

dropped.

We also looked at how reducing SA impacted participants’ subjective ratings of

performance and risk (Figure 7.4). A two-way ANOVA for self-performance rating

showed a significant effect for Reliability, F (3,136)=4.21, p>0.01. No significant effect

was found for Experiment, F (1,136)=0.11, p=0.73 or the interaction, F (3,136)=0.20,

p=0.89. A post hoc Tukey’s HSD test showed that self-performance rating in Reli-

ability A (µ=5.55, �=1.44) was significantly higher than the rating in Reliability B
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Figure 7.4: Self-performance and robot’s performance ratings for DR and LSA experi-
ments across reliability conditions.

(µ=4.19, �=1.70, p<0.01) and marginally higher than Reliability C (µ=4.52, �=1.42,

p=0.06) and Reliability D (µ=4.63, �=1.67, p=0.06). This data shows that reducing

SA did not impact their self-performance rating, but they did blame themselves for

poor performance when reliability dropped.

A two-way ANOVA for the robot’s performance rating showed a significant effect

for Experiment, F (1,136)=6.02, p>0.05. No significant effect was found for Reliabil-

ity, F (3,136)=0.56, p=0.63 or the interaction, F (3,136)=0.50, p=0.67. The robot’s

performance rating was significantly lower in LSA (µ=5.77, �=1.22) compared to DR

(µ=6.21, �=0.90). This data indicates that participants could have blamed the robot

for providing poor SA.

A two-way ANOVA for perceived risk showed no significant effects for Experi-

ment, F (1,136)=1.59, p=0.20, Reliability, F (3,136)=2.57, p=0.05, or the interaction,
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F (3,136)=0.08, p=0.96.

7.5 Conclusions

As expected, the drop in LSA led to more reliance on autonomy; however, it did not

result in better performance. While the amount of time needed increased due to the

lower SA, especially during the robot assisted mode, there was no difference in hits or

wrong turns. We suspect that since participants drove more in FA mode in LSA, the

number of hits did not increase. Also, as expected there was an increase in the workload.

We expected the workload to increase in LSA because the participants would have to

work harder to maintain sufficient SA. We found an increase in trust and suspect that

was due to the increased reliance on the FA mode. However, it is surprising to find that

the robot’s performance rating decreased in LSA. We suspect the participants blamed

the robot for the poor SA provided via the user interface.

All of these findings demonstrate the importance of situation awareness for remote

robot tasks, even when the robot has autonomous capabilities. In real world situations,

it is very likely that autonomous systems will experience periods of reduced reliability.

Providing operators with the means to build up the best situation awareness possible

will improve their use of the robot system.
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Chapter 8

Measuring Real-Time Trust

Chapter 6 examined the impact of changing reliability on an operator’s trust and con-

trol allocation strategy. The data from the baseline dynamic reliability experiment

(DR) and the low situation awareness (LSA) experiment has shown that failures of

autonomous behaviors altered operator behavior. However, the two key limitations of

the experimental methodology were the inability to examine how trust evolved during

a participant’s interaction with a remote robot system and how trust was impacted by

robot failures at different points in the interaction. To investigate the evolution of trust

and the impact of varying reliability on real-time trust, the experimental methodology

was modified. As with the DR and LSA experiments, all of the remaining experiments

in this thesis are performed under dynamic reliability. This chapter describes the new

experimental setup used for the real-time trust (RT) experiment.

The experimental setup for measuring real-time trust was similar to that used for

the DR and LSA experiments. No modifications were made to the robot or the auton-

omy modes. However, minor modifications were made to the user interface (UI), the

secondary tasks were simplified while making them more consistent, and the reliability
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Figure 8.1: The user interface used to control the robot for the RT experiments.

conditions were slightly modified. The following sections describe the changes in detail.

8.1 Secondary Task

During the DR and LSA experiments, it was observed that the secondary task of search-

ing for victim tags did not provide a constant workload. The participants would some-

times accidentally find victim tags, or would sometimes find all of the tags early in the

run. To ensure a constant and consistent workload throughout the run, the searching

for victim tags task was replaced with a tracking task.

For the tracking task, a translucent blue circle 70 pixels in diameter was spawned
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entirely within the confines of the video screen every 35 seconds. The location on

the screen was selected based on the following two criteria: it was placed a constant

distance away from the position of the yellow crosshairs and in a random direction,

while ensuring that the blue circle would remain entirely within the video screen.

When the tracking circle (shown in Figure 8.1) appeared on the video screen, par-

ticipants were asked to acknowledge it by moving the yellow crosshairs over it. The

blue circle disappeared when the crosshairs overlapped the circle, indicating that the

task was acknowledged. The circle would remain on the video screen until it was ac-

knowledged or a new one was spawned. Since a new circle was created at a regular

interval and at a fixed distance away from the crosshairs, the workload was regular and

consistent. The circle was intentionally selected to be translucent and blue to make

it harder to detect on the video screen. The difficulty of detecting the blue circle was

mentioned by several participants. They mentioned that the color of the circle should

be changed and that it should not be translucent since it was hard to detect. To prevent

overwhelming the participants, the sensor gauges and the victim tag identification task

were discarded. Hence, the sensor gauges were removed from the UI.

8.2 Real-Time Trust

Trust questionnaires, such as the Muir questionnaire [Muir, 1989], only provide infor-

mation about the participant’s trust of the robot at the end of each run. In order to

examine how a participant’s trust of the robot is immediately impacted by changes

in reliability, participants were asked to respond to real-time trust prompts during the

runs. At each prompt, participants were instructed to indicate if their trust of the robot

had increased, decreased, or not changed, by pressing buttons on the gamepad (Figure
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Figure 8.2: The gamepad used by the participants to control the robot and provide
feedback about their change in trust.

8.2). Participants were prompted for this trust measure every 25 seconds. A gap of 25

seconds was selected to ensure that participants were not overwhelmed, but that, at the

same time, there would be at least one trust prompt between consecutive gates. When

the trust prompts were triggered, the trust indicator circle turned red and an audible

beep was sounded. The trust prompt indicator would stay red until the participant

recorded the change in his or her trust level. When one of the buttons on the gamepad

was pressed, the trust prompt indicator would show an up arrow, down arrow, or a

sideways arrow indicating increase, decrease, or no change in trust, respectively (Figure
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Figure 8.3: Trust prompt indicators (from left): a red circle with a black border prompt-
ing the participants to indicate their change in trust, showing that the participant in-
dicated an increase in trust, showing that the participant indicated a decrease in trust,
and showing that the participant indicated no change in trust.

8.5). The participants could indicate an increase in trust by pressing the top button on

the gamepad, a decrease in trust by pressing the button on the bottom, and no change

in trust by pressing either of the two buttons in the middle.

8.3 Updated Reliability Conditions

We observed from previous experiments that in Reliability D, the participants did not

have time to recover from the period of low reliability. To ensure that participants had

a period of high reliability during the beginning and the end, we decided not to have

periods of low reliability immediately at the start or the end. To accommodate for this

change, the number of gates in the course was increased. This increase in the length

of the course was accomplished by moving the second u-turn to the first gate, forcing

participants to pass all of the gates four times.

In prior experiments, reliability was low for four consecutive gates. This consecutive

period of low reliability was replaced with two sets of reliability drops, each two gates

long, for Reliability B and D. Reliability C had one period of low reliability that was

four gates long, as in the original experiment. The new reliability patterns are shown

in Figure 8.4.
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The layout of the course remained the same as previous experiments. However,

the length of all of the maps was extended from 13 gates to 17 gates. The start and

end positions were the same as previous experiments. To ensure that participants still

finished within the 3 hour limit, the speed of the robot was moderately increased.
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8.4 Compensation

The compensation structure remained similar to the prior experiments. The penalties

for missing the sensor gauges and the victim tags was removed. The participants were

instead penalized for failing to acknowledge the tracking task. They were not, however,

penalized for failing to acknowledge the trust prompts. However, participants were

required to acknowledge at least 90% of the trust prompts to be eligible for the time

bonus.

Apart from these changes, there were only two other minor changes. The Jian trust

questionnaire was removed since it was highly correlated with the Muir trust scale but

took longer to answer. The Cube Comparison Test was also dropped since the data from

that test did not provide any useful data with regards to trust or control allocation,

while taking nearly 10 minutes to answer.

Based on this new setup, an experiment was conducted with 12 participants (referred

to as the RT experiment). Six of the twelve participants were female. Along with the RT

experiment, three other experiments were also conducted (Long Term (LT), Feedback

(F), and Reduced Difficulty (RD)). The description of each, along with data and results

from all of these experiments, are presented in the following chapters.

8.5 Results and Discussion

This section provides the results from the RT experiment. While the analysis is lim-

ited to comparison across Reliability, the later chapters provide detailed comparisons

between experiments.
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8.5.1 Effect on Trust

To better examine the impact of differing reliability conditions on trust, the real-time

trust data was analyzed. Figure 8.6 shows how trust evolved during the four reliability

conditions. The graphs show an overall increasing trend in trust. As expected, trust

for Reliability A monotonically increases while trust for Reliability B, C, and D does

not. There are noticeable drops in trust when reliability decreases and, once reliability

recovers, trust again starts to increase monotonically. We calculated the area under the

trust curve (AUTC) to analyze this data.
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A one-way ANOVA for Muir trust, F (3,39)=0.99, p=0.40 (Figure 13.2) and AUTC,

F (3,43)=1.60, p=0.20 showed no statistical difference. We suspect this lack of signif-

icant is due to the small data. When data is analyzed in aggregate later, significant

differences are found. Even though significant differences are not found, an interesting

difference between the trends for Muir and AUTC data can be immediately observed.

While the Muir ratings are similar for Reliability B, C, and D, the AUTC ratings for

Reliability B and much lower than those of Reliability C and D. This difference between

the Muir and AUTC ratings shows that real-time trust is more sensitive to changes in

reliability.

8.5.2 Effect on Control Allocation

A one-way ANOVA for autonomy mode switches across Reliability was significant,

F (3,44)=3.03, p<0.05 (Figure 13.3). A post hoc Tukey’s HSD test showed that the

number of autonomy mode switches in Reliability B (µ=5.08, �=3.39) was significantly

higher than Reliability A (µ=1.58, �=1.24, p<0.05). More autonomy mode switches

in Reliability B highlight the possibility that early periods of low reliability in the
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Figure 8.8: The performance metics across the different reliability conditions. Left to
right: Hits, run time, and wrong turns.

interaction can lead to operator confusion. We speculate that the increase in autonomy

mode switches was not to achieve a better control allocation strategy, due to the lack

of a significant difference in the control allocation strategy1, F (3,43)=0.24, p=0.86.

8.5.3 Performance

Performance was measured using three different metrics: the total weighted collisions

(hits), time required to finish a run (time), and the total number of wrong turns for

each run (wrong turns). Since Reliability A had higher reliability throughout the run,

we expected the performance to be better for Reliability A. However, no significant

differences were found for hits, F (3,44)=0.34, p=0.78, time, F (3,44)=0.32, p=0.80,

and wrong turn, F (3,44)=1.82, p=0.15 (Figure 13.4). While the means for performance

metrics were better for Reliability A, the difference was not significant.

We also looked at the number of wrong turns in the robot assisted mode (MER:

manual errors) and the number of wrong turns in the fully autonomous mode (AER:
1The control allocation strategy for participants was judged based on the difference between their

control allocation and the ideal control allocation. The ideal strategy resulted in a score of 17 (since
there were 17 gates).
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automation errors). A pairwise two-tailed t-test showed that there were significantly

more MERs (µ=0.75, �=1.24) than AERs (µ=0.29, �=0.74, t(47)=2.13, p<0.05). This

data combined with the control allocation strategy data indicates that the participants

not only had a poor control allocation strategy, but when they drove in the robot

assisted mode they had more wrong turns than they did when they were in the fully

autonomous mode. Had the result been the other way around, then it could have

justified their poor control allocation strategy (i.e., they had fewer wrong turns in

robot assisted mode and hence they used that more often, thereby their overall control

allocation strategy was poor).
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8.5.4 Subjective Ratings

No significant differences were observed for self performance ratings, F (3,43)=1.36,

p=0.26, robot’s performance ratings, F (3,43)=0.28, p=0.83, and the perceived risk,

F (3,43)=1.09, p=0.36 (Figure 13.5). However, a significant strong negative correlation

was observed between self performance rating and the perceived risk, r=-0.64, p<0.01.

This is similar to the results found for the DR experiments, where participants blamed

themselves for the overall poor performance.
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Chapter 9

Impact of Feedback1

It is important to understand how trust and control allocation strategies interact with

other factors and impact performance. However, when inadequacies are detected, they

should be addressed to prevent accidents and poor performance. Hence, it is also

important to find means to influence operator trust and control allocation strategy,

should the need arise. Research exists where participants were provided information

about results of past decisions [Dzindolet et al., 2003]; however, to our knowledge, no

research exists that investigates the impact of providing information about the auto-

mated system’s confidence in its own sensors. Therefore, the research team at CMU, led

by Dr. Aaron Steinfeld, conducted experiments to investigate the impact of providing

confidence information on trust and control allocation. This experiment was based on

the RT experiment described in Chapter 8, with only minor modifications to the user

interface described in the next section.

The goal of this experiment was to investigate if operator behavior (trust, control
1Parts of this chapter appear is a paper jointly authored with Poornima Kaniarasu, Mikhail

Medvedev, Dr. Aaron Steinfeld and Dr. Holly Yanco [Desai et al., 2013]. Unless explicitly noted,
the data analysis was performed at UML.
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allocation, performance, etc) can be influenced by providing feedback about the robot’s

confidence in its own sensors. Hence, for this experiment, participants were shown

confidence indicators on the interface, which were tied to the reliability drops in the

system (i.e., the confidence indicator would drop before the system’s reliability dropped

and the indicator would rise when the reliability rose). Additional details about the

modifications and methodology are provided in the next section.

9.1 Methodology

This experiment was a minor modification of the RT experiment conducted at UML.

This experiment was conducted at Carnegie Mellon University (CMU)2 with the goal

of investigating the impact of feedback on the evolution of trust and control allocation

strategy. A total of sixteen participants were recruited for this experiment, henceforth

referred to as the ‘Feedback’ (F) experiment. Of the sixteen participants, eight were

male and eight female and the mean age was 22.2 years (SD=4.0).

9.1.1 Modifications for the Feedback Condition

An iRobot ATRV-JR robot, the same one used for the dynamic reliability (DR) exper-

iment at CMU, was used for the F experiment.

The participants in the F group were given three levels of feedback that indicated

the confidence of the robot in its ability to read barcodes. The interface displayed the

confidence indicator just below the rear camera view (Figure 9.1). The robot indicated

high levels of confidence for all high reliability regions, except for one box before and

one box after the low reliability region where it displayed a neutral state to ensure
2Unless explicitly mentioned, all of the parameters were identical to the RT experiment.
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Figure 9.1: The user interface used for the Feedback experiment. The emoticon used
to indicate high confidence in the robot’s sensors is shown below the rear view video.

a gradual transition between the reliability levels. Participants were either provided

semantic feedback (emoticons) or non-semantic feedback (color coded icons). Partici-

pants who experienced semantic feedback (F:S) were shown emoticons to represent the

confidence levels, whereas participants who experienced non-semantic feedback (F:NS)

were shown green, white and pink lights to indicate high, neutral and low level of confi-

dence, respectively. The indicators also had a plus sign for high level and a minus sign

for low level of confidence embedded in the circle (Figure 9.2). The signs were added

to take color-blind participants into consideration.

Apart from minor differences between the RT and F experiments, the underlying

structure for RT and F was similar and similar behavior was observed across both

groups. For this reason, the data is reported in aggregate when appropriate and, when

92



Non-semantic

Semantic

High Neutral

Confidence Level

Low

Figure 9.2: Semantic and non-semantic indicators. The icons for semantic feedback
had yellow backgrounds. The high confidence icon for non-semantic feedback had a
green background and the low confidence icon for non-semantic feedback had a pink
background.

differences between the two were observed, these differences are highlighted. However,

not all of the data and accompanying analyses are presented here, since this chap-

ter focuses solely on the impact of confidence feedback on operator trust and control

allocation strategy. Additional data and analysis is presented in Chapter 12.

9.2 Results and Discussion

Data from the practice and baseline runs were not included in the analyses. We checked

for practice effects (run order) and map effects and did not find any issues. This lack

of significant differences for run and map effect suggests the counterbalancing and map

designs were adequate.

9.2.1 Effect on Trust

Participants were asked to answer the Muir trust questionnaire [Muir, 1989] after each

run. To analyze the impact of reliability drops on participants’ trust of the robot, a
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two-way ANOVA for trust was conducted. It yielded a significant main effect of Reliabil-

ity, F (3,103)=4.49, p<0.01. However, the main effect of Experiment3, F (1,103)=0.05,

p=0.81 and the interaction of Reliability and Experiment type was not significant,

F (3,103)=0.24, p=0.86. Post hoc comparisons for Reliability using Tukey’s HSD test

indicated that the trust values for Reliability A (µ=7.59, �=1.82) were significantly

higher (higher values indicate more trust) than Reliability B (µ=5.83, �=2.34, p<0.05),

C (µ=5.97, �=2.03, p<0.05), and D (µ=5.79, �=1.95, p<0.05) (Figure 9.4). The data

indicates that the participants’ trust of the robot was higher when the robot operated

reliably and lower when the robot’s reliability dropped during the runs. However, the

Muir trust questionnaire was not able to discern between the different reliability con-

ditions and confirms the findings of our earlier experiments described in Chapters 6, 7,

and 8.

The AUTC data highlights the impact of timing of low reliability periods on trust.
3The data from both conditions within the Feedback experiment (semantic and non-semantic feed-

back) are presented in aggregate and no analysis differentiating them is presented in this thesis.
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Figure 9.4: Left: Muir trust ratings for both experiments across all reliability conditions.
Right: Muir trust ratings for both experiments across all reliability conditions. The
mean values are shown along with ± 1 standard error.

Figure 9.4 shows the mean AUTC values along with Muir trust values. A two-way

ANOVA for AUTC yielded a significant main effect of Reliability, F (3,99)=5.66, p<0.01;

however, the main effect of Experiment was not significant, F (1,99)=0.54, p=0.46.

The interaction of Reliability and Experiment was also not significant, F (3,99)=0.03,

p=0.99. Post hoc comparison for Reliability using Tukey’s HSD test indicated that the

trust values for Reliability A (µ=92.0, �=45.7) were significantly higher than Reliabil-

ity B (µ=32.7, �=58.7, p<0.01) and C (µ=52.3, �=54.9, p<0.05), but not D (µ=59.8,

�=50.3, p=0.13) (Figure 9.4). This data indicates that real-time trust follows the same

pattern across reliability conditions for both experiments, further validating the exper-

imental methodology used to collect real-time trust data. It also implies that AUTC is

not impacted by feedback.
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Figure 9.5: Left: Autonomy mode switches for both experiments across all reliability
conditions. Right: control allocation strategy for both experiments across all reliability
conditions.

9.2.2 Effect on Control Allocation

To examine the impact of reliability on the participants’ control allocation strategy,

we conducted a two-way ANOVA for autonomy mode switches that yielded a signifi-

cant main effect of Reliability, F (3,104)=6.68, p<0.05 and Experiment, F (1,104)=6.64,

p<0.01. However, the interaction of Reliability and Experiment was not significant,

F (3,104)=0.32, p=0.80. Post hoc comparison for Reliability using Tukey’s HSD test

indicated that the autonomy mode switches for Reliability A (µ=2.25, �=4.17) were

significantly fewer than Reliability B (µ=6.85, �=4.62, p<0.01), C (µ=5.42, �=3.64,

p<0.05), and D (µ=5.46, �=3.03, p<0.05). The difference in autonomy mode switches

between Reliability A and Reliability B, C, and D indicates that the participants no-

ticed the changes in reliability, its potential for impact on performance, and adjusted

their control allocation strategy accordingly. Hence, to examine the control allocation

strategy, a two-way ANOVA for control allocation strategy yielded a significant effect of

Experiment, F (1,103)=7.22, p<0.01, but Reliability and the interaction were not sig-

nificant, F (3,104)=0.2, p<0.88 and F (3,104)=0.22, p<0.87 respectively. Participants
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Figure 9.6: Left to right: hits, run time, and wrong turns for both experiments across
all reliability conditions.

in F (µ=13.89, �=4.55) had a significantly better control allocation strategy than those

in RT (µ=11.06, �=6.21) (Figure 9.5).

This data clearly indicates that providing feedback helped improve the overall con-

trol allocation strategy. The data shown in Figure 9.5 indicates that overall there were

consistently more autonomy mode switches in F than RT. That data, along with the

consistently better control allocation strategy in F, led us to believe that there would

be fewer wrong turns in F.

9.2.3 Performance

We expected the number of wrong turns to be similar across all reliability conditions,

especially for the low reliability conditions and we also expected there to be fewer

wrong turns in F. However, the results of a two-way ANOVA for wrong turns showed a

significant effect for Reliability indicating that the number of wrong turns was not the

same across Reliability, F (3,107)=4.47, p<0.01. Post hoc comparison using Tukey’s

HSD test indicated that Reliability A (µ=0.25, �=0.58) had significantly fewer wrong
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turns than Reliability B (µ=1.28, �=1.24, p<0.01) and C (µ=1.1, �=1.42, p<0.05),

but not D (µ=0.77, �=1.18, p=0.33) (Figure 13.4). The main effect of Experiment and

the interaction between Reliability and Experiment was not significant, F (1,107)=2.34,

p=0.12 and F (3,107)=0.13, p=0.93 respectively.

A two-way ANOVA for time showed a significant main effect for Experiment, F (1,107)

=13.03, p<0.01, but the main effect of Reliability and the interaction between Relia-

bility and Experiment were not significant, F (1,107)=1.17, p=0.32 and F (1,107)=0.29,

p=0.82 respectively (Figure 13.4). A two-way ANOVA for hits showed a significant

main effect for Experiment, F (1,107)=17.38, p<0.01, but the main effect of Relia-

bility and the interaction between Reliability and Experiment were not significant,

F (1,107)=0.85, p=0.46 and F (1,107)=0.35, p=0.78 respectively (Figure 13.4). This

data shows that the overall performance was better for participants in F. Additional

discussion pertaining to these differences is presented in the next section.

9.2.4 Effect of Feedback

As stated at the start of this chapter, we wanted to examine the impact of providing

feedback about the robot’s confidence in its sensors on participants’ trust and control

allocation. The real-time trust data from Section 9.2.1 showed a non-significant effect of

Experiment on AUTC trust. The results from Section 9.2.2 showed a significant effect

of Experiment on control allocation strategy. The results of ANOVA for autonomy

mode switches by Experiment indicated that participants in F (µ=5.81, �=4.63) had

significantly more autonomy mode switches than those in RT (µ=3.91, �=3.33).

Participants who received feedback switched into assisted mode and back signifi-

cantly more to correctly pass gates during low reliability. However, it was also observed

that participants often switched into assisted mode whenever there was a drop in the
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robot’s confidence, even in high reliability regions when the confidence level changed

from high to neutral. We speculate that these changes were due to participants antic-

ipating a robot failure after seeing the robot’s confidence drop. Overall, this behavior

resulted in fewer wrong turns for F. An unpaired one-tailed t-test was conducted to

verify the effect of Experiment on wrong turns. As expected, the result indicated that

the participants in F (µ=0.7, �=1.00) had fewer wrong turns (marginally significant)

than those in RT (µ=1.06, �=1.42, t(80)=0.41, p=0.08).

Since participants in F were provided with additional information, we expected the

workload for those participants to be higher. An unpaired one tailed t-test showed that

participants in F (µ=3.68, �=118) had significantly higher workload than those in RT

(µ=3.26, �=1.14, t(100)=-1.87, p=0.03).

The feedback experiment when contrasted with the RT experiment shows that infor-

mation about the robot’s confidence can improve control allocation during low reliability

without altering real-time trust levels. However, information should be provided only

when appropriate to avoid unwanted side effects. Therefore, warning users of potential

robot performance drops can be done without negatively impacting trust in the robot.
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Chapter 10

Reduced Task Difficulty

It is important to investigate how an operator’s trust and control allocation are im-

pacted when a robot’s reliability drops while performing easy tasks. To investigate this

condition, the ‘Reduced Difficulty’ (RD) experiment was conducted, where the diffi-

culty of the task was lowered by reducing the width of the gates, thereby increasing the

clearance on both sides of the gates. The width of the gates was reduced from 0.6m

(24 inches) to 0.2m (8 inches). Since the task was easier to perform in robot assisted

mode, it was expected that the participants would not utilize the fully autonomous

mode as much, especially after a period of low reliability. A decrease in operator trust

was expected with an accompanying decrease in reliance on the fully autonomous mode.

Figure 10.1 shows the course with the narrow gates.

10.1 Results and Discussion

Eleven participants were recruited for the RD experiment. Of the eleven participants,

nine participants were male. The mean age was 29.6 years (SD=7.7). Some of the

100



data from this experiment is compared and contrasted with the data from the RT

experiment. However, not all of the data and accompanying analyses are presented

here. Additional data and analysis is presented in Chapter 12.

Figure 10.1: The course with the narrow gates used for the RD experiment.
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Figure 10.2: Left: Muir trust ratings for RD and RT experiments across the different
reliability conditions. Right: AUTC values for RD and RT experiments across the
different reliability conditions.

10.1.1 Effect on Trust

A one-way ANOVA on Muir trust data for Experiment showed no significant effect,

F (3,87)=0.28, p=0.59 (Figure 10.2). Additionally, one-way ANOVA on AUTC data

for Experiment showed no significant effect, F (1,79)=0.33, p=0.56 (Figure 10.2). The

lack of significant difference in the trust data indicates that, contrary to our expectation,

reducing the difficulty of the task did not impact operator trust.

10.1.2 Effect on Control Allocation

An unpaired two-tailed t-test on autonomy mode switches for Experiment showed that

participants in RD had significantly more autonomy mode switches (µ=5.75, �=4.08)

than participants in RT (µ=3.91, �=3.33, t(83)=2.34, p<0.05) (Figure 10.3). We
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Figure 10.3: Left: Control allocation for RD and RT experiments. Right: Autonomy
mode switches for RD and RT experiments.

suspect participants in RD switches autonomy modes more often in order to improve

their control allocation strategy (ensure that they were in ideal autonomy mode at

all times), as seen by the improvement in the control allocation strategy in RD. An

unpaired two-tailed t-test for control allocation strategy showed that participants in

RD (µ=13.29, �=5.46) had a better control allocation strategy (marginally significant)

than the participants in RT (µ=11.06, �=6.21, t(88)=1.82, p<0.07) (Figure 10.3). A

post hoc power analysis showed that four more participants would be needed to achieve

statistical significance. The control allocation data indicates that participants in RD

had a better control allocation strategy than those in RT. There was an increase in

autonomy mode switches in order to achieve better control allocation. However, we

suspect that the easier task allowed the operators to switch more and thereby improve

their control allocation strategy.
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10.1.3 Performance

An unpaired two-tailed t-test for hits showed that participants in RD (µ=2.02, �=2.77)

had significantly fewer hits than participants in RT (µ=11.02, �=15.54, t(50)=-3.94,

p<0.01) (Figure 10.4).

An unpaired two-tailed t-test for time also showed that participants in RD (µ=554.95,

�=54.63) took significantly less time than participants in RT (µ=692.72, �=243.35,

t(52)=-3.81, p<0.01).

An unpaired two-tailed t-test for wrong turns showed that participants in RD

(µ=0.4, �=0.58) had significantly fewer wrong turns than participants in RT (µ=1.04,

�=1.41, t(63)=-2.84, p<0.01).

These results combined together indicate that participants in RD performed signif-

icantly better than those participants in RT due to the reduced difficulty of the task.

10.1.4 Subjective Ratings

Based on the significantly improved performance observed in RD, we expected the

perceived risk to be lower for participants in RD compared to RT. An unpaired one-

tailed t-test showed that participants in RD (µ=4.04, �=2.4) significantly rated their

perceived risk to be lower than those participants in RT (µ=4.95, �=2.7, t(88)=-1.67,

p<0.05) (Figure 10.4).

An unpaired two-tailed t-test for self-performance rating showed that participants

in RD (µ=5.72, �=1.37) rated their performance significantly higher than those in

RT (µ=4.82, �=1.65, t(87)=2.82, p<0.01). An unpaired two-tailed t-test for robot-

performance rating showed no significant difference. This data indicates that the par-

ticipants did not view the robot’s performance to be worse when the task was easier to
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Figure 10.4: Top: Performance differences between RT and TD. Left to right: hits,
time, and wrong turns. Bottom: Subjective differences between RT and TD. Left to
right: robot’s performance rating, self performance rating, and perceived risk.
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perform.

The goal of this experiment was to investigate how trust and control allocation

would be impacted when a robot’s reliability drops while performing tasks that are

easy to perform manually. Hence, the RD experiment with an easier teleoperation task

was conducted. A decrease in trust was expected since the participants were expected

to prefer to perform the task on their own, yet no significant difference in trust (Muir

and AUTC) was found. Contrary to the expectation, it was found that participants

in RD had a better control allocation strategy than those in RT, perhaps due to the

significantly more autonomy mode switches observed in RD. It was also found that the

participants in RD rated their own performance to be significantly better than those

in RT and they also assessed the perceived risk to be significantly lower in RD. As

expected, participants in RD performed better. They had significantly fewer hits, took

less time, and had significantly fewer wrong turns than participants in RT. And, while

the workload was lower for RD, the difference was not significant. We suspect the lack

of a significant reduction in workload for RD was due to the offset increase in workload

caused by additional autonomy mode switches to maintain better control allocation

strategy.
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Chapter 11

Long Term Interaction

The previous chapters shed light on how an operator’s behavior is altered due to the

influence of multiple factors. While these experiments were relatively long compared to

typical experiments in human-automation interaction or even human-robot interaction,

they were not conducted over multiple days. It is often conjectured that an operator’s

interaction over longer periods might evolve and hence could be different from their

initial interaction. To investigate the impact of long term interaction, we conducted

the ‘Long Term’ experiment (LT). This chapter presents details of this experiment along

with some of the data from the experiment.

11.1 Methodology

The LT experiment was based on the RT experiment (i.e., no factors were manipulated

other than the reliability conditions). To increase the duration of interaction, the

experiment was conducted on consecutive business days. We opted for consecutive

days to ensure minimal loss of skill for the participants. A complete experiment with a
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participant consisted of six sessions, each on a different day.

The first session was similar to the RT experiment. It was three hours long and

consisted of two trial runs and five valid runs. The compensation for the first session

was also similar to that of the RT experiment (a maximum of $30).

The remaining sessions were shorter than the first session, each an hour long. Each

session consisted of three valid runs, two of which were Reliability A and the third run

would consist of either Reliability B, C, or D. The selection of the reliability level for

runs was counter-balanced, as was the ordering of the runs. Before the start of sessions

two through six, participants were asked if they needed a quick tutorial for controlling

the robot. None of the participants requested a tutorial. The need for a tutorial was

also not observed by the experimenter during the experiments.

11.1.1 Compensation

Compensation for sessions two through six was based on the same formula as that of

session one. Since the duration of the interaction was shorter, the total compensation

amount was reduced to $15. At the end of all six sessions, they could have earned

at most $105. To provide additional motivation to the participants for finishing all six

sessions, they were also offered a completion bonus. The completion bonus was given to

participants only if they finished all six sessions. The amount of the completion bonus

was equal to the total compensation they had received until then. Hence, including the

completion bonus, the participants could get up to $210 for the entire experiment.
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11.1.2 Questionnaires

All six sessions were treated as an experiment, so the participants were asked to fill

out the post-experiment questionnaire at the end of each session. In addition to the

questionnaires, the participants were also asked to fill out all of the post-run question-

naires at the end of all runs. After the sixth session, the participants were asked by the

experimenter if they had noticed any patterns or peculiar behavior, in order to assess

the participants’ understanding of the robot’s behavior and reliability levels.

11.1.3 Participants

Conducting the long term experiments was a very difficult and time consuming task.

Logistics for the experiment presented the main problem. Since the experiment had

to be conducted on consecutive business days, it made finding participants difficult. It

also limited the number of participants that could be run per day. However, since this

was a repeated measures design, only eight participants were recruited. Along with the

impact of experience on operator behavior, we also wanted to investigate:

• If there are differences between participants who are familiar with robots and

those who are not.

• If there are differing trends with experience between participants who are familiar

with robots and those who are not.

Four participants were familiar with robots (FR condition), but were not experienced

with remote robot teleoperation; four participants from the general pool of participants,

not as familiar with robots (NFR condition), were also recruited. The participants in the

NFR conditions were similar to participants recruited for all of the other experiments,
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where the participants were not working with research robots. The mean age of the

participants was 20.7 years (SD=3.24). The mean age of the participants for the NFR

condition was 19.2 years (SD=0.95) and the mean age of the participants for the FR

condition was 22.25 years (SD=4.19). Of the eight participants, three were female, two

of whom were in the FR condition. Not all of the data and accompanying analyses are

presented in this chapter; additional data and analysis is presented in Chapter 12.

11.2 Effect on Trust

Trust was measured using the post-run questionnaire (Muir trust) and the area under

the trust curve metric (AUTC). The results from these sections are presented below.

For all of the metrics presented in this chapter, data was analyzed to examine if there

was a difference between sessions, a difference between the two participant groups (FR

vs NFR), and any differences between the sessions for the two participant groups.

11.2.1 Muir

To analyze the impact of experience over multiple sessions, a one-way ANOVA on Muir

trust data across Sessions was conducted. It showed no significant effect. We also

conducted an equivalence test between all pairs of Sessions and found no significant

results (� = 1.0), indicating that none of the sessions had statistically equivalent

results. Equivalence tests were conducted to examine if the values remained within

constant (within the specified delta) across sessions.

An unpaired two-tailed t-test for Muir between the two participant groups showed

that NFR participants (µ=8.88, �=0.78) trusted the robot significantly more than the

FR participants (µ=6.26, �=2.18, t(98)=10.03, p<0.01) (Figure 11.1).
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Figure 11.1: Muir trust across sessions for both participant groups.

To analyze the impact of experience on the two groups of participants, a one-way

ANOVA on the Muir trust data across Sessions for both groups was conducted. It

showed no significant effect for the FR group. However, the result of the one-way

ANOVA was significant for the NFR group, F (5,72)=3.43, p<0.01. A post hoc Tukey’s

HSD test showed that Muir trust values for Session 1 (µ=8.32, �=0.74) were signifi-

cantly lower than those in Session 4 (µ=9.25, �=0.68, p<0.05) and 6 (µ=9.16, �=0.65,

p<0.05) (Figure 11.1). The difference between Session 1 and other sessions was often

found and is reported in the following sections. However, this difference was primarily

due to the fact that Session 1 had four runs, three of which were in low reliability,

whereas Sessions 2 through 6 only had one run with low reliability.

Interestingly, while the FR group did not show any significant differences, the trust

values for the different sessions were also not found to be statistically equivalent either

(� = 1.0). On the other hand, for the NFR group, the trust values for all pairs of
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Sessions, except with Session 1 were found to be statistically significant. We suspect

this disparity between the two groups was due to the high standard deviation observed

for the FR group (nearly twice that of NFR group).
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Figure 11.2: AUTC trust across sessions for both participant groups.

11.2.2 Area Under the Trust Curve (AUTC)

A one-way ANOVA on AUTC data across Sessions showed no significant effect. An

equivalence between all pairs of Sessions found no significant results (� = 12.0), indi-

cating that none of the sessions had statistically equivalent results.

An unpaired two-tailed t-test for AUTC between the two participant groups showed

that NFR participants (µ=79.48, �=37.93) trusted the robot significantly more than

FR participants (µ=51.11, �=38.97, t(154)=4.62, p<0.01) (Figure 11.2).

A one-way ANOVA on the AUTC data across Sessions for both groups showed no

significant effect for both groups. An equivalence between all pairs of Sessions for both
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participant groups found no significant results (� = 12.0), indicating that none of the

sessions for both groups of participants had statistically equivalent results.

Similar results were observed for both Muir and AUTC trust values. No difference

was found between Sessions (2-6) when the data from the two participant groups was

analyzed together or separately. The lack of equivalence for most of the analyses in-

dicates that there are minor variations in trust ratings across sessions. This lack of a

difference and equivalence indicates that the trust does not significantly change over an

extended period of interaction, nor does it stay constant, respectively.

11.3 Effect on Control Allocation

Control allocation was analyzed using two metrics: the number of mode switches and

the number of gates passed in the correct autonomy mode (control allocation strategy).

11.3.1 Mode switches

A one-way ANOVA across Sessions showed a significant effect, F (5,151)=2.35, p<0.05.

However, a post hoc Tukey’s HSD test showed no significant difference between sessions.

An equivalence test between all pairs of Sessions found significant results (� = 2.0) for

all pairs of sessions except with Session 1, indicating that the number mode switches

were similar across Sessions two through six.

An unpaired two-tailed t-test between the two participant groups showed that NFR

participants (µ=4.12, �=2.58) had significantly more mode switches than FR partici-

pants (µ=3.15, �=2.13, t(149)=2.58, p<0.05) (Figure 11.3).

A one-way ANOVA on Sessions for both groups showed no significant effect for both

groups. A equivalence test for the FR group showed significant results for all pairs of
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sessions except with Session 1. A similar equivalence test for the NFR group showed

equivalence between Sessions 2, 4, 5, and 6.

These results show that while there was a significant difference between the partic-

ipants groups, their behavior was consistent over the extended period of interaction.
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Figure 11.3: Left: Mode switches. Right: Control allocation strategy.

11.3.2 Control Allocation Strategy

A one-way ANOVA across Sessions showed no significant effect. An equivalence test

showed significant results (� = 2.0) for all pairs of sessions except with Session 6. The

lack of similarity with Session six was observed because Participants 2 and 8 (both from

the NFR group) drove the robot in robot assisted mode for the last run. When asked

about this behavior, both participants mentioned that this was their last run, so they

wanted to drive the robot on their own.
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An unpaired two-tailed t-test for control allocation data between the two participant

groups showed that NFR participants (µ=14.97, �=3.12) had a significantly worse con-

trol allocation strategy than FR participants (µ=16.89, �=0.41, t(79)=-5.39, p<0.01)

(Figure 11.3).

A one-way ANOVA on Sessions for both groups showed no significant effect for both

groups. An equivalence test for the FR group showed significant results for all pairs of

Sessions. An equivalence test for the NFR group showed significant results for Sessions

3 vs 1 and Session 5 vs 1. None of the other pairs were significantly equivalent.

Similar to the results of the analysis of the mode switches, the difference between the

participant groups was significant, but the control allocation strategy across sessions

was mostly similar. These results, combined with the mode switches results, indicate

that an operator’s behavior for control allocation does not change over an extended

period of interaction.

11.4 Performance

Participants’ performance was measured using three metrics: the number of hits or

collisions, the time to complete the task, and the number of wrong turns taken. This

section provides details about the analysis of these metrics.

11.4.1 Hits

A one-way ANOVA across Sessions showed no significant effect for hits. An equivalence

test showed significant results (� = 2.0) for all pairs of sessions except with Session 1,

indicating no improvement or decrease in the collisions.

An unpaired two-tailed t-test for hits between the two participant groups showed no
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significant difference. An equivalence test showed significant results for the participant

groups.

A one-way ANOVA across Sessions for both groups showed no significant effects

(Figure 11.4). An equivalence test between sessions for the FR group showed significant

results for the following pairs of sessions: 3 vs 1, 4 vs 2, 5 vs 2, 5 vs 4, 6 vs 1, and 6 vs

3. An equivalence test between sessions for the NFR group showed significant results

for the following pairs of sessions: 3 vs 2, 4 vs 2, 4 vs 3, 6 vs 2, 6 vs 3, and 6 vs 4.

Overall, the number of hits were similar across sessions and the participant groups.

The lack of a significant difference between the two participant groups could be ex-

plained by the fact that, while the participants in the FR group were familiar with

robots, they were not familiar with the teleoperation task.

11.4.2 Time

A one-way ANOVA across Sessions showed a significant effect for time, F (5,151)=13.4,

p<0.01. A post hoc Tukey’s HSD test showed that participants took significantly longer

to complete the task in session 1 (µ=561, �=37) as compared to sessions 2 (µ=523,

�=13, p<0.01), 3 (µ=527, �=21, p<0.01), 4 (µ=524, �=14, p<0.01), 5 (µ=520, �=12,

p<0.01), and 6 (µ=526, �=23, p<0.01) (Figure 11.4). The mean time for Session 1 was

higher because Session 1 had three runs with low reliability, whereas other sessions only

had one run (out of three) with low reliability. Data from previous experiments shows

that runs with low reliability require more time. An equivalence test showed significant

results (� = 30) for all pairs of sessions except with Session 1, indicating no increase

or decrease in the time required to finish the task.

An unpaired two-tailed t-test between the two participant groups showed no sig-

nificant difference. An equivalence test showed significant results for the participant
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groups.

A one-way ANOVA across Sessions for both groups showed significant differences

for both groups and the data resembled the pattern where Session 1 took significantly

more time than the other sessions for both participant groups. An equivalence test

across sessions for both participant group showed significant results (� = 30) for all

pairs of sessions except with Session 1.

Similar to the analysis of hits, the time required to finish the task was similar

between the participant groups as well as across the sessions.
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Figure 11.4: Left: Hits. Center: Time. Right: Wrong turns.

11.4.3 Wrong Turns

A one-way ANOVA across Sessions showed a significant effect for wrong turns, F (5,151)=2.55,

p<0.05. However, a post hoc Tukey’s HSD test showed no significant differences (Fig-

ure 11.4). An equivalence test showed significant results (� = 0.33) for all pairs of

sessions indicating no improvement or decrease in the number of wrong turns.

An unpaired two-tailed t-test between the two participant groups showed no sig-
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nificant difference. An equivalence test showed significant results for the participant

groups.

A one-way ANOVA across Sessions for both groups showed no significant effect for

the FR group. However, the result of the one-way ANOVA was significant for the

NFR group, F (5,72)=3.05, p<0.05. However, a post hoc Tukey’s HSD test showed no

significant differences.

An equivalence test between sessions for the FR group showed significant results for

all pairs except the following: 3 vs 4, 3 vs 5, and 3 vs 6. An equivalence test between

sessions for the NFR group showed significant results for all pairs except the following:

1 vs 2, 1 vs 3, 1 vs 3, 1 vs 5, 6 vs 1, 6 vs 2, 6 vs 3, 6 vs 4, and 6 vs 5. Essentially,

Sessions 2 through 5 had similar numbers of wrong turns.

Overall, the performance results show no difference between the two groups, indi-

cating that familiarity with robots does not impact performance. Also, the similarity

across Sessions indicates that the performance remains steady over an extended period

of time.

11.5 Subjective Ratings

This section presents an analysis of workload, performance ratings, and perceived risk,

based on data from questionnaires that participants were asked to answer after each

run.

11.5.1 Workload

A one-way ANOVA across Sessions showed a significant effect for workload, F (5,151)=7.23,

p<0.01. A post hoc Tukey’s HSD test showed that workload was significantly higher for
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Figure 11.5: Top left: Robot’s performance rating. Top right: Self performance rating.
Bottom left: Perceived risk. Bottom right: Workload.
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session 1 (µ=2.45, �=1.02) than for sessions 2 (µ=1.81, �=0.58, p<0.01), 4 (µ=1.63,

�=0.46, p<0.01), 5 (µ=1.61, �=0.45, p<0.01), and 6 (µ=1.60, �=0.38, p<0.01) (Figure

11.5). An equivalence test showed significant results (� = 1.0) for all pairs of sessions

except with Session 1, indicating no increase or decrease in the workload across sessions.

An unpaired two-tailed t-test between the two participant groups showed that NFR

participants (µ=1.77, �=0.6) had a significantly lower workload than FR participants

(µ=2.04, �=0.89, t(136)=-2.26, p<0.05).

A one-way ANOVA across Sessions for both groups showed a significant effect for the

FR Group, F (5,73)=8.1, p<0.01. A post hoc Tukey’s HSD test showed that workload

was significantly higher for session 1 (µ=2.85, �=1.07) than sessions 2 (µ=1.93, �=0.64,

p<0.05), 4 (µ=1.62, �=0.51, p<0.01), 5 (µ=1.5, �=0.34, p<0.01), and 6 (µ=1.55,

�=0.31, p<0.01). No significant effect was found for the NFR group. An equivalence

test between sessions for the FR group showed significant results for all pairs except

the following: 1 vs 2, 1 vs 4, 3 vs 4, 1 vs 5, 3 vs 5, 1 vs 6, and 3 vs 6. An equivalence

test for the NFR group showed significant results for all pairs of sessions.

The analysis shows that participants familiar with robots showed higher workloads

than participants not familiar with robots. Also, while the workload was consistent

across most sessions, there was an unexplained spike in workload for the FR group in

Session 3. Apart from that anomaly, the workload remained consistent across sessions.

11.5.2 Robot’s Performance Rating

A one-way ANOVA across Sessions showed no significant effect for rating of the robot’s

performance. An equivalence test showed significant results (� = 1.0) for all pairs of

sessions.

An unpaired two-tailed t-test between the two participant groups showed that NFR
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participants (µ=6.64, �=0.66) significantly rated the robot’s performance to be better

than FR participants (µ=5.5, �=1.15, t(124)=7.56, p<0.01) (Figure 11.5, top left).

A one-way ANOVA across Sessions for both groups showed a significant effect for

the NFR Group, F (5,72)=4.45, p<0.01. A post hoc Tukey’s HSD test showed that the

robot’s performance rating was significantly lower for session 1 (µ=6.1, �=0.85) than

sessions 2 (µ=6.83, �=0.38, p<0.05), 3 (µ=6.83, �=0.57, p<0.05), 4 (µ=6.81, �=0.4,

p<0.05), 5 (µ=6.9, �=0.3, p<0.01), and 6 (µ=6.75, �=0.62, p<0.05). No significant

effect was found for the FR group. An equivalence test for the FR group across sessions

showed significant results for the following pairs of Sessions: 3 vs 1, 3 vs 2, 5 vs 2, 5

vs 4, 6 vs 2, 6 vs 4, and 6 vs 5. An equivalence test for the NFR group across sessions

showed significant results for all of the session pairs.

The analysis shows that there was a difference between the robot’s performance

rating for the two groups of participants, and that the NFR group was more consistent

in their ratings over an extended interaction.

11.5.3 Self Performance Rating

A one-way ANOVA across Sessions showed a significant effect for the self performance

rating, F (5,151)=2.64, p<0.05. A post hoc Tukey’s HSD test showed that the self

performance rating for Session 1 (µ=5.85, �=1.21) was significantly lower than that of

Session 4 (µ=6.59, �=0.5, p<0.05) (Figure 11.5). An equivalence test showed significant

results (� = 1.0) for all pairs of sessions except Sessions 5 vs 1 and 5 vs 3.

An unpaired two-tailed t-test between the two participant groups showed that NFR

participants (µ=6.69, �=0.56) significantly rated their self performance to be better

than FR participants (µ=5.92, �=1.14, t(114)=5.35, p<0.01).

A one-way ANOVA across Sessions for both groups showed a significant effect for
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the NFR Group, F (5,72)=4.13, p<0.01. A post hoc Tukey’s HSD test showed that

the self performance rating was significantly lower for Session 1 (µ=6.25, �=0.78) than

Session 2 (µ=6.83, �=0.38, p<0.05), 3 (µ=6.91, �=0.28, p<0.01), 4 (µ=6.81, �=0.4,

p<0.05), and 5 (µ=6.9, �=0.3, p<0.05). No significant effect was found for the FR

group. An equivalence test for the FR group across sessions showed significant results

for the following pairs of Sessions: 3 vs 1, 4 vs 2, 6 vs 2, and 6 vs 4. An equivalence

test for the NFR group across sessions showed significant results for all of the session

pairs.

The analysis shows that there was a difference between the self performance rating

for the two groups of participants, and that the NFR group was more consistent in

their ratings over an extended interaction. These results are similar to the robot’s

performance ratings presented in the previous section.

11.5.4 Perceived Risk

A one-way ANOVA across Sessions showed a significant effect for perceived risk, F (5,151)=3.94,

p<0.01. A post hoc Tukey’s HSD test showed that the risk for session 1 (µ=3.52,

�=2.14) was significantly higher than that of sessions 4 (µ=1.77, �=1.3, p<0.01) and 5

(µ=1.78, �=1.2, p<0.01) (Figure 11.5). An equivalence test showed significant results

(� = 1.0) for the following pairs of sessions: 3 vs 2, 5 vs 4, and 6 vs 2. This analysis

shows that was some variation between the perceived risk across sessions. No trends in

the data were observed.

An unpaired two-tailed t-test between the two participant groups showed that NFR

participants (µ=1.67, �=1.23) significantly rated the risk to be lower than FR partici-

pants (µ=3.22, �=2.21, t(122)=-5.41, p<0.01).

A one-way ANOVA across Sessions for both groups showed a significant effect for
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the NFR group, F (5,72)=6.79, p<0.01. A post hoc Tukey’s HSD test showed that the

self performance rating was significantly higher for Session 1 (µ=2.85, �=1.75) than

Session 2 (µ=1.41, �=0.66, p<0.01), 3 (µ=1.25, �=0.62, p<0.01), 4 (µ=1.09, �=0.3,

p<0.01), 5 (µ=1.27, �=0.64, p<0.01), and 6 (µ=1.33, �=0.3, p<0.01). No significant

effect was found for the FR group. An equivalence test for the FR group across sessions

showed no significant results for any of the pairs of Sessions. An equivalence test for

the NFR group across sessions showed significant results for all pairs of Sessions except

with Session 1. The perceived risk was different between the two participant groups,

and the participants in the NFR group had a consistent perceived risk rating whereas

the participants in the FR group did not.

Overall, the subjective ratings, like the other data presented earlier in this chapter,

show that the participants’ ratings do not change over an extended interaction.

11.6 Conclusions

The data indicates that participants that were familiar with robots trusted the robot

less (Muir and AUTC) than those that were not familiar with the robot (Table 11.1).

However, no difference across sessions was found1, indicating that their trust during the

initial interaction does not sway much for successive interactions. While participants

familiar with robots had fewer mode switches, their control allocation strategy was

better. This result indicates that the familiarity with robots can cause operators to

be more cognizant or alert thereby resulting in efficient autonomy use. While the

participants were familiar with robots and hence the potential risks, they were not

expert teleoperators, which, when combined with the fact that they were more cognizant
1Due to the nature of Session 1, differences between Session 1 and other sessions are ignored.
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Between Sessions Between Groups FR sessions NFR sessions
Muir <
AUTC <
Mode switches <
Control Allocation >

Hits
Time
Wrong turns
TLX >
Robot’s performance <
Self performance <
Risk >

Table 11.1: The significant results from this LT experiment. The significant results
across sessions where only session 1 values were found to be different from other sessions
are not presented. The ‘<’ sign indicates that the value was significantly lower for FR
than NFR and ‘>’ indicates the opposite.

of the robot’s performance, led to a higher workload. Participants who were familiar

with robots also judged themselves and the robot more harshly. While differences

between the two groups were observed, no significant difference across sessions was

found, indicating that operator behavior does not significantly change over sustained

discrete interactions in these types of robot operations.
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Chapter 12

Combined Results

Previous chapters present data from individual experiments and compare them with

the baseline experiment (either DR or RT). In this chapter, the data from the previous

experiments is presented in aggregate1. The data has been analyzed in aggregate to

allow for two distinct set of observations:

• Patterns or differences that are common across all the experiments. This analysis

will be performed across reliability conditions.

• Differences between the LT, F, and RD experiments.

To examine the data based on the two criteria listed above, two-way ANOVAs were

performed on the data, and when significant differences were observed, Tukey’s HSD

test was conducted.
1Unless explicitly mentioned, data from the DR and LSA experiments have not been included due

to the differences between the experimental methodologies. As in all of the earlier analyses, data from
the first run was not included for analysis. The first run was always in high reliability to allow the
participants to familiarize themselves with the system.
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Figure 12.1: The age and gender of participants across experiments.

12.1 Demographics

A total of forty-seven participants were recruited for four experiments. The mean age

was 26.9 years (SD=11.2). Nineteen participants were female, and twenty-eight were

male. The distribution of age and gender across the experiments is shown in Figure

12.1. A one-way ANOVA across experiments showed significant differences in age,

F (3,43)=7.35, p<0.01 (Figure 12.1). A post hoc Tukey’s HSD test showed that partici-

pants in RT (µ=37.4, �=16.32) were significantly older than participants in F (µ=22.2,

�=4.0, p<0.01), LT (µ=20.7, �=3.2, p<0.01), and RD (µ=26.8, �=7.7, p<0.05).

12.1.1 Prior Experience

No statistical difference for prior experience in any of the four categories was found

across experiments. A one-way ANOVA across experiments showed no significant dif-

ferences in robot experience, F (3,43)=0.55, p=0.64, radio-controlled cars, F (3,43)=0.7,

p=0.55, experience with real-time strategy games, F (3,43)=2.1, p=0.1, and first person
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shooter games, F (3,43)=0.91, p=0.43.

12.1.2 Risk Attitude

As part of the pre-experiment questionnaire participants were asked to answer ques-

tions regarding their risk attitude. These four questions are listed in Appendix C

and are are referred to as RQ1, RQ2, RQ3, and RQ4. No statistical difference for

prior experience in any of the four risk attitude questions across experiments was

found. A one-way ANOVA across experiments showed no significant differences in

RQ1, F (3,43)=2.74, p=0.054, RQ2, F (3,43)=1.5, p=0.22, RQ3, F (3,43)=1.5, p=0.22,

and RQ4, F (3,43)=0.42, p=0.73.

12.2 Effect on Trust

A two-way ANOVA for Muir showed significant effects for Reliability, F (3,289)=8.69,

p<0.01 and Experiment, F (3,289)=3.08, p<0.05 (Figure 12.2). The interaction between

Reliability and Experiment was not found to be significant. A post hoc Tukey’s HSD for

Reliability showed that trust for Reliability A (µ=7.9, �=1.9) was significantly higher

than Reliability B (µ=6.2, �=2.2, p<0.01), Reliability C (µ=6.3, �=2.0, p<0.01), and

Reliability D (µ=6.1, �=2.1, p<0.01). A post hoc Tukey’s HSD for Experiment showed

that trust (Muir) in LT (µ=7.5, �=2.1) was significantly higher than trust in F (µ=6.2,

�=1.9, p<0.05).

A two-way ANOVA for AUTC showed significant effects for Reliability, F (3,287)=17.43,

p<0.01 but not for Experiment, F (3,287)=1.0, p=0.39 (Figure 12.3). The interaction

between Reliability and Experiment was also not found to be significant, F (3,287)=0.22,

p=0.99. A post hoc Tukey’s HSD for Reliability showed that trust for Reliability A
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Figure 12.2: Left: Muir trust for the different experiments. Right: Muir trust across
the different reliability conditions.

(µ=82.9, �=42.4) was significantly higher than Reliability B (µ=32.2, �=45.8, p<0.01),

Reliability C (µ=47.1, �=45.1, p<0.01), and Reliability D (µ=54.7, �=41.9, p<0.01).

It also showed that trust for Reliability B was significantly higher than trust for Relia-

bility D (p<0.05).

The effect of Reliability is not surprising, since the same trend of high trust for

Reliability A and a similar level for Reliability B, C, and D was found for all the

experiments. However, the AUTC data across reliability is interesting, because, not

only did it show that trust was higher for Reliability A than Reliability B, C, and

D, but also that trust for Reliability D was significantly higher than Reliability B.

This data conclusively shows that indicates that periods of low reliability early in the

interaction result in a significant detrimental effect on operator trust than periods of

low reliability later in the interaction.
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Figure 12.3: Left: AUTC trust for the different experiments. Right: AUTC trust across
the different reliability conditions.

12.3 Effect on Control Allocation

A two-way ANOVA for autonomy mode switches showed significant effects for Relia-

bility, F (3,292)=25.01, p<0.01 and Experiment, F (3,292)=4.96, p<0.01 (Figure 12.4).

The interaction between Reliability and Experiment was not found to be significant,

F (3,292)=0.56, p=0.82. A post hoc Tukey’s HSD for Reliability showed that mode

switches in Reliability A (µ=2.31, �=2.66) were significantly fewer than Reliability B

(µ=6.52, �=3.75, p<0.01), Reliability C (µ=5.57, �=2.99, p<0.01), and Reliability

D (µ=5.69, �=2.89, p<0.01). A post hoc Tukey’s HSD for Experiment showed that

mode switches in RT (µ=3.91, �=3.33) were significantly lower than mode switches in

F (µ=5.81, �=4.63, p<0.01) and RD (µ=5.75, �=4.08, p<0.05).
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Figure 12.4: Left: Mode switches for the different experiments. Right: Mode switches
across the different reliability conditions.
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12.3.1 Inappropriate Mode Switches

To better examine how and when participants switched autonomy modes we classi-

fied autonomy mode switches as appropriate and inappropriate. When participants

switched out of the ideal autonomy mode, the autonomy mode switch was considered

to be inappropriate. These inappropriate autonomy mode switches were then classified

as switches into the robot assisted mode or fully autonomous mode. The following

subsections provide statistical analysis for these metrics.

12.3.1.1 Inappropriate Switches to RA

A two-way ANOVA showed a significant effect for Experiment, F (3,292)=3.88, p<0.01.

The effect of Reliability was not significant, F (3,292)=2.51, p=0.058 (Figure 12.5).

The interaction between Reliability and Experiment was not found to be significant,

F (3,292)=1.06, p=0.39. A post hoc Tukey’s HSD for Experiment showed that LT

(µ=0.68, �=1.14) had significantly fewer unnecessary than mode switches to RA than

RD (µ=1.31, �=1.41, p<0.05). The data shows that the number of inappropriate

autonomy mode switches to RA were (marginally significant) more for Reliability B,

indicating that an early period of low reliability caused some confusion leading par-

ticipants to unnecessarily switch out of the robot assisted mode during low reliability

periods.

12.3.1.2 Inappropriate Switches to FA

A two-way ANOVA showed significant effects for Experiment, F (3,292)=12.07, p<0.01

and Reliability, F (3,292)=18.06, p<0.01 (Figure 12.5). The interaction between Re-

liability and Experiment was not found to be significant, F (3,292)=1.72, p=0.08. A

post hoc Tukey’s HSD for Experiment showed that F (µ=1.06, �=1.59) had signifi-

131



cantly more inappropriate mode switches to FA than LT (µ=0.15, �=0.44, p<0.01),

RT (µ=0.41, �=0.91, p<0.01), and RD (µ=0.61, �=0.89, p<0.05). A post hoc Tukey’s

HSD for Reliability showed that Reliability A (µ=0, �=0) had significantly less inap-

propriate mode switches than Reliability B (µ=0.55, �=1.04, p<0.01), Reliability C

(µ=1.13, �=1.33, p<0.01), and Reliability D (µ=0.59, �=1.13, p<0.01). Reliability C

had significantly more inappropriate mode switches than B (p<0.01) and Reliability D

(p<0.01). We suspect the high mode switches in experiment F were due to the grad-

uated feedback provided to the participants, causing them to switch out of the fully

autonomous mode.

12.3.1.3 Total Inappropriate Switches

A two-way ANOVA showed significant effects for Experiment, F (3,292)=10.18, p<0.01

and Reliability, F (3,292)=7.29, p<0.01 (Figure 12.5). The interaction between Relia-

bility and Experiment was not found to be significant, F (3,292)=1.49, p=0.15. A post

hoc Tukey’s HSD for Experiment showed that LT (µ=0.83, �=1.19) had significantly

less unnecessary mode switches than F (µ=2.25, �=2.66, p<0.01) and RD (µ=1.93,

�=1.54, p<0.01). A post hoc Tukey’s HSD for Reliability showed that Reliability A

(µ=0.81, �=1.43) had significantly less unnecessary mode switches than Reliability B

(µ=1.93, �=2.21, p<0.01) and Reliability C (µ=2.01, �=1.83, p<0.01).

Fewer inappropriate autonomy mode switches in LT is not surprising, given the

large proportion of high reliability A runs. However, the interesting result if the lack of

significance between Reliability A and Reliability D. This result along with some other

results in this chapter indicate that when periods of low reliability occur late in the

interaction operators better manage those situations.
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Figure 12.6: Left: Control allocation strategy for the different experiments. Right:
Control allocation strategy across the different reliability conditions.

12.3.2 Control Allocation Strategy

A two-way ANOVA for control allocation strategy showed a significant effect for Experi-

ment, F (3,291)=17.39, p<0.01. The effect of Reliability was not significant, F (3,291)=0.24,

p=0.86 (Figure 13.3). The interaction between Reliability and Experiment was also not

found to be significant, F (3,291)=0.27, p=0.98. A post hoc Tukey’s HSD for Exper-

iment showed that LT (µ=16.03, �=2.26) had a significantly better control allocation

strategy than RD (µ=13.29, �=5.46, p<0.01), RT (µ=11.06, �=6.21, p<0.01), and F

(µ=13.89, �=4.55, p<0.01). F also had a better control allocation strategy than RT

(p<0.01).

The control allocation strategy data analyzed in aggregate shows significant results

that are consistent with the results found in individual experiments (Chapters 9 and

10).
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Figure 12.7: Left: Hits and wrong turns for the different experiments. Right: Hits and
wrong turns across the different reliability conditions.

12.4 Performance

Three metrics were used to evaluate performance. This section presents analyses for

hits, run time, and wrong turns.

12.4.1 Hits

A two-way ANOVA showed a significant effect for Experiment, F (3,291)=26.4, p<0.01.

The effect of Reliability was not significant, F (3,291)=2.3, p=0.07 (Figure 12.7). The

interaction between Reliability and Experiment was also not found to be significant,

F (3,291)=0.71, p=0.69. A post hoc Tukey’s HSD for Experiment showed that RT

(µ=11.02, �=15.54) had a significantly more hits than RD (µ=2.02, �=2.77, p<0.01),

LT (µ=0.76, �=2.36, p<0.01), and F (µ=2.59, �=3.29, p<0.01). These are similar

results those found in Chapters 9 and 10.
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Figure 12.8: Left: Run time for the different experiments. Right: Run time across the
different reliability conditions.

12.4.2 Time

A two-way ANOVA showed significant effects for Experiment, F (3,291)=25.57, p<0.01

and Reliability, F (3,291)=3.61, p<0.05 (Figure 12.8). The interaction between Reliabil-

ity and Experiment was not found to be significant, F (3,291)=0.77, p=0.64. A post hoc

Tukey’s HSD for Experiment showed that RT (µ=692, �=243) took significantly more

time than RD (µ=554, �=54, p<0.01), LT (µ=532, �=27, p<0.01), and F (µ=577,

�=65, p<0.01). A post hoc Tukey’s HSD for Reliability showed that A (µ=537, �=77)

took significantly less time than B (µ=601, �=139, p<0.01), and C (µ=592, �=130,

p<0.05). The lack of a significant difference between Reliability A and Reliability D is

interesting and adds credence to the hypothesis that periods of low reliability later in

the run are less detrimental to operator behavior and overall performance.
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12.4.3 Wrong Turns

A two-way ANOVA showed significant effects for Experiment, F (3,291)=19.79, p<0.01,

Reliability, F (3,291)=8.55, p<0.01, and the interaction between Reliability and Exper-

iment, F (3,291)=2.25, p<0.05 (Figure 12.7). A post hoc Tukey’s HSD for Experi-

ment showed that RT (µ=1.04, �=1.41) had significantly more wrong turns than RD

(µ=0.40, �=0.58, p<0.01) and LT (µ=0.07, �=0.28, p<0.01). LT had fewer wrong

turns than F (µ=0.7, �=1.0, p<0.01). A post hoc Tukey’s HSD for Reliability showed

that A (µ=0.08, �=0.33) had significantly fewer wrong turns than B (µ=0.67, �=1.04,

p<0.01), C (µ=0.65, �=1.12, p<0.01), and D (µ=0.54, �=0.91, p<0.01). The signifi-

cant results reported here are not surprising, since the same results were also found in

previous chapters. However, the interesting result is the lack of significance between

experiments F and RD. We expected F would have fewer wrong turns due to the feed-

back provided, however, there were in fact fewer wrong turns (not significant) in RD.

To examine this further the wrong turns were categorized as automation errors and

manual errors. The next subsections present analyses for those metrics.

12.4.4 Automation Errors (AER)

A two-way ANOVA showed significant effects for Experiment, F (3,291)=4.16, p<0.01

and Reliability, F (3,291)=4.77, p<0.01. The interaction between Reliability and Ex-

periment was not significant, F (3,291)=1.74, p=0.07 (Figure 12.9). A post hoc Tukey’s

HSD for Experiment showed that RT (µ=0.29, �=0.74) had significantly more AERs

than LT (µ=0.02, �=0.19, p<0.05) and F (µ=0.25, �=0.66, p<0.05). A post hoc

Tukey’s HSD for Reliability showed that A (µ=0, �=0) had significantly fewer AERs

than B (µ=0.18, �=0.42, p<0.01) and C (µ=0.29, �=0.71, p<0.01).
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Figure 12.9: Left: Automation errors (AER) and manual errors (MER) for the different
experiments. Right: AER and MER across the different reliability conditions.

12.4.5 Manual Errors (MER)

A two-way ANOVA showed significant effects for Experiment, F (3,291)=13.15, p<0.01,

Reliability, F (3,291)=5.59, p<0.01, and interaction between Reliability and Experi-

ment, F (3,291)=2.47, p<0.01 (Figure 12.9). A post hoc Tukey’s HSD for Experiment

showed that RT (µ=0.75, �=1.24) had significantly more MERs than LT (µ=0.05,

�=0.23, p<0.01) and RD (µ=0.31, �=0.51, p<0.01). F (µ=0.45, �=0.75) had more

MERs than LT (p<0.01). A post hoc Tukey’s HSD for Reliability showed that A

(µ=0.7, �=0.32) had significantly fewer AERs than B (µ=0.55, �=0.95, p<0.01) and

C (µ=0.39, �=0.93, p<0.05).

12.4.6 Automation Errors vs Manual Errors

A pairwise two-tailed t-test showed that there were significantly more MERs (µ=0.28,

�=0.69) than AER (µ=0.13, �=0.48, t(307)=3.19, p<0.01). A pairwise two-tailed
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t-test for each reliability showed significant results for Reliability A and Reliability

B. In Reliability A, there were significantly more MERs (µ=0.07, �=0.32) than AERs

(µ=0, �=0, t(126)=2.74, p<0.01). In Reliability B, there were significantly more MERs

(µ=0.55, �=0.95) than AERs (µ=0.18, �=0.42, t(60)=2.75, p<0.01). The performance

data analyzed in aggregate shows significant results that are mostly consistent with the

results found in individual experiments. There is however, a lack of significance between

Reliability A and Reliability D in some categories (AER, MER, and Time), highlighting

the possibility that when periods of low reliability occur late into the interaction, they

have a less detrimental impact on performance.

12.5 Subjective Ratings

Participants were asked to answer a post-run questionnaire that included questions

regarding their performance, the robot’s performance, and the perceived risk.

12.5.1 Self Performance

A two-way ANOVA showed significant effects for Experiment, F (3,289)=20.42, p<0.01

and Reliability, F (3,289)=5.93, p<0.01. The interaction between Reliability and Ex-

periment was not significant, F (3,289)=1.59, p=0.11 (Figure 13.5). A post hoc Tukey’s

HSD for Experiment showed that LT (µ=6.36, �=0.88) had a significantly higher self

performance rating than RT (µ=4.82, �=1.65, p<0.01), RD (µ=5.72, �=1.37, p<0.05),

and F (µ=5.39, �=1.3, p<0.01). RD had better ratings than RT (p<0.01). A post

hoc Tukey’s HSD for Reliability showed that self performance rating in Reliability A

(µ=6.27, �=1.14) was higher than Reliability B (µ=5.47, �=1.44, p<0.01), Reliability

C (µ=5.62, �=1.23, p<0.05), and Reliability D (µ=5.43, �=1.4, p<0.01).
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Figure 12.10: Left: Subjective ratings for the different experiments. Right: Subjective
ratings across the different reliability conditions.

12.5.2 Robot Performance

A two-way ANOVA showed no significant effects for Experiment, F (3,289)=1.58, p=0.19,

Reliability, F (3,289)=0.24, p=0.86, and the interaction between Reliability and Exper-

iment, F (3,289)=0.46, p=0.89 (Figure 13.5).

12.5.3 Robot Performance vs Self Performance

A pairwise two-tailed t-test showed that the self performance rating (µ=5.83, �=1.32)

was significantly lower than the robot’s performance rating (µ=6.08, �=1.06, t(304)=3.44,

p<0.01). The lower self performance rating shows that participants blamed themselves

more than the robot for poor performance.
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Figure 12.11: Left: Relationship between perceived risk and robot’s performance rating.
Right: Relationship between perceived risk and robot’s performance rating.

12.5.4 Perceived Risk

A two-way ANOVA showed significant effects for Experiment, F (3,289)=20.5, p<0.01

and Reliability, F (3,289)=3.82, p<0.05. The interaction between Reliability and Ex-

periment was not significant, F (3,289)=0.71, p=0.69 (Figure 13.5). A post hoc Tukey’s

HSD for Experiment showed that LT (µ=2.39, �=1.95) had a significantly lower risk

rating than RT (µ=4.95, �=2.7, p<0.01), RD (µ=4.04, �=2.47, p<0.05), and F (µ=4.7,

�=2.17, p<0.01). A post hoc Tukey’s HSD for Reliability showed that risk rating in A

(µ=2.7, �=2.23) was lower than B (µ=4.0, �=2.4, p<0.05), and D (µ=4.34, �=2.59,

p<0.01).

A strong significant negative correlation was observed between the self performance

rating and perceived risk, r=-0.66, p<0.01. Additionally, a significant weak negative

correlation was observed between robot’s performance rating and perceived risk, r=-

0.26, p<0.01 (Figure 12.11).
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Figure 12.12: Left: Workload for the different experiments. Right: Workload across
the different reliability conditions.

12.5.5 Workload

A two-way ANOVA showed significant effects for Experiment, F (3,289)=48.66, p<0.01

and Reliability, F (3,289)=9.12, p<0.01. The interaction between Reliability and Exper-

iment was not significant, F (3,289)=0.39, p=0.93 (Figure 12.12). A post hoc Tukey’s

HSD for Experiment showed that LT (µ=1.87, �=0.71) had a significantly lower work-

load than RT (µ=3.26, �=1.14, p<0.01), RD (µ=2.99, �=1.01, p<0.01), and F (µ=3.67,

�=1.17, p<0.01). Workload for RD was lower than F (p<0.01). A post hoc Tukey’s

HSD for Reliability showed that workload in A (µ=2.01, �=0.92) was significantly lower

than B (µ=3.1, �=1.28, p<0.05), C (µ=3.01, �=1.14, p<0.01), and D (µ=3.04, �=1.12,

p<0.01).

The aggregate subjective data reinforces that initial finding regarding participants

blaming themselves more than the robot. This conclusion is highlighted by the fact

that the self performance rating is lower than the robot’s performance rating and that
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much stronger negative correlation between perceived risk and self performance rating

than perceived risk and robot’s performance rating.

12.6 Conclusions

The analyses presented in this chapter validates some of the findings previously reported

and also shows some new results. Muir trust scale does not appear to be sensitive to the

changes in trust during an interaction between the different reliability conditions, even

when all of the experiments are considered in aggregate. However, unlike Muir, AUTC

is sensitive to the changes in trust during an interaction due to the real-time collection

of trust data. Not only was trust for Reliability A was higher than Reliability, B, C,

and D, but trust for Reliability D was higher than Reliability B. This is highlighted the

crucial impact of timing of periods of low reliability on operator trust. Similar effects

were also observed in other metrics. For example, no significant difference was observed

in the total number of inappropriate mode switches for Reliability A and Reliability D.

This result supports the hypothesis of impact of timing on periods of reliability drops.

Similarly, the no significant difference between Reliability A and Reliability D was

observed for time and manual errors (MERs). These results indicate the importance of

ensuring a stable and reliable initial interaction with the remote robot every time. If

there is a disruption on reliability early on, that impacts operator behavior and overall

performance.
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Chapter 13

Factors that Influence Operator

Behavior

The participants recruited for all of the experiments reported in this thesis spanned a

wide range for age, prior experience, and attitudes towards risk. When participants’

behavior was collectively analyzed, it was observed that age showed a strong relation-

ship not only with their behavior, but also with other potential mitigating factors such

as prior experience and risk attitudes. Hence, this chapter looks at the relationship

between operator characteristics (specifically age) and operator behavior in an attempt

to predict behavior and potentially take corrective action if needed. It should be noted

that these relationships and analyses are generalized and thus do not apply to every op-

erator. Instead, they indicate that similar trends or relationships will likely be observed

with a large enough population and could be utilized accordingly.
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Table 13.1: Correlation of different variables with age and the risk attitude questions
(RQ1 - RQ4). A single ‘*’ indicates that the p value was between 0.05 and 0.01. A ‘**’
indicates that the p values was less than 0.01.

Age RQ1 RQ2 RQ3 RQ4
Trust (Muir) -0.237⇤⇤ 0.197⇤⇤ 0.434⇤⇤ -0.342⇤⇤ 0.017
Trust (AUTC) 0.055 0.041 0.124⇤ -0.137⇤ 0.041
Mode switches -0.123⇤ 0.011 0.058 0.061 0.022
Inappropriate switches 0.002 -0.046 0.028 0.099 0.022
Gates pass in RA 0.460⇤⇤ -0.174⇤⇤ -0.176⇤⇤ 0.039 -0.138⇤
Gates pass in FA -0.479⇤⇤ 0.180⇤⇤ 0.180⇤⇤ -0.048 0.145⇤
Control allocation strategy -0.478⇤⇤ 0.175⇤⇤ 0.173⇤⇤ -0.032 0.157⇤⇤
Self performance rating -0.437⇤⇤ 0.264⇤⇤ 0.350⇤⇤ -0.121⇤ 0.133⇤
Robot performance rating -0.100 0.280⇤⇤ 0.351⇤⇤ -0.050 0.093
Perceived risk 0.344⇤⇤ -0.220⇤⇤ -0.300⇤⇤ 0.021 -0.082
Workload 0.381⇤⇤ -0.260⇤⇤ -0.310⇤⇤ 0.155⇤⇤ -0.120⇤
Hits 0.562⇤⇤ -0.060 -0.142⇤ -0.036 -0.166⇤⇤
Time 0.632⇤⇤ -0.191⇤⇤ -0.261⇤⇤ -0.008 -0.171⇤⇤
Wrong turns 0.387⇤⇤ -0.254⇤⇤ -0.229⇤⇤ 0.104 -0.115⇤
Automation errors (AER) 0.125⇤ -0.142⇤ -0.094 0.094 -0.034
Manual errors (MER) 0.385⇤⇤ -0.219⇤⇤ -0.226⇤⇤ 0.069 -0.118⇤
RQ1 -0.316⇤⇤ - 0.674⇤⇤ 0.139⇤ 0.391⇤⇤
RQ2 -0.402⇤⇤ - - 0.069 0.367⇤⇤
RQ3 -0.057 - - - 0.556⇤⇤
RQ4 -0.199⇤⇤ - - - -
Robots 0.170⇤⇤ - - - -
RCCars 0.141⇤⇤ - - - -
RTS 0.341⇤⇤ - - - -
FPS 0.407⇤⇤ - - - -
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13.1 Demographics

As part of the demographic questionnaire the participants were asked to report their

experience with robots and games and also report their attitudes towards risk. This

section describes the relationship between them and age.

1

2

3

4

5

6

7

20 30 40 50 60
Age

20 30 40 50 60
Age

20 30 40 50 60
Age

20 30 40 50 60
Age

Robots RC cars FPS games RTS games

20 30 40 50 60
Age

1

2

3

4

5

6

20 30 40 50 60
Age

20 30 40 50 60
Age

20 30 40 50 60
Age

RQ1 RQ2 RQ3 RQ4

Figure 13.1: (Top) Left to right: Relationship between age and prior experience with
robot, radio-controlled cars, first-person shooter games, and real-time strategy games.
(Bottom) Left to right: Relationship between age and risk attitude questions RQ1,
RQ2, RQ3, and RQ4.

13.1.1 Prior Experience

Participants were asked to indicate their prior experience with robots, radio-controlled

cars, real-time strategy games, and first-person shooter games. The responses were

recorded using a seven point Likert scale, with 1 being ‘Strongly agree’ and 7 being

‘Strongly disagree.’ A higher rating indicated less familiarity. As expected, the younger
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participants were more familiar with all of the four categories. Since video games have

been around for a shorter timespan than robots and radio-controlled cars, there was a

stronger correlation for video games (Table 13.1 and Figure 13.1). These correlations,

while significant at the moment, are expected to change as the population ages. If

designers of autonomy and user interfaces wish to leverage concepts and standards

from the gaming industry, they must provide accommodations for participants who are

not familiar with video games.

13.1.2 Risk Attitude

Participants were asked to indicate their attitudes towards risk using the following

questions [Grasmick et al., 1993]:

• RQ1: I like to test myself every now and them by doing something a little risky

• RQ2: Sometimes I will take a risk just for the fun of it

• RQ3: I sometimes find it exciting to do things for which I might get into trouble

• RQ4: Excitement and adventure are more important to me than security

The responses were recorded using a six point Likert scale, with 1 being ‘Strongly

disagree’ and 6 being ‘Strongly agree’. Hence, a higher rating indicates a tendency to

take more risk and vice versa. As expected, the younger participants were more willing

to take risks. All of the risk questions showed a significant correlation with age, expect

risk question 3 (Table 13.1 and Figure 13.1). Unlike participants’ prior experience with

devices and games, risk attitudes are not expected to change with time over each age

group (i.e., younger generations will always be more likely to take more risk than the
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older generations). Therefore, the willingness of operators to take risks must be taken

into consideration while designing automated robotic systems.

1
2
3
4
5
6
7
8
9

10

Tr
us

t (
M

ui
r)

20 25 30 35 40 45 50 55 60
Age

-60
-40
-20

0
20
40
60
80

100
120
140

 T
ru

st
 (A

U
TC

)
20 25 30 35 40 45 50 55 60

Age

Figure 13.2: Left: Relationship between age and Muir trust. Right: Relationship
between age and AUTC.

13.2 Trust

This section examines the relationship between trust (Muir and AUTC) with age and

risk attitudes. The Muir questionnaire is listed in Appendix C.

13.2.1 Age

Participants were asked to indicate their trust of the robot using the Muir questionnaire.

The responses were recorded using a ten point Likert scale, with 1 being ‘Strongly

disagree’ and 10 being ‘Strongly agree’. A higher rating indicated more trust of the

robot. A significant negative correlation with respect to age was observed (Table 13.1

and Figure 13.2). It indicates that, as operators age, they are less willing to trust the

robot or perhaps that they view the actions of the robot more critically. No significant

correlation with real-time trust using the area under the curve (AUTC) metric was
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found. This lack of correlation for AUTC and the presence of a significant correlation

with age indicates that the trends in evolution of trust during an interaction are similar

across age; however, the absolute trust is offset by age.

13.2.2 Risk Attitude

We found significant positive correlation with Muir trust and RQ1 and RQ2 and a

significant negative correlation with RQ3. The correlations for RQ1 and RQ2 indicate

that, participants that were willing to take risk also tend to trust the robot more.

This correlation is not surprising given the relationship between age and Muir trust

and age and RQ1 and RQ2. However, the correlation between Muir trust and RQ3 is

unexpected.

Overall, the data indicates that, while risk and age are correlated, the risk attitudes

do interact with other variables (like trust), therefore it is useful to investigate an

operator’s attitude towards risk, rather than simply relying on age as a predictor.
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Figure 13.3: Left to right: Relationship between age and control allocation strategy,
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13.3 Control Allocation

Control allocation was evaluated by examining the number of mode switches, the num-

ber of inappropriate mode switches, and the control allocation strategy (number of

gates passed in the appropriate autonomy mode). This section presents correlations

between these metrics and age and risk attitudes.

13.3.1 Mode Switches

There was a slight significant negative correlation of autonomy mode switches with

age (Table 13.1 and Figure 13.3). However, when the mode switches were analyzed

in detail, no significant correlation was found for inappropriate mode switches to the

robot assisted mode (RA), inappropriate mode switches to the fully autonomous mode

(FA), and total inappropriate mode switches. Similarly, no significant correlations were

found with respect to the risk attitude questions.

13.3.2 Control Allocation Strategy

A significant negative correlation to control allocation strategy was found for age. Also,

a significant positive correlation was found between the number of gates passed in RA

and age. These correlations indicate a certain amount of apprehension or ‘inertia’

[Moray and Inagaki, 1999] in switching autonomy modes that is higher with older

operators. Hence, designers should take these results into account and provide suitable

training, or additional feedback to ensure appropriate control allocation strategy.
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Figure 13.4: (Top) Left to right: Relationship between age and hits, time, and wrong
turns. (Bottom) Left to right: Relationship between age and AER and MER.

13.4 Performance

A significant positive correlation was observed for hits, time, and wrong turns with

respect to age (Table 13.1 and Figure 13.4). The data also showed a significant positive

correlation between age and AER and MER. However, the correlation between MER

and age was stronger, indicating that older participants were more likely to make a

mistake in the robot assisted mode than in the fully autonomous mode. It also indicates

that older participants fared poorly on the performance metrics; we suspect the poor

performance for older participants could be because of their propensity to keep the

robot in robot assisted mode. While negative relationships between performance and

the risk attitude were found, they were not as strong as the relationship between age

and performance.

The performance data, along with the control allocation data, shows that, as age
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increases, there is a higher probability of inappropriate control allocation especially

when the performance is poor.
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Figure 13.5: Left to right: Relationship between age and self performance rating, robot’s
performance rating, perceived risk, and workload.

13.5 Subjective Ratings

A significant negative correlation was observed for self-performance rating and age;

however, no significant correlation was observed for the robot’s performance rating

(Table 13.1 and Figure 13.5). A significant positive correlation was also observed with

age and perceived risk and workload.
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The subjective data combined together with the performance and control allocation

data indicates that the older participants preferred the robot assisted mode even though

it resulted in higher workload and poor performance. Additionally, older participants

blamed themselves more for poor performance than they did the robot.

While the correlations with age provide valuable insight into the behavior of the

potential operators, it does not explain the cause of those behaviors. Hence, it is only

possible to speculate the potential causal relationships between these factors based on

available data. One such hypothesis presented in the next section.

13.6 Modeling Operator Behavior

It is feasible to hypothesize a model that only looks at the relationship between age, risk

attitudes and data collected from other metrics during the run. However, such a model

would ignore the relationships between other metrics directly (e.g., workload and control

allocation strategy, hits and time). Examining those relationships might help to create

a comprehensive model that highlights the complexities of remote robot teleoperation.

Figure 13.6 shows the results of correlations between all of the different metrics. The

correlation coefficients between the row attribute and the column attribute are shown

for each box. The boxes that do not have a correlation value are correlations that were

either not significant or were weak (r< |0.3|). Shades of green and red indicate positive

and negative correlations, with a darker shade indicating a strong correlation.

Figure 13.6 shows many significant correlations; however, they must be interpreted

with caution. Causations can not be assumed simply due to a correlation and, even

when causations are likely, the direction of causations must be correctly interpreted or

assumed. Since there are seventy one significant correlations that are at least moderate,
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Figure 13.6: Results of correlation analysis between data collected using all the metrics.
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in boxes. Only significant correlations with r� |0.3| are shown. Shades of green and red
indicate positive and negative correlations, with a darker shade indicating a stronger
correlation.

they are not listed and individually explained in this thesis. However, Figure 13.11

shows a model that is based on all of these correlations.

The relationship between age and other factors is examined first (Figure 13.7).

The model shows that performance decreases respectively, with an operator’s age. For
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Figure 13.7: The significant correlations between age and other attributes.

example, the time required is expected to go up, along with the number of hits and

wrong turns. Therefore it takes longer to finish and the accuracy of the task is lower.

Age also impacts preference for autonomy modes. The older operators are more likely

to opt for lower autonomy levels. The older operators are more sensitive to workload

than younger operators. Finally, age impacts operators’ risk attitudes (i.e., the older

operators are less willing to take risks).
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Figure 13.8: The significant correlations between workload and other attributes.

Workload is another attribute that influences many factors. According to the model,

workload increases with operators’ age and when operators perform actions under man-

ual control or lower autonomy modes. When workload increases, it has a detrimental
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impact on performance. The model shows that as workload increases, the time required

to finish the task increases, the accuracy of the task decreases and the number of hits

increases (safety decreases). We also found that when workload increases, it is more

likely to impact accuracy of operations under manual (or low autonomy) control than

higher levels of autonomy. We also think that operators recognize higher workloads and

this recognition becomes evident in their perception of risk as it increases.
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Figure 13.9: The significant correlations between task accuracy (wrong turns) and other
attributes.

The task accuracy for the experiments described in this thesis pertains to passing

the gates on the correct side. These wrong turns can further be classified into manual

errors (MERs) and automation errors (AERs). The model shows that the task accuracy

decreases as the workload increases. It also shows that older participants tend to have a

lower task accuracy. However, when automation usage is appropriate, the task accuracy

increases.

Task accuracy also impacts other attributes, as shown in Figure 13.9. When the

task accuracy decreases, it has a further detrimental impact on performance. The
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time required to finish the task increases and the number of hits increases (or safety

decreases). Operators blame themselves when the task accuracy is decreased, and they

also expect an overall reduction in performance.

Muir TLX40
RQ2 43

RQ3

34

Figure 13.10: The significant correlations between trust (Muir) and other attributes.

While the model shows that trust is impacted by risk attitudes and perhaps by

workload, trust does not seem to directly influence control allocation strategy as ex-

pected, rather it seems to be mediated by workload. The lack of a direct significant

correlation between trust and control allocation does not indicate a lack of relation-

ship between the two. This data shows that there are other attributes that tend to

have a stronger influence on control allocation than trust. However, we suspect the

most likely possibility is that, in application domains where operators have to exten-

sively rely on automation due to poor situation awareness, high baseline workloads,

and difficult tasks, trust does not directly mediate control allocation even though it

reflects automation’s reliability. A linear fit between Muir trust and gates passed in FA

mode showed that trust accounted for about 3% of the variance in gates passed in FA

mode. However, a linear fit between age and gates passed in FA mode showed that age

accounted for about 23% of the variance.

Even though the hypothesized model of human interaction with remote robots for
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teleoperation (HARRT) is based on the statistically significant data, additional ex-

periments must be conducted to confirm the hypothesized links. At the very least,

this hypothesized model is novel since none of the research performed to date presents

the human automation model as a series of dependent connections. Of course, these

relationships are also influenced by external conditions including situation awareness,

feedback, and task difficulty. Additionally, the hypothesized model must always be

interpreted and applied in a context similar to the experiments presented in this thesis.
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Figure 13.11: A detailed hypothesized model for human interaction with remote robots
for teleoperation (HARRT). This model is based on the correlation data shown in Figure
13.6, but was created by only showing relationships that have a causal relationship. The
number next to edges represent significant correlation values as percentages. Numbers
with an underscore indicate a negative correlation and numbers without an underscore
indicate a positive correlation. The directed edges represent proposed causal relation-
ships between factors, with the factor next to the arrowhead being influenced when the
other factor changes.
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Chapter 14

Model and Guidelines

Chapters 6 - 11 describe experiments and present results showing the effects of lowering

situation awareness (SA), providing feedback, reducing task difficulty, and long term

interaction on operator trust and control allocation. This chapter presents qualitative

models based on the impact of factors described in those chapters. These models are

presented in the context of the Human interaction with Autonomous Remote Robot

for Teleoperation (HARRT) model described in Chapter 13. Finally, based on these

models, a set of guidelines are proposed to help better design autonomous robot systems

for remote teleoperation and to improve system performance during operation.

14.1 Reducing Situation Awareness (SA)

Figure 14.1 shows the impact of comparing the baseline dynamic reliability (DR) ex-

periment with the low SA experiment (LSA) where the user interface was modified to

impact participant’s SA.

159



Lowering SA

Increased time

Increased trust

More preferred FA mode
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Figure 14.1: The impact of reducing situation awareness (SA) on different factors. All
of the effects shown are based on significant differences between the Low Situation
Awareness (LSA) and Dynamic Reliability (DR) experiments.

14.1.1 Qualitative Model

As the participants’ SA was reduced, it increased their workload. We suspect the

increase in workload was due to the additional effort (cognitive and otherwise) required

to maintain the minimum required level of SA. Additionally, lowering SA makes the

task of remote teleoperation more difficult, which could also increase workload. The

combination of increased workload and poor SA increased the time needed to finish the

task.

We suspect that lowering SA forced participants into relying more on the fully au-

tonomous (FA) mode. Higher reliance on the FA mode improved the control allocation

strategy, since the ideal control allocation strategy required the participants to rely

more on FA than the robot assisted (RA) mode. While the increase in trust was unex-
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pected, it can be explained by the higher reliance on FA for a task that was difficult to

perform manually.

Lowering SA also reduced the participants’ rating of the robot’s performance, even

though there wasn’t a significant difference in performance. We suspect this was due

to two reasons: poor SA made it difficult to correctly judge the robot’s performance

and the participants could have blamed the robot for providing inadequate information

needed for teleoperation.

The qualitative model based on this analysis is incorporated into the HARRT model

and is shown in Figure 14.5. Guidelines based on the SA sub-model are described below:

G1: Reduced SA leads to higher reliance on autonomous behaviors. Intentionally reduc-

ing SA to force operators to rely on autonomous behaviors is not recommended

as a design strategy due to the other undesirable side effects. However, such in-

fluence does remain a possibility, but should only be exercised when absolutely

necessary, since doing so can potentially impact safety and performance.

G2: Suspend or defer non-critical tasks when SA is reduced. Even with higher reliance

on automation, the workload is expected to increase, so tasks that are not critical

should be suspended or deferred to offset the increased workload and to prevent

an overall detrimental impact on performance.

G3: Switch functions unaffected by reduced SA to automation. Functions not impacted

by reduced SA can be switched over to automation in an attempt to reduce

workload.

G4: Educate operators about SA. Operators associate robot performance with SA and

therefore operators must be informed (during training or during the interaction)

that low SA does not necessarily impact the robot’s performance.
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Figure 14.2: The impact of providing feedback on different factors. All of the effects
shown are based on significant differences between the Feedback (F) and Real-Time
Trust (RT) experiments.

14.2 Providing Feedback

Figure 14.2 shows the results of comparing results of the baseline Real-Time Trust

(RT) experiment with that of the Feedback (F) experiment where the participants were

provided with feedback concerning the robot’s confidence in its own sensors.

14.2.1 Qualitative Model

Providing information about the robot’s confidence in its own sensors and decision

making to the participants increased their workload, as they were given additional

information that needed to be processed. Also, participants reacted to the change in

robot’s confidence by aggressively changing autonomy modes and therefore increased

the number of autonomy mode switches. We suspect these autonomy mode changes

were another reason that resulted in an increase in workload.

However, increased autonomy mode switches and better robot supervision due to the
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variations in the robot’s confidence resulted in a better control allocation strategy, which

in turn led to better performance. Despite the better performance, the participant’s

trust of the robot did not increase; we suspect this lack of increase in trust was due to

the type of feedback provided to the participants.

It is often conjectured that providing feedback should improve an operator’s trust

in the system by helping operators better align their mental model with that of the

system’s architecture and operation. However, in this case, the information provided

to the participants could not have helped achieve better synchronized mental models.

We suspect this discrepancy occurred because no information was provided that could

sufficiently explain why the robot made a mistake in reading the labels. Providing such

information requires feedback that provides details about the robot’s internal processes.

For example, informing the user that the robot cannot read labels accurately when the

normal to the surface of the label is greater than 45 degrees would explain the decrease

in the robot’s confidence and help the operators better understand the robot’s internal

operation.

Providing feedback seems to directly impact workload and the operator’s control

allocation strategy and the impact of feedback on other attributes aligned with the

HARRT model. Figure 14.5 incorporates the sub-model specified in this section. Guide-

lines based on the feedback sub-model are described below:

G5: Provide feedback only when necessary. There is a cost associated with providing

information to operators during their interaction with a remote robot. Therefore,

information that is not only important, but also essential for immediate operation

should be provided.

G6: Select the type of feedback based on the desired effect. The type of feedback being
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provided to the operators must be considered carefully, since that can impact an

operator’s behavior. The corollary is, that based on the desired effect on operator

behavior, different types of feedback can be provided. For example, a temporal

impact on control allocation can be expected if the robot’s confidence is being

presented to the operators. However, if a long term effect is desired, other means

of providing information must be selected. For example, explaining the typical

causes for reduction in the robot’s confidence could provide the operators with

better understanding of the robot and its sensors and result in a permanent effect.

But guideline G5 regarding workload must be considered while doing so.

14.3 Reducing Task Difficulty

Figure 14.3 shows the results of comparing data from the baseline Real-Time Trust (RT)

experiment with that of the Reduced Difficulty (RD) experiment where the difficulty

of the teleoperation task was reduced.

14.3.1 Qualitative Model

With the teleoperation task easier to perform, we expected the participants to not rely

on the fully autonomous mode as much, and, consequently, a poor control allocation

strategy was expected. However, the control allocation strategy improved along with

an increase in autonomy mode switches. We suspect the reduced difficulty of the tele-

operation task reduced the participants’ workload and allowed them to better observe

the robot’s performance in the fully autonomous mode. This better robot supervision

allowed them to switch autonomy modes appropriately and improve the control alloca-

tion strategy. We suspect that improvement in supervision and the resulting increase in
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Figure 14.3: The impact of reducing task difficulty on different factors. All of the effects
shown are based on significant differences between the Reduced Difficulty (RD) and RT
experiments.

autonomy mode switches increased the workload enough to offset the initial reduction

in workload due to the easier task.

The easier teleoperation task and the better robot supervision improved perfor-

mance and safety by reducing the number of hits, reducing the time needed to finish,

and reducing the number of wrong turns. Reducing the difficulty of the task seems

to primarily impact an operator’s control allocation strategy. The impact on other

attributes aligns with the HARRT model and Figure 14.5 incorporates the sub-model

specified in this section. Guidelines based on the reduced difficulty sub-model are de-

scribed below:

G7: Tasks with reduced difficulty result in better robot supervision and no reduction

in workload. If the difficulty of the task reduces during an interaction or for in-

teractions that involve a remote robot teleoperation task that is relatively easy,

operators should be expected to allocate the additional available cognitive re-

sources towards better supervision of the robot’s behavior or secondary tasks.
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Familiarity with robots

Lowered trust (Muir/AUTC)

Decreased mode switches

Improved control allocation strategy

Increased workload

Increased perceived risk

Figure 14.4: The impact of familiarity with robots on different factors. All of the effects
shown are based on significant differences between the two participant groups in the
Long Term (LT) experiment.

G8: Do not expect operators to assume manual control for easier tasks. Operators

will not necessarily opt for lower autonomy modes, at least in scenarios involving

multiple tasks or a relatively high workload. While a reduction in the difficulty of

the task will improve performance and safety, the operator’s trust of the system

will not be affected.

14.4 Long Term Interaction

The long term interaction experiment (LT) was conducted to investigate if operator’s

trust and control allocation strategy change over a longer period of time. If trends were

found they would be incorporated into the model and the a set of guidelines would be

created based on that. Another goal of the LT experiment was to investigate if there

is a difference between operators who are familiar with robots and those who are not.
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14.4.1 Qualitative Model

Interestingly, no significant differences were found between sessions two through six for

any attribute. This lack of a difference between sessions and the significant similarities

found between sessions indicates that an operator’s behavior during initial interaction

can predict his or her behavior over the short term.

With respect to the impact of familiarity with robots, several significant differences

were found. Figure 14.4 shows the impact familiarity with robots has on operator

behavior. It shows that while there wasn’t a difference in performance, the participants

who were familiar with robots trusted them less and had an increased workload, perhaps

due to better robot supervision in accordance with the HARRT model. The better robot

supervision in turn positively affected their control allocation strategy also is consistent

with the HARRT model. Figure 14.5 shows the familiarity sub-model incorporated

into the HARRT model and guidelines based on the reduced long term and familiarity

sub-model are described below:

G9: Initial operator behavior does not change over the short term. It is possible to

quickly assess and predict an operator’s behavior over a longer period of time,

based on their initial interactions with the robot.

G10: Familiarity with robots does not impact performance. Familiarity with robots

should not be interpreted as or confused with expertise in remote robot teleop-

eration. While familiarity with robots impacts trust and other attributes it does

not impact performance.

167



14.5 Impact of Timing of Periods of Low Reliability

Periods of low reliability early in the interaction not only have a more immediate detri-

mental impact on trust, but that effect lasts throughout the interaction as it also

impedes the recovery of trust. Since the experimental setup was designed to require

participants to rely more on the fully autonomous mode, the impact of decreased trust

on other parameters was not as noticeable. However, for most balanced operations, the

impact on trust would also be accompanied with a similar impact on control allocation,

performance, and workload. Guidelines based on the impact of periods of low reliability

early in the interaction are described below:

G11: Operator’s initial interactions must always be stable. The implications of the

timing data are that initial segments of every interaction must be stable and

reliable. If needed, they should be facilitated by conducting a short controlled

interaction.

G12: In the event of a reliability drop early in the interaction corrective measures

must be taken. These steps (e.g., providing information explaining the cause for

the reduction in reliability) must essentially minimize or prevent erratic operator

behavior due to confusion or other factors. There are costs associated with these

preventive steps, along with other implications associated with different measures,

so caution must be exercised while selecting corrective measures.

14.6 Impact of Age

As people age, their attitude towards risk changes: they are willing to take fewer

risks. This unwillingness to take on more risk is inherent in the fact that they prefer
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some autonomy modes and do not switch out of their comfort zone as often. Attitudes

towards risk change with age, but so does the view or the definition of risk. It was often

mentioned by the older participants that the compensation did not matter to them as

much. However, it must also be said that they were still motivated to perform well.

The inertia in control allocation exhibited by the older participants could potentially

also have increased their workload and ultimately performance. Guidelines based on

the impact of age are described below:

G13: Know your target audience. It is important to take into account the different

population groups that will be interacting with a robot. Understanding the moti-

vations of the operators can help explain their view on potential risks and better

predict their behavior.

G14: Accommodate operators of all ages. Due to a higher probability of poor control

allocation and poor performance for older operators, more time should be spent

training them. To counteract the inertia observed, additional steps can also be

taken. However, caution must be exercised to ensure that these steps do not in-

crease their workload. For the other end of the age spectrum, given their tendency

to take more risk, the risks involved in the scenario must be explained carefully.

Since the younger population has the ability to better manage workload and bet-

ter robot management, it should be easier to influence their control allocation

strategy if needed.
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Figure 14.5: The original human and autonomous remote robot teleoperation (HARRT)
model augmented with the sub-models derived in this chapter. The orange or blue arrow
indicate an inverse relationship or a proportional relationship respectively.
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Chapter 15

Conclusions and Future Work

The prime motivation for this research was to investigate ways to improve human-robot

interaction (HRI) in the domain of remote robot teleoperation (RRT). We selected the

remote robot teleoperation domain because it is one of the more difficult fields within

HRI due to the fact that operators are not co-located with the robot and hence have to

rely on the robot’s sensors to maintain the required situation awareness (SA). It is also

a complex, challenging, and cognitively overwhelming task when performed manually

or with minimal assistance from the robot.

The first step towards understanding human-robot interaction in the RRT domain

was to assess the different factors that are at play when an operator controls a remote

autonomous robot. Based on prior research in the human-automation interaction do-

main, we expected trust to be the crucial factor that dictates how operators utilize the

autonomous (or semi-autonomous) behaviors. Hence, we conducted multiple surveys

with domain experts and novice users to understand their perspective on the task. We

found that reliability and risk were consistently ranked as being important. Armed with

this knowledge, the next logical step was to start examining how reliability impacts an
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operator’s trust of the robot and control allocation strategy.

We carefully designed an experimental setup that incorporated the key aspects of

remote robot teleoperation, while providing a controlled environment that was easy

to replicate and use for multiple experiments. The ability to replicate was essential

to allow data to be compared from different sites and from experiments investigating

different factors. The experimental methodology was then modified to allow observation

of real-time trust, which provided valuable insight about how trust evolves during an

interaction and the implications of periods of low reliability early in the interaction.

Using the experimental methodology, multiple experiments were conducted to ex-

amine the impact of different factors on operator trust and control allocation. These

factors were selected based on different criteria. Some factors were selected based on

the results of the initial surveys (i.e., reliability and risk). In fact, to better model real

world scenarios, we ensured that dynamic reliability and risk were inherent in all of the

experiments. Other factors like situation awareness (SA) and reduced task difficulty

(RD) were selected based on their significance to the remote robot teleoperation task

and also on our observations of other experiments involving remote robot teleoperation.

Factors like feedback and long term interaction were selected based on conjectures and

commonly held beliefs. For example, it is often assumed that providing feedback to the

operator should increase their trust of the robot and improve performance.

The results from these experiments showed interesting, sometimes unexpected, but

overall insightful data. Using that data we were able to find different attributes that

are relevant to human interaction with remote autonomous robot and the mediating

relationships between them. These results were used to create the human interaction

with autonomous remote robots (HARRT) model. Based on the HARRT model and the

specific experiments, guidelines were proposed that should help improve overall perfor-

172



mance by better managing the different tradeoffs (e.g., workloads, situation awareness,

feedback) to influence operators’ control allocation strategy. These results also highlight

some of the differences between human-automation interaction (HAI) and human-robot

interaction (HRI). For example, a primary difference between HAI and HRI was the

lack of direct correlation between trust and control allocation, a result always observed

in HAI research.

15.1 Contributions

The contributions of this thesis can be classified into the following categories:

• Technique for measuring real-time trust: This thesis highlighted the impor-

tance of measuring real-time trust. It allowed us to observe how trust evolves in

real-time and how it is impacted by periods of low reliability. The experiments

also showed that while questionnaires are useful for measuring trust, they do not

have the ability to provide information about trust at a finer resolution. To our

knowledge, our measurement methodology for real-time trust is unique and the

only one in use. Our technique of measuring real-time trust requires minor mod-

ifications to the user interface and input device, and could be easily incorporated

in other experiments.

• Area under the trust curve (AUTC) metric: The AUTC metric was an

essential contribution that allowed us to easily quantify and compare real-time

trust. The AUTC metric was useful in not only comparing overall trust at the end

of the runs, but also allowed us to compare trust during different segments of the

run. This ability to compare trust over small segments was crucial, since it allowed

us to measure the precise level of trust during periods of low reliability. Such
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measurements would not have been feasible with typical trend analyses, which

require large amounts of data and can only compare data over longer segments.

• Control allocation (CA) strategy metric: The issue of ideal control alloca-

tion is often raised and discussed, however, not quantified and measured. This

thesis showed a way to quantify the operator’s control allocation strategy by ex-

pressing it in terms of the deviation from the ideal control allocation strategy.

This metric should allow researchers to better evaluate the control allocation

strategy and find ways to remedy problems. It should be noted that the emphasis

in research is often to find ways to make operators rely more on the autonomous

behaviors. However, that is not a good metric or milestone, as such theories are

based on the flawed assumption that the autonomous behaviors are always better

and that automation is perfectly reliable.

• Impact of timing of periods of low reliability: One of the crucial findings

of this thesis was the impact of periods of low reliability at different points in

the interaction. It revealed that when reliability drops early in the interaction,

it has a more pronounced impact on trust and it also lowers the rate of recovery

of trust. When periods of low reliability occur late in the run, their impact on

real-time trust and other attributes is minimal and closer to that observed for

perfect reliability (Reliability A). End of run measures such as Muir and Jian

are subject to recency effects, whereas the real-time trust measurements provide

a more accurate view of trust throughout the run and during periods of low

reliability.

• Consistency in operator behavior over long term interaction: The week-

long interaction with each participant provided valuable insight. It showed that
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participants’ behavior does not change significantly over multiple exposures. This

consistent behavior over an extended period indicates that it is possible to predict

how operators will behave simply based on the initial interaction. This finding is

contrary to most conjectures made about long-term use of robot systems resulting

in differing performances that shorter term use, particularly the relatively short

exposures during user studies.

• Impact of familiarity with robots: To our surprise, we found that participants

who were more familiar with robots (no prior experience teleoperating remote

robots) showed significant differences when compared to participants who are not

familiar with robots. The participants who were familiar with robots performed

better, but trusted the robot system less and had a better control allocation

strategy. This finding has implications when operators are being selected from

specific backgrounds.

• Impact of different factors on trust and control allocation: The experi-

ments investigated the impact of reducing situation awareness, reducing the task

difficulty, and providing feedback. These experiments provided valuable informa-

tion about how operators behave under different circumstances and how perfor-

mance is affected. The information gained from these experiments can be used

by system designers to ensure minimal impact to performance.

• Guidelines: The fourteen guidelines proposed in Chapter 14 can be used to

better design remote robot teleoperation systems. These guidelines are based

on statistical analysis from the data collected from the experiments described

in this thesis. Table 15.1 shows a list of these guidelines categorized based on

aspects of the system they impact (user interface, feedback, training, workload
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Guideline User Feedback Training Workload Operator
Interface Behavior

G1:
Reduced SA leads to higher reliance on autonomous be-
haviors

p

G5: Provide feedback only when necessary
p p

G6: Select the type of feedback based on the desired effect
p p

G12:
In the event of a reliability drop early in the interaction
corrective measures must be taken

p p

G4: Educate operators about SA
p

G9:
Initial operator behavior does not change over the short
term

p p

G10: Familiarity with robots does not impact performance
p p

G11: Operator’s initial interactions must always be stable
p

G13: Know your target audience
p p

G14: Accommodate operators of all ages
p p

G8:
Do not expect operators to assume manual control for
easier tasks

p

G7:
Tasks with reduced difficulty result in better robot super-
vision and no reduction in workload

p p

G2: Suspend or defer non-critical tasks when SA is reduced
p

G3: Switch functions unaffected by reduced SA to automation
p

Table 15.1: A list of all the guidelines proposed in Chapter 14 and their impact on
different aspects of the system.

manipulation, and operator behavior).

• HARRT model: The data from all the experiments was collectively used to

create the HARRT model. This hypothesized model should provide a clear view

of how the different attributes of remote robot teleoperation influence each other.

Using this model, researchers should be able to better understand their results

and system designers should be able to better predict operator behavior.

15.2 Limitations of Research

The research presented in this thesis was carried out with the intention of examining

factors influencing trust and control specifically in the narrowly defined domain of

remote robot teleoperation. Hence, care must be taken before generalizing these results

to other domains of HRI. For example, it is likely that the behavior of operators would
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be considerably different if they were co-located with the robot, primarily due to better

situation awareness. Similarly, the context in which the experiments were conducted

must also be considered before generalizing. All of the experiments presented in this

thesis represented high risk scenarios with a high workload for the operator. If risk is

entirely eliminated and the workload reduced to a minimum, then perhaps the HARRT

model might not be appropriate. However, such low risk and low workload scenarios

are unlikely in the real world. Nonetheless, context of the application must always be

considered.

The total number of participants from all of the experiments combined total eighty-

four. While this is a relatively high number for studies in HRI involving a real world

robot, it is not nearly enough to create a definitive model of human interaction with re-

mote robots. Hence, for this reason, the HARRT model is presented as a hypothesized

model, even though it is based on statistically significant data from all of the experi-

ments. To create a more conclusive version of the HARRT model, more participants

would be needed and the distribution of these participants along the different charac-

teristics (e.g., age, gender, technical background, etc.) would also need to be more or

less uniform. While we were fortunate to have a diverse group of participants across

age and gender, it is not entirely balanced and this fact must be taken into account

before widely using the HARRT model.

15.3 Future Work

While this thesis investigates four different factors that impact an operator’s trust

and control allocation providing valuable contribution, additional factors remain to be

investigated.

177



15.3.1 Additional Factors for Experimentation

Based on the feedback experiment, we posited that the type of feedback determines

how operator behavior is affected. We suspect feedback that helps the operator better

align their mental model of the robot’s behaviors will have a longer lasting impact.

Similarly, based on the differences between the two participant groups for the long

term experiment and the initial survey, we expect there to be differences between do-

main experts and novices as well as between people that are experienced teleoperators

and those that are not. These differences are important to investigate, as they will

become more relevant as applications of remote robots increase.

The experiments involved consistently high workloads with a significant amount

of risk. While the high risk and high workloads are more realistic, the far end of the

spectrum where the task is easy and involves minimal risk also needs to be investigated.

15.3.2 HARRT Model

While the HARRT model was based on the data from the experiments, it is still a

hypothesized model in its current state. Additional experiments must be conducted to

explicitly verify the hypothesized causality between the attributes. Also, experiments

validating the links between these attributes must be diverse in order to validate the

generality of the HARRT model.

The HARRT model is a qualitative model, and, as such, it helps to highlight the

relationships between the different attributes. However, it is not a quantitative model

and can not be used to predict trust, control allocation, workload, etc. If quantitative

models are needed to accurately predict performance and behavior, additional models

need to be created. While attempts were made to create quantitative models using
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decision trees and linear regression, the prediction rates were not high when data from

individual experiments were considered. The prediction rates were even lower when the

data from all the experiments were considered in aggregate. Hence, to create a useful

quantitative model, we suspect large amounts of data would be required.

15.3.3 Measuring Real-time Performance

The Muir trust values showed significant correlations with some factors as shown in

Figure 13.6. However, the AUTC metric did not show a significant correlation with

other factors. This lack of correlation for AUTC was interesting; however, we suspect

it was due to the nature of the metrics being considered. The AUTC metric is use-

ful in observing real-time variations in trust. However, all of the other metrics were

cumulative, similar to the Muir trust scale, and hence the real-time changes were not

adequately reflected. Therefore, it would be worth investigating the correlation between

real-time variations in trust and other real-time metrics (e.g., hits, wrong turns, work-

load, secondary tasks). This investigation would further demonstrate the usefulness

of the AUTC metric, validate some of the hypothesized causes for correlations in the

HARRT model, and finally the data from those experiments could be used for real-time

prediction of trust, workload, and other subjective measures.

15.3.4 Investigating Different Domains

The task selected for our research was difficult and involved high levels of risk. The

risk in the scenario was not only based on the loss of compensation, but also based on

damage to the robot and the environment. Had the robot been used in the intended

scenario of search and rescue, the risk would have been far greater. However, there
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are other domains where the risk is not as substantial and the necessity for using

a remote robot is not as high. Using telepresence robots to visit museums, other

public sites, or even family members in their homes can be such an example, where

people can opt out of using a remote robot. Given the design of most telepresence

robots, the risk of damage to the environment or to the robot itself would also be low.

Under such circumstances it is important to investigate how trust and operator behavior

are impacted when interaction involves low risk and low motivation. Also, in such a

scenario, the teleoperation task is secondary and the primary task is the interaction with

people in the remote environment or observing the remote environment. The added

layer of abstraction in the interaction must also be considered. Does the lack of trust,

inappropriate control allocation, or perceived performance impact an operator’s primary

task of interaction? And if so, can the perceived performance, control allocation, or

trust be artificially altered to positively impact the operator’s interaction?

15.3.5 Increasing Robustness in Interactions

From the experiments, it was evident that there were differences in participants’ be-

haviors. Such variations make it difficult to predict behavior and even more difficult

to detect odd behavior. If operators can be trained in a way that results in a more

predictable behavior, then it would be feasible to detect odd behavior and therefore

provide targeted assistance. While training is the key to ensuring consistent behavior,

the specifics of the training regimen need to be investigated. While training operators

for a long period of time is a possibility, it is not a practical solution and training

methodologies must be created that are short in duration, but just as effective. Un-

fortunately, remote robot teleoperation is a very complex and is also relatively new,

making it difficult to leverage existing biases or knowledge, unlike in designing gesture
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sets for multi-touch devices.

One of the reasons that makes training for remote robot teleoperation difficult is

the lack of feedback. While the operators can observe the remote environment through

sensors and video feeds from the camera, it is still difficult for operators to fully com-

prehend the consequences of their actions or commands. This issue can potentially be

mitigated by providing a free roaming third person view of the robot where the opera-

tors experience a variety of environments that they could potentially encounter. Since

such a training scenario cannot possibly be provided with a real world robot, simulated

environments must be used. Preferably, simulations with high fidelity physics where the

structures in the environments can be modeled to be destructible. Since, none of the

simulation environments used for robots provide these characteristics, video game en-

gines must be used for such training. Training in a high fidelity simulated environment

will hopefully allow the operators to view the consequences of their (or the robot’s)

actions in real-time and post-interaction.

We hypothesize that such a training regimen will allow the operators to quickly

improve their skill and it will also allow them to better assess the robot’s capabilities.

These two characteristics will help the operators better calibrate their own skills and

those of the robot, which would hopefully result in a more consistent behavior across a

wide range of operators.

15.4 Summary

This thesis examines the different attributes that are at play when an operator interacts

with a remote robot and how they are related to each other. The research also shows the

specific effects of modifying certain attributes on operator behavior and performance.
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Many useful results and guidelines based on those results are presented. Among them,

one of the more important and surprising one is the lack of strong correlation between

trust and control allocation, as expected based on prior research. While the HARRT

model helps explain operator behavior, however, additional research needs to be con-

ducted to investigate other factors, to validate the model, and make the model more

comprehensive and generalizable. And finally, based on all of that information, ways

to achieve consistent operator behavior must be investigated, since, consistent operator

behavior is crucial to not only to the successful wide spread adoption and use of remote

robots but also for standardizing remote robot systems themselves.
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Appendix A

Initial Survey

A.1 Participant Information

1. Gender (Male/Female/Prefer not to answer)

2. Age

3. How many years and months of Emergency Response or Search and Rescue ex-

perience do you have?

4. How many hours of experience do you have controlling robots?

5. Please briefly describe your experiences with robots. Also list the robots that

you’ve used.

6. Have you ever controlled an autonomous robot?

7. Which autonomous robots have you controlled and in what capacity?

8. Have you teleoperated a remote controlled robot? (Any robot that is not visible
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from where you are and is being controlled through a video feed of some sort can

be called a remote teleoperated robot)

9. Which remote robots have you driven and in what capacity?

A.2 Factors Influencing Trust

Please describe all the factors that you think might affect your trust of a robot. Also

provide a short explanation for each factor.

The next two pages are going to describe scenarios of robot being used in search

tasks after a significant disaster event. After reading the description of the event and

the capabilities of the robot software, please respond to the questions based on your

knowledge of current state of the art for sensing and artificial intelligence. If you have

assumptions or caveats to your response, please add these comments in the free response

area below each question

A.3 Thorough Search in an Unstructured Environ-

ment

SCENARIO: A major earthquake has occurred in a large metropolitan area on a week

day in the mid-morning. You have responded to a small grocery store that has collapsed

and there are reports of survivors inside. The building is concrete construction and res-

cue personnel have identified an entry point large enough to get a robot through. The

structure is highly unstable and aftershocks are occurring at irregular intervals. The

safety manager and engineers has determined that the robot is the only safe option

for reconnaissance at this time. Your task is to perform a very thorough search the
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first floor of the store for injured people. Although the robot can navigate the building

safely, only you can perform the task of identifying injured people using the cameras

and sensors on the robot. You will be controlling the robot from a safe location outside

the store. There are presently no time constraints. Based on this scenario and the

following descriptions of control levels, please answer the following questions.

The robot can be operated with the following levels of control:

1. Manual mode: You will have complete control of the robot. The robot will not

prevent you from driving into objects.

2. Safe mode: You will be able to drive the robot wherever you want and the control

software (automation) will safely stop before hitting objects.

3. Shared mode: You will be able to drive the robot wherever you want, but au-

tomation will share control and attempt to steer the robot away from objects and

not let the robot hit objects.

4. Waypoint mode: You can set waypoints and the robot will follow those without

the need for further control from you.

5. Goal mode: You select an area that you would like the robot to search and it will

automatically plan a route through the world and ensure that maximum coverage

is achieved.

1. Please state the order in which you would use the different autonomy levels.

2. How confident are you with the rankings you gave in the previous question? (Very

confident, Confident, Neutral, Somewhat confident, Not confident)
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3. Please rank the autonomy modes based on the performance you’d expect.

A.4 Hasty Search in a Structured Environment

SCENARIO: An explosion has occurred in a manufacturing plant. Your task is to search

for people injured by the blast in an adjacent office building. It has been reported that

hazardous materials may be present in the now demolished manufacturing plant. The

office building appears to be structurally sound, but engineers have decided that a robot

should do the initial primary (or hasty) search of the office. Although the robot can

navigate the building safely, only you can perform the task of identifying injured people

using the cameras and sensors on the robot. You will be controlling the robot from a

safe location outside the office building. You have 30 minutes to complete your search

and report your findings to your search team manager. Based on this scenario and the

following descriptions of control levels, please answer the following questions.

The robot can be operated with the following levels of control:

1. Manual mode: You will have complete control of the robot. The robot will not

prevent you from driving into objects.

2. Safe mode: You will be able to drive the robot wherever you want and the control

software (automation) will safely stop before hitting objects.

3. Shared mode: You will be able to drive the robot wherever you want, but au-

tomation will share control and attempt to steer the robot away from objects and

not let the robot hit objects.
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4. Waypoint mode: You can set waypoints and the robot will follow those without

the need for further control from you.

5. Goal mode: You select an area that you would like the robot to search and it will

automatically plan a route through the world and ensure that maximum coverage

is achieved.

1. Please state the order in which you would use the different autonomy levels.

2. How confident are you with the rankings you gave in the previous question? (Very

confident, Confident, Neutral, Somewhat confident, Not confident)

3. Please rank the autonomy modes based on the performance you’d expect.

A.5 Generic Task

There exists a hypothetical task that can only be performed through a robot. The

robot can be operated in one of two modes:

• Manual mode: You will have complete control over the robot.

• Automatic mode: The robot will operate itself.

Based only on this information please answer the following questions.

1. Which mode would you use?

2. Explain your the reasons for you decision in detail.
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A.6 Factors Influencing Trust

1. Please order the following factors from the most influential on your trust of the

autonomous robot to the least. (Error by automation, Risk involved in the oper-

ation, Reward involved in the operation, System failure, Interface used to control

the robot, Lag, Stress/Mood)

2. Please indicate if the following factors will have a positive or negative influence

on your trust of autonomous robots. A factor has positive influence if your trust

of the robot increases with it and vice-versa. (Error by automation, Risk involved

in the operation, Reward involved in the operation, System failure, Interface used

to control the robot, Lag, Stress/Mood)
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Appendix B

Expanded Survey

B.1 Participant Information

1. Gender (Male / Female / Prefer not to answer)

2. Age

3. How much time do you spend using computers every week? (< 5 hours / 5-10

hours / 10 - 25 hours / 25 - 50 hours / > 50 hours)

4. What is your occupation?

5. Do you play video games? (Yes / No)

6. Do you play first person shooter (FPS) games? (Yes / No)

7. Do you play real time strategy (RTS) games? (Yes / No)

8. Have you used a remote controlled car/helicopter/plane/robot before?

9. Do you have easy access to a car? (Yes / No)
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10. How often do you drive? (Never / Rarely / More than once a month / More than

once a week / Almost daily)

11. Do you prefer to drive yourself or let someone else drive? (Prefer to drive / Let

someone else drive)

12. Please explain your answer for the previous question.

13. Have you used robots before? (Yes / No). If yes, please explain.

B.2 Assumptions about Robots

1. When you consider robots, what type of robots come to mind? Please describe

the top three types.

• First type [ ]

• Second type [ ]

• Third type [ ]

2. When you consider robots, what tasks do you expect robots to perform? Please

describe the top three tasks.

• First task [ ]

• Second task [ ]

• Third task [ ]

3. When you consider robots, what situations do you expect robots to operate in?

Please describe the top three situations.

• First situation [ ]
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• Second situation [ ]

• Third situation [ ]

B.3 Factors Influencing Trust

1. How much do you think the following factors would influence your trust of an

autonomous robot? Please rate the following factors from 1 [Not at all] to 7

[Extremely].

• Error by automation [_]

• Risk involved in the operation [_]

• Trust in engineers that designed the robot [_]

• Speed of the robot [_]

• Technical capabilities of the robot [_]

• System failure (different components of the robot failing. ex: sensors, lights,

etc) [_]

• Size of the robot [_]

• Past experience with the robot [_]

• Training [_]

• Interface used to control the robot [_]

• Predictability [_]

• Reliability [_]

• Reward involved in the operation [_]
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• Reliability [_]

• Situation awareness (knowing what is happening around the robot) [_]

• Trust in engineers that designed the robot [_]

• Lag (delay between sending commands and the robot responding to them)

[_]

• Stress [_]

• Others (please specify) [_]

2. Please select the top 5 factors that you think are important.

• Error by automation [_]

• Risk involved in the operation [_]

• Trust in engineers that designed the robot [_]

• Speed of the robot [_]

• Technical capabilities of the robot [_]

• System failure (different components of the robot failing. ex: sensors, lights,

etc) [_]

• Size of the robot [_]

• Past experience with the robot [_]

• Training [_]

• Interface used to control the robot [_]

• Predictability [_]

• Reliability [_]
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• Reward involved in the operation [_]

• Reliability [_]

• Situation awareness (knowing what is happening around the robot) [_]

• Trust in engineers that designed the robot [_]

• Lag (delay between sending commands and the robot responding to them)

[_]

• Stress [_]

• Others (please specify) [_]

3. Please explain your answer for the previous question.

B.4 Video Questionnaire

Please open the link below in a new window and watch the video. The video shows

an autonomous robot navigating through a lobby. After watching the video answer the

questions below. Link:1

1. Please describe the robot’s behavior.

2. Below is a list of statements for evaluating trust between people and autonomous

robots. Based on the video that you just saw please rate the intensity of your

feeling of trust, or your impression of the robot. Please select a value which best

describes your feeling or your impression 1 [Not at all] to 7 [Extremely].

• ?The robot is deceptive [_]
1The link here would be one of 6 provided in the Chapter 4.
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• The robot behaves in an underhanded manner [_]

• The robot has integrity [_]

• The robotÕs actions will have a harmful or injurious outcome [_]

• The robot provides security [_]

• The robot is dependable [_]

• I can trust the robot [_]

• I am suspicious of the robotÕs intent, action, or outputs [_]

• I am wary of the robot [_]

• I am confident in the robot [_]

• The robot has integrity [_]

• The robot is reliable [_]

• I am familiar with the robot [_]

3. Please explain your answer for the previous question.

4. Please make the following ratings of the robot: (Please enter a number between

1 = “Not at all” and 100 = “Extremely high”)

• Dependability (i.e: To what extent can you count on the robot to do its

job?) [_]

• Responsibility (i.e: to what extent does the robot perform the task it was

designed to do?) [_]

• Predictability (i.e: to what extent the robot’s behavior can be predicted from

moment to moment?) [_]
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• Competence (i.e: to what extent does the robot perform its function prop-

erly?) [_]

5. Please explain your answer for the previous question.

6. Please rate your own feelings about the robot: (Please enter a number between 1

= “Not at all” and 100 = “Extremely high”)

• Your degree of faith that the robot will be able to cope with other situations

in the future [_]

• Your degree of trust in the robot to respond accurately [_]

• Your overall degree of trust in the robot [_]

7. Please explain your answer for the previous question.

8. How would you rate the robot’s performance? [1 = Poor and 7 = Excellent]

9. If you were asked to drive the same robot under the same circumstances how do

you think you would perform? [1 = Poor and 7 = Excellent]

The questions listed in Section B.3 would be repeated here. This would conclude

the survey.
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Appendix C

Questionnaires used with Experiments

C.1 Pre-experiment Questionnaire

C.1.1 Demographic Information

1. Participant ID

2. Age

3. Gender (Male/Female/Prefer not to answer)

4. Occupation

5. Computer usage per week (< 10 hours, < 20 hours, < 30 hours, < 40 hours, >

40 hours)

6. Which is your dominant hand? (Right/Left/Ambidextrous)

7. Is English your primary language? (Yes/No)
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8. Please provide us with your level of experience in the following areas. Rate the

following from 1 = Strongly agree to 7 = Strongly disagree).

• I am experienced with robot

• I am experienced with RC cars

• I am experienced with first-person perspective video games

• I am experienced with real time strategy games

9. Have you seen robots in person before? If yes, please explain.

10. Please indicate your level of agreement with each individual statement regarding

risk-taking activity. (1 = Strong disagreement to 6 = Strong agreement)

• I like to test myself every now and them by doing something a little risky

• Sometimes I will take a risk just for the fun of it

• I sometimes find it exciting to do things for which I might get into trouble

• Excitement and adventure are more important to me than security

C.1.2 Current Technology Use

1. For each of the following options, please indicate the extent to which you used a

computer. (Not sure what it is / Never / Sometimes / Often)

• Email

• Getting information

• Conducting business (e.g., online purchasing, banking, bill-paying)

• Writing reports, preparing presentations
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• Entertainment

2. Please indicate how concerned you are about the security of the information you

have released to each of the following. (Not sure what it is / Never / Sometimes

/ Often)

• Medical institutions

• Websites

• Financial institutions (e.g., banks)

• Stores of restaurants when you make credit/debit card purchases

• Friends or relatives

3. How concerned are you about your physical location being tracked by technologies

such as video cameras or cell phones? (Not at all / A little / Somewhat / Very)

C.1.3 General Personality

1. How well does each of the following common human traits or phrases describe

you? Please rate how accurate each is in describing you a the present time. (1 =

Not at all accurate to 7 = Extremely accurate)

• Like to learn new things

• Open to new experiences

• Innovative

• Traditional

• A private person
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• Like to be in control

• Concerned with my physical appearance

• Anxious

• Independent

• Talkative

C.1.4 General Technology Attitudes

1. The following questions are about your attitudes and views towards technology

in general. In general, to what extent do you believe that technology (1 = Not at

all accurate to 7 = Extremely accurate)

• Makes life easy and convenient

• Makes life complicated

• Gives people control over their daily lives

• Makes people dependent

• Makes life comfortable

• Makes life stressful

• Brings people together

• Makes people isolated

• Increases personal safety and security

• Reduces privacy
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2. How well does each of the following phrases regarding technology describe you?

Please rate how accurate each is in describing you at the present time (1 = Not

at all accurate to 7 = Extremely accurate)

• I like to keep up with the latest technology

• I generally wait to adopt a new technology until all the bugs have been

worked out

• I enjoy the challenge of figuring out high tech gadgets

• I feel confident that I have the ability to learn to use technology

• Technology makes me nervous

• If a human can accomplish a task as well as technology, I prefer to interact

with a person

• I like the idea of using technology to reduce my dependence on other people
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C.2 Post-run Questionnaires

C.2.1 Workload TLX

Please rate the following by placing an ‘x’ on the scales.

Mental Demand

Low |———————————-| High

Physical Demand

Low |———————————-| High

Temporal Demand

Low |———————————-| High

Performance

Good |———————————-| Poor

Effort

Low |———————————-| High

Frustration

Low |———————————-| High

C.2.2 Jian (Trust)

Please rate your responses to the following questions ( 1 = Strongly disagree to 7 =

Strongly agree) I would like to operate this robot again

• The system is deceptive

• The system behaves in an underhanded manner

• I am suspicious of the system’s intent, action, or outputs
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• I am wary of the system

• The system’s actions will have a harmful or injurious outcome

• I am confident in the system

• The system provides security

• The system has integrity

• The system is dependable

• The system is reliable

• I can trust the system

• I am familiar with the system

C.2.3 Muir (Trust)

Please select a value from 1 to 10, where 1 = Not at all and 10 = Completely.

• To what extent can the system’s behavior be predicted from moment to moment?

• To what extent can you count on the system to do its job?

• What degree of faith do you have that the system will be able to cope with all

systems “states in the future”?

• Overall how much do you trust the system?
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C.2.4 Miscellaneous

1. Please rate your performance for the last run (1 = Poor to 7 = Excellent)

2. Please rate the robot’s overall performance for the last run (1 = Poor to 7 =

Excellent)

3. Which mode would you use? (1 = First; 2 = Second; 3 = No Preference)

• Corrected mode

• Fully Autonomous mode

4. Please rank the modes based on their performance? (1 = First; 2 = Second; 3 =

No Preference)

• Corrected mode

• Fully Autonomous mode

5. Please indicate your overall confidence level in the answers to the above questions?

(0 = Not at all confident to 100 = Completely confident)

6. Please describe all the factors that you think might affect your trust of an au-

tonomous robot.

7. Please rate the following statement from (1 = Very low to 100 = Very high). The

risk of not receiving the milestone and bonus payments was .

C.2.5 SA (SAGAT; [Endsley, 1988])

1. How many times did the robot hit objects?
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2. How many times did you respond to the gauges before they entered the red zone?

3. What percent of the time was the camera aimed straight forward?

4. Draw the path that the robot took on the map provided to you. Please indicate

where the robot was at half way into the run and at the end of the run.

5. On the same map mark the regions that had high levels of CO2.

6. Indicate on the map provided to you where you found the victims along with the

victim IDs and the time since the start of run.
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C.3 Post-experiment questionnaire

Please rate the following statements from (1 = Strongly agree to 7 = Strongly disagree)

• I would like to operate this robot again.

• The robot was malfunctioning.

• I trust this robot.

• I trust robots (in general).

• I would only participate again if I could be sure the robot was honest.

• I will not trust robots as much as I did before.
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Appendix D

Additional Analysis

D.1 Regression Analysis

Table D.1: Results of backwards stepwise linear regression for the control allocation
strategy. The top row represents the experiments and the R2 values from the regression.
The last column presents result of performing the regression on all of the experiments
with real-time trust. The estimates for each of the factors are shown in the rows. A
single asterisk indicates that the p value for the estimate was between 0.05 and 0.01
and two asterisks indicate that the p value was less than 0.01.

DR (27%) LSA (62%) RT (82%) F (39%) RD (68%) LT (40%) New (27%)
Age 0.11⇤⇤ 0.80⇤⇤ -0.93⇤⇤ - 0.33⇤⇤ -2.16⇤⇤ -0.24⇤⇤
Robots -0.61⇤⇤ - 3.95⇤⇤ 1.36⇤⇤ 0.68⇤ 13.68⇤⇤ -
RC cars - 3.17⇤⇤ - -1.29⇤⇤ 1.92⇤⇤ -7.66⇤⇤ -0.27⇤
RTS games - -3.89⇤⇤ 15.82⇤⇤ - 1.94⇤⇤ -2.53⇤⇤ -
FPS games - -1.12⇤⇤ -15.90⇤⇤ - -0.72⇤ 1.86⇤⇤ 0.52⇤⇤
RQ1 -1.08⇤⇤ -5.98⇤⇤ 10.75⇤⇤ - - 8.95⇤⇤ 0.48⇤
RQ2 - 1.57⇤⇤ -3.47⇤ 1.71⇤⇤ - -13.21⇤⇤ -
RQ3 1.13⇤⇤ 6.19⇤⇤ -4.53⇤⇤ - - - -
RQ4 - -2.07⇤⇤ -4.78⇤⇤ - 1.58⇤ - -
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Table D.2: Results of backwards stepwise linear regression for Muir trust. The top row
represents the experiments and the R2 values from the regression. The last column
presents result of performing the regression on all of the experiments with real-time
trust. The estimates for each of the factors are shown in the rows. A single asterisk
indicates that the p value for the estimate was between 0.05 and 0.01 and two asterisks
indicate that the p value was less than 0.01.

DR (17%) LSA (70%) RT(79%) F (28%) RD (74%) LT (78%) New (37%)
Age - -0.14⇤⇤ 0.12⇤⇤ -0.13⇤ -0.14⇤⇤ 0.20⇤ -
Robots - - -1.88⇤⇤ - -0.57⇤⇤ - -
RC cars - 0.25⇤ 1.74⇤⇤ - 0.62⇤⇤ 0.53⇤⇤ -
RTS games - - -6.72⇤⇤ - 0.57⇤⇤ -0.93⇤⇤ -
FPS games 0.22⇤ - 5.65⇤⇤ -0.46⇤⇤ -0.28⇤ 0.37⇤⇤ -0.23⇤⇤
RQ1 - - -3.99⇤⇤ -1.49⇤⇤ - -1.19⇤⇤ -0.42⇤⇤
RQ2 - 0.62⇤⇤ - 1.23⇤⇤ - 2.39⇤⇤ 0.79⇤⇤
RQ3 - - 1.19⇤⇤ - - - -0.91⇤⇤
RQ4 0.73⇤⇤ -1.20⇤⇤ 2.78⇤⇤ - 0.73⇤⇤ - 0.30⇤⇤
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D.2 Real-Time Trust Graphs
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Figure D.1: Real-time trust data for the different reliability conditions from the RT, F,
RD and LT experiments.
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Figure D.2: Real-time trust data for the RT, F, RD and LT experiments.
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Figure D.3: Real-time trust data for the different reliability conditions from the RT
experiment.
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Figure D.4: Real-time trust data for the different reliability conditions from the LT
experiment.
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Figure D.5: Real-time trust data for the different reliability conditions from the F
experiment.
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Figure D.6: Real-time trust data for the different reliability conditions from the RD
experiment.
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Figure D.7: Top: Real-time trust data for the different reliability conditions from all of
the experiments. Bottom: Real-time trust data from all of the experiments.
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Figure D.8: Top to bottom: Real-time trust data for the different reliability conditions
from the RT, D, RD, and LT experiments.

229



D.3 Normalized Control Allocation
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Figure D.9: Control allocation for all the experiments calculated as a percent value to
allow comparison between the two experimental setup with different length maps.

In order to compare the control allocation strategy between the two experimental

setups, we normalized the values. The results of two-way analysis are presented below:

• Reliability: No significant effect found, F (3, 426)=0.07, p=0.97

• Experiment: Significant effect found, F (5, 426)=13.50, p<0.01. Tukey’s HSD

test showed the following significant results:

– LT vs RT, p<0.01

– LT vs DR, p<0.01

– LSA vs RT, p<0.01

– LT vs RD, p<0.01

– F vs RT, p<0.01
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– LT vs F, p<0.01

– LT vs RT, p<0.01

– LSA vs DR, p=0.056

• Reliability * Experiment: No significant interaction found, F (15, 426)=0.36,

p=0.98
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