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Abstract—Prior work in human trust of autonomous robots
suggests the timing of reliability drops impact trust and control
allocation strategies. However, trust is traditionally measured
post-run, thereby masking the real-time changes in trust, reduc-
ing sensitivity to factors like inertia, and subjecting the measure
to biases like the primacy-recency effect. Likewise, little is known
on how feedback of robot confidence interacts in real-time with
trust and control allocation strategies. An experiment to examine
these issues showed trust loss due to early reliability drops
is masked in traditional post-run measures, trust demonstrates
inertia, and feedback alters allocation strategies independent of
trust. The implications of specific findings on development of
trust models and robot design are also discussed.

I. INTRODUCTION

During an operator’s interaction with an autonomous sys-
tem, a key issue is how the operator uses the available auton-
omy levels, often referred to as the control allocation strategy
[1]. Inappropriate control allocation strategies can result in
over-reliance or under-reliance on the automated system [2].
One of the known contributing factors to improper reliance
on automation is trust (e.g., [3], [4]). While it is difficult
to conclusively state the root cause, over-reliance or under-
reliance on automated systems due to miscalibrated trust can
often be inferred in incident reports from the aviation industry.
For example, while using the flight management system (FMS)
to navigate to Cali, Colombia, the crew of American Airlines
Flight 965 entered the first few characters for their destination.
Accustomed to selecting the first option, the crew selected a
destination that happened to be a few miles behind them rather
than the intended destination, which was not the top option in
this case. The FMS turned the plane around; the plane crashed
into a mountain shortly afterwards [5].

For decades, researchers in the human-automation interac-
tion field have investigated the control allocation strategies of
operators under different circumstances (e.g., [6], [7], [8]) and
observed how people use, misuse, or disuse automation (e.g.,
[2], [9], [10]). Specifically, the influence of several factors
including reliability on control allocation have been studied
by several researchers; a detailed survey was conducted by
Wickens and Xu [11]. Researchers have also investigated fac-
tors that influence trust and, ultimately, reliance on automated
systems (e.g., [3], [4], [7]) in order to prevent accidents and
improve the performance of automated systems. Factors such
as self-confidence (e.g., [12], [13], [1]), reliability (e.g., [14],
[15], [16]), and risk (e.g., [17], [18]) are known to impact
an operator’s trust of the system. Additional factors such as

task complexity, workload, system accuracy have also been
hypothesized as contributing factors [7]. Similar attempts to
understand how robot operators trust and utilize automated
behaviors of robots have been made in the field of human-
robot interaction (HRI) (for a survey and analysis of recent
research see [19]).

In our prior work, we examined the impact of changing
reliability on an operator’s trust and control allocation strategy
[16]. One of the key contributions of that research was
finding the impact of the timing of failures of the autonomous
behaviors on operator trust and control allocation. However,
one of the limitations of that research, due to the experimental
methodology utilized, was the inability to examine how trust
evolved during a participant’s interaction with a remote robot
system and how it was impacted by robot failures at the time
of the failure. To investigate the evolution of trust and the
impact of varying reliability on real-time trust, we modified the
experimental methodology and conducted the research studies
described in this paper.

While it is important to understand trust and control al-
location strategies, it is equally important to find means to
influence them, should the need arise. Research exists where
participants were provided information about results of past
decisions [20]; however, to our knowledge no research exists
that investigates the impact of providing information about the
automated system’s confidence in its own sensors. Therefore,
as part of this research, we also investigated the impact of
providing feedback conveying this confidence information on
trust and control allocation.

Our long term goal is to understand how different factors
impact trust and control allocation and, based on this infor-
mation, to build a model that can predict an operator’s current
level of trust so that the system can adjust in ways to increase
the current level of trust to prevent inappropriate usage of the
autonomy levels. Towards this end, we created a set of research
questions that we needed to address:

• Q1: How does the timing of periods of low reliability
impact real-time trust? Our prior experiments suggest
trust of the robot system is influenced by whether a
period of low reliability is at the beginning or end of
the run (trust in a robot, as measured using a trust scale
after the run is complete, drops if the robot is unreliable
near the end of a run [16]). We designed this study to
investigate how real-time trust is influenced by the timing
of reliability drops.



Fig. 1. Left: The robot (ATRV-Jr) at the starting position in the course. The boxes have navigation labels on the top and barcodes on the bottom. Center:
The user interface used to control the robot for the DR group. The DR+F group saw an additional icon from the set of images in Figure 2, displayed where
the box marked feedback indicators is shown. Right: The gamepad used by participants to control the different aspects of the robot.

• Q2: Is real-time trust influenced by feedback from the
robot system? Some participants were shown confidence
indicators on the interface, which we tied to the reliability
drops in the system (i.e., the confidence indicator would
drop before the system’s reliability dropped and the
indicator would rise when the reliability rose). Other
participants received no feedback.

• Q3: Does the type of feedback matter? Our feedback
included two conditions: one with semantic feedback and
the other with non-semantic feedback.

The answers to these questions will allow for the design of
robot systems that will be able to predict when an operator’s
trust level is likely to be falling and, thus, to be able to foster
appropriate levels of trust in their operators.

II. METHODOLOGY

Experiments were conducted at the University of Mas-
sachusetts Lowell (UML) and Carnegie Mellon University
(CMU)1. The goals of this experiment were to investigate the
impact of varying reliability and feedback on the evolution of
trust and control allocation strategy. Twelve participants were
recruited for the varying reliability with no explicit feedback
group at UML, henceforth referred to as the ‘Dynamic Relia-
bility’ (DR) group. Of the twelve participants, six were male
and six female; the mean age was 37.4 years (SD=16.3). A
total of sixteen participants were recruited for the dynamic
reliability with feedback group at CMU, henceforth referred
to as the ‘Dynamic Reliability + Feedback’ (DR+F) group.
Eight of the sixteen participants experienced the ‘Semantic
Feedback’ (DR+F:S) condition and the other eight experienced
the ‘Non-Semantic Feedback’ (DR+F:NS) condition. Of the
sixteen participants for the DR+F group, eight were male and
eight female and the mean age was 22.2 years (SD=4.0). All
of the participants were novice users since none of them had
prior experience controlling remote robots.

1Unless explicitly mentioned, all of the parameters were identical between
the two sites.

A. Robot System

Similar iRobot ATRV-JR robots were used at both sites
(Figure 1, left). The front camera was mounted on a Directed
Perception PTU-D46-17 pan-tilt unit and another camera with
a fixed base was mounted on the rear. A SICK LMS200 laser
in the front and a Hokuyo URG-04LX laser mounted on the
back were used for sensing distance. The robots had computers
with similar capabilities and ran the same code base.

B. User Interface (UI)

The video from the front camera was displayed at the center
of the UI (Figure 1, center) and the video from the back camera
was displayed on the top right (laterally inverted to serve as a
rear view mirror). The distance information from both lasers
was displayed on the bottom around a graphic of the robot. The
map of the course with the pose of the robot was displayed on
the left. Participants could use the gamepad (Figure 1, right)
to drive the robot, pan and tilt the front camera, select the
autonomy modes, toggle the brakes, recenter the camera, and
acknowledge the secondary task and trust prompts.

C. Modifications for the feedback condition

The participants in the DR+F group were additionally given
feedback (3 levels) that indicated the confidence of the robot
in its ability to read barcodes. The interface displayed the
confidence indicator just below the rear camera view (Figure
1, center). The robot indicated high levels of confidence for all
high reliability regions, except for one box before and one box
after the low reliability region where it displayed a neutral state
to ensure a gradual transition between the reliability levels. For
participants who experienced semantic feedback (DR+F:S),
they were shown emoticons to represent the confidence levels,
whereas participants who experienced non-semantic feedback
(DR+F:NS) were shown green, white and pink lights to
indicate high, neutral and low level of confidence respectively.
The indicators also had a plus sign for high level and a minus
for low level of confidence embedded in the circle (Figure 2)
to take color-blind users into consideration.
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Fig. 2. Semantic and non-semantic indicators. The icons for semantic
feedback had yellow backgrounds. The high confidence icon for non-semantic
feedback had a green background and the low confidence icon for non-
semantic feedback had a pink background.

D. Secondary task

A translucent blue circle 70 pixels in diameter was spawned
every 35 seconds on the front video feed. The participants were
asked to acknowledge the blue circle by moving the yellow
crosshair (that indicated the pan-tilt orientation) over the blue
circle. When the yellow crosshair moved over the blue circle,
the blue circle disappeared, as it had been acknowledged.
The location of the blue circle was always a fixed distance
away from the yellow crosshair and in a random direction.
The secondary task was designed to provide a consistent and
regular workload, unlike the secondary task of searching for
a ‘victim tag’ in [16], which we observed could be found
accidentally rather than as a deliberate secondary task. A blue
circle can be seen in Figure 1 (center).

E. Test course

A map of the course with five boxes in it is shown on the
left side of the UI (Figure 1, center). A photo of the course is
also shown (Figure 1, left). The courses were approximately
18 meters long and had 5 obstacles (boxes) placed about 2.75
meters from each other. The clearance on either side of the
boxes was 0.9 meters, and the robot was 0.66 meters wide. The
start and end positions were the same for each run. For each
run, the participants were asked to follow a set path. There
were five different paths based on the following criteria:

• The length of each path must be the same (72 meters).
• The number of u-turns in a path must be the same (3).
• The number of transitions from the left side of the course

to the right and vice versa must be the same.
As the maps were similar in difficulty and length, we did not
counterbalance paths for the participants. Instead, paths were
selected based on a randomly generated sequence.

Text labels were placed on top of the boxes to indicate the
path ahead (Figure 1). The labels indicated ‘left,’ ‘right,’ or
‘uturn.’ The directions were padded with additional characters
to prevent the participants from recognizing the label without
reading them. There were two types of label, ones with a white
background and others with a black background. The labels
with the white background (referred to as white labels) were
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Fig. 3. Reliability conditions that the participants experienced.

to be followed for the first half of the entire length and the
labels with black background (referred to as black labels) for
the second half. The transition from following the white labels
to the black labels was indicated to the participants via the UI
via audible and visual cues. Two sets of labels were necessary
to prevent the participants from driving in an infinite loop.

The boxes also had barcodes made from retroreflective tape
that the robot could read (Figure 1). The robot would display
the contents of the barcode on the UI. However, the paths for
each run were hard coded because the barcodes could not be
consistently read by the robot. While the barcodes were not
used by the robot, the participants were told that the robot
read the barcodes to determine the path ahead, just like they
read the labels. Based on a constant video compression rate,
sampling resolution, and the font size, the labels could be
read from about 1 meter away. The robot was set to simulate
reading the label from approximately the same distance. The
participants were informed that, at times, the robot might make
a mistake reading the barcodes and that they should ensure that
the direction read by the robot was correct. The participants
were also told that if the robot did make a mistake in reading
the barcode, it would proceed to pass the next box on the
incorrect side, resulting in a lower performance score.

F. Autonomy modes

There were two autonomy modes that the participants could
select. In the fully autonomous mode, the robot read labels
and drove autonomously through the course while avoiding
obstacles. In assisted mode, the participants had 75% control
over the direction and velocity of the robot2.The maximum
speed of the robot was the same for both modes (0.2 m/s).

G. Reliability patterns

The reliability patterns used for the experiment are shown
in Figure 3. The low reliability durations lasted for four boxes
(1/4th of the course). Conditions B and D had two sets of
reliability drops, each lasting for two gates, whereas condition
C had one period of low reliability that lasted for four boxes.
The reliability drops for B occurred early on, whereas the
drops for D occurred later in the run. The drop in condition
C occurred during the middle of the run. The two sets of
reliability drops in B and D occurred four boxes apart. We
designed the conditions to ensure that the reliability drops were

275% of the final velocity was based on the user’s desired velocity and the
rest on the robot’s desired velocity



not immediately at the beginning or at the very end of a run,
so that all participants started and ended their runs with a
working robot system.

H. Compensation

Using higher levels of automation reduces workload and
hence is desirable, especially under heavy workload from
other tasks. To prevent participants from using high levels
of autonomy all of the time, regardless of the autonomous
system’s performance, it is typical to introduce some amount
of risk. Hence, in line with similar studies (e.g., [21], [22],
[4], [16]), the compensation was based in part on the overall
performance. The maximum amount that the participants could
earn was $30. Base compensation was $10. Another $10 was
based on the performance during the runs. The last $10 was
based on the time needed to compete the runs, provided that
the performance on those runs was high enough.

The performance for each run was based on multiple factors,
with different weights for each of those factors determined
before the experiment was run. The participants were told there
was a significant penalty for passing a box on the incorrect
side, regardless of the autonomy mode. If the participants
passed a box on the wrong side, they were heavily penalized
(15 points per box). Participants were penalized 3 points per
tracking task that was not acknowledged. The participants
were not penalized for unacknowledged trust prompts. How-
ever, they were told that they had to acknowledge at least 90%
of the trust prompts to be eligible for the time bonus.

The scoring details were not revealed to participants, al-
though they were told about the factors that would influence
their score. The score for each run was bounded between 0 and
100. If the score was 50 or more, the participants were eligible
for a time bonus; if they had completed the runs in under 11:00
minutes, they would receive an additional $10. If they were
eligible for the time bonus but took between 11:00 and 12:00
minutes then they would receive $8 for the time bonus, and so
on. Participants were told about this interdependence between
score and time, which was designed to prevent participants
from quickly running through the course, ignoring the tasks,
while also providing a signicant motivation to perform the task
quickly.

At the end of each run, its score was calculated and the
participants were informed about the amount of compensation
that could be received based only on that run. The participants
were also informed about the number of trust prompts that
they acknowledged. At the end of five runs, the average
compensation was calculated and given to the participant.

I. Questionnaires

There were three sets of questionnaires. The pre-experiment
questionnaire was administered after the participants signed
the consent form; it was focused on demographics (i.e., age,
familiarity with technology similar to robot user interfaces,
tendency towards risky behavior, etc.). The post-run question-
naire was administered immediately after each run; partici-
pants were asked to rate their performance, the robot’s per-

formance, and the likelihood of not receiving their milestone
payment. Participants were also asked to fill out the Muir trust
questionnaire [3] and a TLX questionnaire [23]3. After the last
post-run questionnaire, the post-experiment questionnaire was
administered, which included questions about wanting to use
the robot again and its performance.

J. Real-time trust

Trust questionnaires, such as the Muir questionnaire [3],
only provide information about the participant’s trust of the
robot at the end of each run. In order to examine how trust
of the robot is immediately impacted by changes in reliability,
participants were asked to respond to prompts. At each prompt,
participants were instructed to indicate if their trust of the
robot had increased, decreased, or had not changed by pressing
buttons on the gamepad (Figure 1, right). Participants were
prompted for this trust measure every 25 seconds. We selected
a gap of 25 seconds to ensure that participants were not
overwhelmed, but that, at the same time, there would be at
least one trust prompt between consecutive boxes (which we
call gates). When the trust prompts were triggered, the trust
indicator circle shown in Figure 1 turned red and an audible
beep was sounded. The trust prompt indicator would stay red
until the participant recorded his or her trust level. When one
of the buttons was pressed, the trust prompt indicator would
show an up arrow, down arrow, or a sideways arrow indicating
increase, decrease, or no change in trust, respectively.

K. Procedure

The participants started by filling out the demographic
questionnaire. There were two trial runs, one in autonomous
and one in assisted mode, where the participants were provided
help with controls and got comfortable with the robot. Then
there were five runs, each following a different map. The first
run was always in high reliability (A). The ensuing four runs
were counterbalanced using superimposed Latin squares of
reliability modes (A, B, C & D) to reduce ordering effects.
Participants could switch between the two autonomy modes
any number of times they wanted during these five runs.

III. RESULTS AND DISCUSSION

Apart from minor differences noted above, the underlying
structure of the two groups (DR and DR+F) was similar and
similar behavior was observed across both groups. For this
reason, the data is reported in aggregate when appropriate
and, when differences between the two were observed, these
differences are highlighted.

Data from the practice and baseline runs were not included
in the analyses. We checked for practice effects (run order)
and map effects and did not find any issues. This lack of
significant differences for run and map effect suggests the
counterbalancing and map designs were adequate.

3Due to space limitations the workload data is not reported.
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Fig. 5. Trust ratings from the Muir questionnaire (blue; left bar in each pair)
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A. Effect of reliability changes on trust

1) Muir trust questionnaire: To analyze the impact of relia-
bility drops on participants’ trust of the robot, we conducted a
two-way analysis of variance for trust that yielded a significant
main effect of Reliability, F(3,103)=4.49, p<0.01. However,
the main effect of Group type (DR vs DR+F), F(1,103)=0.05,
p=0.81 and the interaction of Reliability and Group type was
non-significant, F(3,103)=0.24, p=0.86. Post hoc comparisons
for Reliability using Tukey’s HSD test indicated that the trust
values for Reliability A (µ=7.59, σ=1.82) were significantly
higher (higher values indicate more trust) than Reliability B
(µ=5.83, σ=2.34, p<0.05), C (µ=5.97, σ=2.03, p<0.05), and
D (µ=5.79, σ=1.95, p<0.05) (Figure 5). The data indicates
that the participants’ trust of the robot was higher when the
robot operated reliably and lower when the robot’s reliability
dropped during the runs. However, the Muir trust question-
naire was not able to discern between the different reliability
conditions and confirms the findings of our earlier experiments
[16].

2) Real-time trust: To better examine the impact of differ-
ing reliability conditions on trust, we gathered and analyzed

real-time trust data. Figure 4 shows how trust evolved during
the four reliability conditions. The graphs show an overall
increasing trend in trust. As expected, trust for Reliability A
monotonically increases while trust for Reliability B, C, and D
does not. There are noticeable drops in trust when reliability
decreases and, once reliability recovers, trust again starts to
increase monotonically. We calculated the area under the trust
curve (AUTC) to analyze this data.

The AUTC data highlights the impact of timing of low
reliability periods on trust. Figure 5 shows the mean AUTC
values along with Muir trust values. A two-way analysis
of variance for AUTC yielded a significant main effect of
Reliability, F(3,99)=5.66, p<0.01; however, the main effect
of Group type was not significant, F(1,99)=0.54, p=0.46.
The interaction of Reliability and Group type was also not
significant, F(3,99)=0.03, p=0.99. Post hoc comparison for
Reliability using Tukey’s HSD test indicated that the trust
values for Reliability A (µ=92.0, σ=45.7) were significantly
higher than Reliability B (µ=32.7, σ=58.7, p<0.01) and C
(µ=52.3, σ=54.9, p<0.05).

An important observation can be made based on this data:
periods of low reliability earlier during the interaction have a
more detrimental impact on overall trust than periods of low
reliability later in the interaction. While this analysis addresses
Q1, it does not explain how periods of low reliability early in
the interaction impact trust. To understand this we investigated
how low reliability impacted the recovery of trust (Section
III-A3) and how trust changes during a period of low reliability
(Section III-A4).

3) Recovery of trust: We looked at normalized4 AUTC
before and after the period of low reliability for C (6 gates
each) to investigate trust recovery. Due to the placement of
the reliability drops in both B and D, there were not as many
gates before and after each reliability drop, meaning there were
shorter periods in which to assess trust recovery, so B and D

4Normalization occured by setting the y-axis to 0 at the start of the period
and calculating AUTC between this start and the end of the period. This
allows comparisons without skew from the entering cumulative trust level.
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were omitted from this analysis. Using a paired two-tailed t-
test, we found that the post-C value (µ=8.33, σ=8.27) was
significantly lower than pre-C (µ=11.82, σ=7.87, t(27)=3.12,
p<0.01). According to this data and the corresponding anal-
ysis, we find that the recovery of trust after a reliability
drop occurs at a slower pace than the pace at which trust
develops before reliability drops or in condition A, which has
no reliability drops.

4) Trust during low reliability periods: We compared the
normalized AUTC during periods of low reliability to de-
termine how real-time trust was impacted by these periods
(Figure 6). The low reliability periods were two gates long
at two separate instances in reliability B (B1 and B2) and
D (D1 and D2). To ensure consistency, the four consecutive
low reliability periods in C were split into C1 and C2.
Three two-tailed paired t-tests were conducted on the AUTC
values for the three pairs of reliability drops. The AUTC
value for B1 (µ=0.21, σ=1.81) was significantly less than that
of B2 (µ=2.25, σ=2.11, p<0.01). No statistically significant
difference was found for the other two pairs.

Data about trust during periods of low reliability and the
recovery thereafter indicates that an early period of low
reliability impacts trust in two ways: 1. It reduces an operator’s
trust more than it would if low reliability occurred later on,
and 2. The rate of recovery is lower than it would otherwise
be, thus addressing the first half of Q1. Early periods of low
reliability not only impact trust, but also take a toll on the
operators’ control allocation strategy as shown in Figure 7
and further explained in Section III-B.

As suspected, post-run Muir trust ratings appear to be biased
by a primacy-recency effect. If Muir was more representative
of the whole experience, then the persistently low C1 and C2
AUTC levels would suppress Muir dramatically. As is typical,
recency appears to be stronger than primacy. Our prior study,
which had 13 gates and only one reliability drop, showed that
Muir was less negatively affected by an early drop [16]. This
aligns with our findings here, which show the early AUTC B1
drop being washed out in Muir by later gains. This study is
longer and allows more early trust accumulation in C and D,
thereby suggesting that the primacy-recency effect is amplified
for longer experiences. The lack of impact from the late D2
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Fig. 7. Autonomy mode switches and wrong turns during different reliability
conditions.

drop is contrary to the primacy-recency theory, but the upwards
AUTC slope for the last three gates (Figure 4) suggest that
a positive primacy experience and ending strong can mask
problems. This, combined with the relatively small drops in
trust seen during low reliability, implies that trust can develop
inertia over longer experiences.

B. Changing autonomy levels

To examine the impact of reliability on the participants’ con-
trol allocation strategy, we conducted a two-way analysis of
variance for autonomy mode switches that yielded a significant
main effect of Reliability, F(3,104)=6.68, p<0.05 and Group
type, F(1,104)=6.64, p<0.01. However, the interaction of
Reliability and Group type was not significant, F(3,104)=0.32,
p=0.80. Post hoc comparison for Reliability using Tukey’s
HSD test indicated that the autonomy mode switches for
Reliability A (µ=2.25, σ=4.17) were significantly lower than
Reliability B (µ=6.85, σ=4.62, p<0.01), C (µ=5.42, σ=3.64,
p<0.05), and D (µ=5.46, σ=3.03, p<0.05) (Figure 7).

The difference in autonomy mode switches between reli-
ability condition A and reliability conditions B, C, and D
indicates that the participants noticed the changes in reliability,
its potential for impact on performance, and adjusted their
control allocation strategy accordingly. Based on this finding,
we expected the number of incorrect passes (wrong turns)
to be similar across all reliability conditions, especially for
the low reliability conditions. However, the results of a one-
way analysis of variance for wrong turns among the reliability
conditions showed significant results, F(3,107)=4.35, p<0.01.
Post hoc comparison using Tukey’s HSD test indicated that
Reliability A (µ=0.25, σ=0.58) had significantly fewer wrong
turns than Reliability B (µ=1.28, σ=1.24, p<0.01) and C
(µ=1.1, σ=1.42, p<0.05), but not D (µ=0.77, σ=1.18, p=0.33)
(Figure 7). The proportional relationship between autonomy
mode switches and wrong turns (though not significant),
highlights the possibility that periods of low reliability early
in the interaction can confuse operators and can result in
suboptimal control allocation strategy.

C. Effect of feedback

As stated in Q2 above, we wanted to examine the impact of
providing feedback about the robot’s confidence in its sensors
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on participants’ trust and control allocation. The real-time trust
data from Section III-A2 showed a non-significant effect of
Group type on AUTC trust; however, the results from Section
III-B showed a significant effect of Group type on control
allocation. Hence we conducted a post hoc comparison for
autonomy mode switches by Group type using a Student’s
t-test. The result indicated that DR+F (µ=5.81, σ=4.63) had
significantly more autonomy mode switches than DR (µ=3.91,
σ=3.33, p<0.05).

Participants who received feedback switched into assisted
mode and back significantly more to correctly pass gates
during low reliability. However, it was also observed that
participants often switched into assisted mode whenever there
was a drop in the robot’s confidence, even in high reliability
regions when the confidence level changed from high to neu-
tral. We speculate that these changes were due to participants
anticipating a robot failure after seeing the robot’s confidence
drop. Overall, this behavior resulted in fewer wrong turns for
DR+F. An unpaired one-tailed t-test was conducted to verify
the effect of Group type on wrong turns. As expected, the
result indicated that the DR+F group (µ=0.7, σ=1.00) had
fewer wrong turns (marginally significant) than the DR group
(µ=1.06, σ=1.42, p=0.07).

This result implies that an operator’s control allocation strat-
egy can be altered by providing information about the robot’s
confidence. However, the information should be provided only
when appropriate to avoid unwanted side effects.

1) Feedback type: We hypothesized that semantic feedback
would increase the perceived intelligence of the robot and
therefore produce more dramatic trust responses when the
robot changed confidence. Figure 9 shows a sample set of trust
curves, one for DR+F:S (for Participant 1) and DR+F:NS (for
Participant 13). When plotting the trust curves we observed
that the curves for DR+F:S were more rugged compared
to those from the DR+F:NS condition. To investigate this
effect, we examined the rate of change of the trust curves by
computing the magnitude of its second derivative (i.e., jerk).
An unpaired two-tailed t-test analysis showed a significantly
higher value for DR+F:S (µ=0.99, σ=0.15) than DR+F:NS
(µ=1.43, σ=0.15, p<0.05). The higher second derivative value
for DR+F:S indicates that trust curves for DR+F:S had signifi-
cantly more sudden changes then DR+F:NS. This result shows
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Fig. 9. Sample trust curves for DR+F:NS (participant 1) and DR+F:S
(participant 13). Axes are of different scales to better visualize the jerks in
the trust curves.

that the modality used to present information to participants
plays an important role as well. In applications where we want
to build up and maintain trust at a steady level, we should
choose non-semantic indicators, whereas we would want to
use semantic indicators in manipulative applications which
demand more attention from the operator.

D. Predicting trust

The ability to predict an operator’s broad control allocation
strategy can be very useful in preventing accidents and improv-
ing performance. For example, if it can be known prior to an
operator interacting with a robot, with some certainty, that he
or she is less likely to trust an autonomous robot, then it might
be worth taking additional steps during training or the initial
interaction to mitigate lower trust levels. To examine what
factors, if any, can be used to predict an operator’s tendency
to trust robots, we performed a backward stepwise regression
on the data from the DR group (R2=0.86, p<0.01). Table I lists
different factors that were considered for the analysis and those
that can be used to estimate trust. This is an initial attempt
to predicting trust and this data will be augmented with data
from future studies.

Most of the factors listed in Table I can be assessed prior to
an operator interacting with a robot. The ability to gauge an
operator’s tendency to trust an autonomous robot can provide
valuable information. As in our prior study, most of the factors
are not based on the robot’s actual performance [16]. This
is not to say that the robot’s performance does not impact
trust; however, it accounts for a smaller variation when trust
is aggregated across all reliability levels.

A similar trend was observed when we examined how
participants rated the robot’s performance. There was no
significant difference in the robot’s performance for the four
reliability levels (Figure 8). However, the robot’s performance
did impact their rating of self performance. A one-way analysis
of variance for the participants’ self performance rating yielded
a significant main effect of Reliability, F(3,103)=3.43, p<0.05.
Post hoc comparison for Reliability using Tukey’s HSD test
indicated that the self performance rating for Reliability A
(µ=5.82, σ=1.54) was only significantly higher than Reliability
B (µ=4.60, σ=1.49, p<0.05). A one-way analysis of variance



TABLE I
BACKWARDS STEPWISE REGRESSION RESULTS FOR AUTC TRUST

RATINGS FROM THE DR+F GROUP (R2=0.86).
Effect Estimate p
Age 6.21 < 0.01
Exp with robots -5.61 < 0.01
Exp with RTS games -5.31 < 0.01
Risk taking Q3 4.78 < 0.01
Exp with FPS games 4.35 < 0.01
Autonomy mode switches -4.24 < 0.01
Time 3.85 < 0.01
Exp with RC cars -3.72 < 0.01
TLX -3.33 < 0.01
Risk taking Q2 -3.32 < 0.01
Wrong turns 2.21 < 0.05
Risk of not receiving bonus 2.13 < 0.05
Self performance rating removed –
Robot’s performance rating removed –
Risk taking Q1 removed –
Risk taking Q4 removed –
Scrapes removed –
Bumps removed –
Pushes removed –
Tracking tasks missed removed –
Trust prompts missed removed –
Time in assisted mode removed –
Time in fully autonomous mode removed –

for the robot’s performance rating yielded a non-significant
effect of Reliability.

IV. CONCLUSIONS

The real-time trust results from this study confirm traditional
post-run survey approaches for human-robot trust can be
masked by primacy-recency bias and demonstrate that early
drops in reliability negatively impact real-time trust differently
than middle or late drops (Q1). In particular, early drops in re-
liability have dramatically lower real-time trust than later drops
and appear to promote suboptimal control allocation strategies.

This study also shows that robot confidence feedback can
improve autonomy control allocation during low reliability
without altering real-time trust levels (Q2). Therefore, warning
users of potential robot performance drops can be done without
negatively impacting trust in the robot. It should be noted
that feedback interface designs using semantic symbols lead
to more abrupt real-time trust changes than non-semantic
symbols (Q3). Designers should match feedback interface style
to the prefered response for their application domain.

Finally, this study also shows that predicting real-time trust
from user behavior is more feasible than trying to predict post-
run survey trust. In our prior work, the only user behavior
factors predictive of trust measured with the Muir survey
were visual search performance and milestone payment [16].
Neither of these are easily measured internally by a robot,
thereby making robot-assessed human trust impossible. In
this study, predictive factors of AUTC included autonomy
mode switches, elapsed time, and taking wrong turns. While
somewhat limited, these support the belief that real-time robot
assessment of human trust is possible.
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