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Abstract—When remote robots operate in unstructured en-
vironments, they are typically controlled or monitored by an
operator, depending upon the available autonomy levels and the
current level of reliability for the available autonomy. When
multiple autonomy modes are available, the operator must
determine a control allocation strategy. We conducted two sets
of experiments designed to investigate how situation awareness
and automation reliability affected the control strategies of the
experiment participants. Poor situation awareness was found
to increase the use of autonomy; however, task performance
decreased even when the automation was functioning reliably,
demonstrating the need to design robot interfaces that provide
good situation awareness.

I. INTRODUCTION

At this time, the bulk of nontrivial robot application domains
in non-structured environments involve remote robot operation
using direct teleoperation or semi-autonomous robot control.
There are many reasons for the low use of autonomy. While
autonomy can be utilized when the task is well defined and
the system operates in a structured environment, current robot
technologies do not approach the same level of capability
and reliability for less defined tasks and unstructured environ-
ments, making it difficult to deploy autonomous robots into
these domains. In these situations, an operator must always
be present, regardless of the level of autonomy present on the
robot, typically referred to as human-in-the-loop control.

There are other implications for the use of autonomy in such
domains. With an increased use of autonomy, operators switch
to a more passive role of monitoring, a task that people have
difficulty doing well. Such a passive role can cause loss of
situation awareness. The side effect of this dynamic can influ-
ence control allocation when the automation reliability drops
or when automation encounters a situation that it is not capable
of handling. While the typical response of an operator under
such circumstances should be to rely less on automation, poor
situation awareness can force the operator towards a heavier
reliance on automation. This poor control allocation strategy
can have a detrimental effect on the overall performance.

Attaining high levels of situation awareness is difficult
when remotely teleoperating a robot with noisy sensors in
a dynamic and unknown environment over a delayed com-
munication link with limited bandwidth. Researchers studying
human-automation interaction have investigated the influence
of automation reliability on control allocation; however, the

interaction between situation awareness, automation reliability,
and control allocation have not been thoroughly studied in
human-automation research. Most experimental setups used
are simulations of microworlds and do not adequately repre-
sent the complexities of operating a robot in the real world.
The problem has not yet been studied in the human-robot
interaction domain.

To determine the interaction between situation awareness,
automation reliability, and control strategy for human-robot
interaction, we conducted two sets of similar experiments.
In the second set of experiments, the situation awareness of
the participants was lowered by altering the user interface
used to control the robot. Our hypothesis was that participants
would rely more on automation in the low situation awareness
experiments during periods of both high and low autonomy
reliability. We also hypothesized that the participants would
experience a higher workload in the low situation awareness
experiment. Ultimately, the data presented below highlights the
importance of designing user interfaces that foster better con-
trol allocation by improving an operator’s situation awareness.

II. PRIOR WORK

Parasuraman and Riley define automation as “the execution
by a machine agent (usually a computer) of a function that
was previously carried out by a human” [1]. Automation has
traditionally been employed in systems that are complicated,
tedious, or time critical, but it has also been used for economic
reasons [1]. When automation was first introduced in the
1930’s, its use was limited to large industries; however, at
the present, automation can be found in many places, from
home appliances to nuclear power plants.

Automation has always had weaknesses: in particular, it has
only been effective in well-structured and controlled environ-
ments and continues to remain so. To avoid catastrophic fail-
ures in safety critical systems due to either flaws or limitations
of automation, an operator must be present at all times to take
control of the system. Situations of this kind in which a human
operator is working with an automated system are referred to
as “human-in-the-loop control.” While a human operator may
be beneficial in some situations, addressing the inadequacies of
automation with human-in-the-loop control creates a different
set of problems commonly referred to as out-of-the-loop
problems [2]. These out-of-the-loop problems can be caused



by a number of factors including loss of situation awareness
[2]. When an operator is added to the system, improving
the overall system performance requires more than simply
optimizing operator performance and, separately, optimizing
automation performance [3]. The interaction between the two
needs to be considered as well.

For decades, researchers in the field of human-automation
interaction have investigated the control allocation strategies
of operators under different circumstances (ex: [4]–[6]) and
observed how people use, misuse, or disuse automation (ex:
[1], [7], [8]). Specifically, the influence of several factors
including reliability on control allocation have been studied
by several researchers; a detailed survey was conducted by
Wickens and Xu [9].

While reliability is considered to be a significant influ-
ence on control allocation, there are other factors such as
complacency, trust, workload, and user interface design that
also influence the use of automation. For example, Wickens
et al. [10] highlight the importance of user interfaces in
automated systems and, according to Atoyan et al. [11],
interface design plays an important role in influencing users’
trust in automation. While user interfaces used in industrial
and aviation automation are important, robot interfaces exert
significant influence on remote robot operation [12], including
a person’s use, misuse or disuse of robot autonomy levels.

When teleoperating a remote robot, the operator is not
co-located with the robot. The operator must rely on the
user interface to attain adequate situation awareness to safely
perform the task. The user interface is especially important
in situations where the operating environment is dynamic and
unknown. Burke et al. [13] determined that teleoperating a
robot is common in application domains where robots operate
in unstructured or high risk environments. Hence the user
interface is especially important for these application domains.

Since Endsley [14] defined situation awareness, significant
work has been done by researchers to examine the influence
of situation awareness on performance in supervisory control
systems (e.g., [15]–[17]). The interaction of situation aware-
ness and workload with automation has also been highlighted
by Parasuraman et al. [17]. There is also a need for attaining
better situation awareness in human-robot interaction (e.g.,
[18], [19]).

Most of the research done has been in industrial or aviation
automation and used low fidelity simulations, microworlds
[20], or arbitrary tasks [20] in experimental setups. While the
results from these experiments provide valuable insight, they
lack the complexities of real world systems. The difference
between using simulated systems and real world systems is
more relevant while investigating human-robot interaction. For
example, it can be difficult to convey the risks associated
with remotely controlling a robot in simulation compared to
controlling it in the real world. Though noisy sensors can be
simulated, the uncertainties and dynamic nature of the real
world cannot be adequately modeled.

To investigate the influence of low situation awareness on
control allocation in a real robot system with variable relia-

bility under high workloads we conducted two sets of similar
experiments, varying the user interface slightly in the second
set of experiments to reduce the operator’s situation awareness.

III. METHODOLOGY

We conducted two sets of experiments, the first of which
served as a baseline experiment to compare data against from
the second experiment. The first experiment examined how
operators’ trust and control allocation strategy are impact
by dynamic reliability and is therefore referred to as the
‘Dynamic Reliability’ (DR) experiment in this paper. The
first experiment was conducted at two sites, University of
Massachusetts Lowell (UML) and Carnegie Mellon University
(CMU), and details of the experiment and analysis have been
published by Desai et al. [21]. For the DR experiment, 12
participants were recruited at UML and CMU. The same code
base was used for experiments at both sites, similar robots
were used, and the course setup was similar as well. The data
from both sites is therefore reported in aggregate.

For the second experiment (N=12), the situation awareness
of the operators was reduced and hence is referred to as the
‘Low Situation Awareness’ (LSA) experiment. For both the
DR and LSA experiments, participants experienced four dif-
ferent reliability profiles during their runs (autonomy working
perfectly throughout the run (A), reliability dropping near
the beginning of a run then increasing after a set period of
time (B), reliability dropping in the middle of the run then
increasing after the same period of time (C), and reliability
dropping at the end of the run (D)). The participants for
both experiments were approximately of the same age range
[DR=27.2 (11.9), SA=28.08 (9.8), t(26.5)=0.2, p=0.82 (un-
paired two-tailed t-test)].

For both DR and LSA, we used an iRobot ATRV-JR robot
with a front mounted camera on a Directed Perception PTU-
D46-17 pan-tilt unit and another camera mounted on the rear.
For distance sensing, a SICK LMS200 was used on the front
and a Hokuyo URG-04LX laser was mounted on the back.
Participants could operate the robot in one of two autonomy
modes, fully autonomous mode (FA) or robot assisted mode
(RA), and were told that they could switch as often as they
would like. In the RA mode, participants had a significant
portion of the control and could easily override the robot’s
movements. The robot would provide its desired velocity
vector based on the path it was supposed to follow. The robot’s
desired vectors were calculated the same way in both auton-
omy modes and were displayed on the user interface (UI) to
show the participant the robot’s desired direction. Participants
used a gamepad to control the robot and interact with the UI.

Fig. 1 shows the UI used to control the robot. The video
from the front camera was displayed in the middle, the
video from the back camera was displayed on the top right
(mirrored to simulate a rear view mirror in a car). The
distance information from both lasers was displayed on the
bottom around a graphic of the robot. The map of the course
with the pose of the robot was displayed on the left. In
LSA, three modifications to the UI were made. The pan-tilt



Fig. 1. The interface used in the DR experiments is shown on the left. The interface on the right, designed for the LSA, reduced the operator’s situation
awareness by removing the crosshairs indicating the orientation of the camera and by providing less accurate distance information around the robot.

Fig. 2. The course used for the experiments. Boxes in the hallway had labels
on them that indicated the path to be taken around the boxes.

indicators that were provided on the main video window
in DR were removed in LSA. Second, the simulated sonar
information replaced the more accurate laser range data
provided in DR. Finally, the laser display in DR rotated in
accordance with the pan value of the front camera, but this
feature was disabled in the LSA interface and so the robot in
the distance display always faced straight.

Participants were asked to drive the robot as quickly as
they could along a specified path, searching for victims, not
hitting objects in the course, and responding to the secondary
tasks. To create additional workload, simulated sensors for
CO2 and temperature were used. Participants were asked to
acknowledge high CO2 and temperature values by pressing
the corresponding buttons on the gamepad. The values were
considered high when their values were above the threshold
lines and colored red on the secondary task indicators.

Fig. 2 shows the course used, which was approximately
18 meters long, 2.4 meters wide, and had 5 obstacles (boxes)
placed about 2.7 meters from each other. For each run, the par-

ticipants were asked to follow a set path. We designed five dif-
ferent paths that had similar characteristics; analysis of exper-
imental data shows that there were no significant differences.

Text labels were placed on top of the boxes to indicate the
path ahead as shown in Fig. 2. The labels indicated ‘left’,
‘right’, or ‘uturn’. The directions were padded with additional
characters to prevent the participants from recognizing the
label without reading them. Fig. 2 shows the two types of
labels that were used. The labels with white background
(referred to as white labels) were to be followed for the first
half of the entire length and the labels with black background
(referred to as black labels) for the second half. The transition
from following the white labels to black labels was indicated
to the participants via the UI.

The course also had four simulated victims. These victims
were represented using text labels like the one shown in
Fig. 2. The victim tags were placed on the walls of the course
between 2.5 feet and 6 feet from the floor. The victim locations
were paired with the paths and were never placed in the
same location during the participant’s five runs. Whenever the
participants found a new victim, they were told to inform the
experimenter that they had found a victim.

Using higher levels of automation reduces workload and
hence is desirable, especially under heavy workload from
other tasks. To prevent participants from using high levels of
autonomy all the time, regardless of the autonomous system’s
performance, it is typical to introduce some amount of risk.
Hence, in line with similar studies (e.g., [5], [22], [23]), the
compensation was based in part on the overall performance.
Participants could select a gift card to a local restaurant or
Amazon.com. The maximum amount that participants could
earn was $30. Base compensation was $10. Another $10 was
based on the average performance of 5 runs. The last $10
was based on the average time needed to compete the 5 runs,
provided that the performance on those runs was high enough.

After participants signed the informed consent form and



filled out a pre-experiment demographic questionnaire, they
were provided an overview of the robot system and the
task to be performed. Then, participants were asked to drive
the robot through the trial course in the FA mode. The
experimenter guided the participant during this process, by
explaining the controls and helping with tasks if necessary.
The trial course was half the length of the test course. Once
participants finished, they were asked to drive the robot
again through the same course in the RA mode. Since there
were multiple tasks that participants needed to perform, we
decided to first show them the FA mode, as that would be a
less overwhelming experience. Once the participants finished
the second trial run, they were asked to fill out the post-run
questionnaire, including subjective measurements of trust
(Muir [24]), workload (NASA-TLX [25]), task performance
(self, robot’s), perceived risk of not receiving performance or
time bonus payment. While the data from this questionnaire
was not used, it allowed participants to familiarize themselves
with it and also helped to reinforce some of the aspects of
the run that they would need to remember.
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Fig. 3. Four reliability configurations were used during the experiments.
In A, the autonomy worked the entire run. In B, C, and D, the autonomy
reliability dipped, then recovered, at different times during the run.

After the two trial runs, the participants were asked to drive
the robot for five more runs. In each run, a different map
was used. During these runs the reliability of robot autonomy
was either held high throughout the run or was changed. Fig. 3
shows the four different reliability configurations. The changes
in reliability were triggered when the robot passed specific
points in the course. These locations were equal in length and
there were no overlaps. For all four patterns, the robot always
started with high reliability. The length of each low reliability
span was about one third the length of the entire course.
Using different dynamic patterns for reliability allowed us to
investigate how participants responded to a drop in reliability
at different stages and the changes’ influence on control allo-
cation. Every participant started with a baseline run under full
reliability (Reliability A in Fig. 3). Then, the four reliability
profiles were counterbalanced for the remaining four runs.

Operator trust is known to influence control allocation [26],
and research has shown that additional factors such as task
complexity, reliability, and risk also influence trust [5]. To
examine if change in situation awareness influences trust, we
asked the participants to rate trust using the Muir’s [24] scale.
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Fig. 4. Trust (left) and control allocation strategy (right) for DR and LSA
experiments across reliability conditions, ±1 std. error.

IV. RESULTS AND FINDINGS

As planned, the altered user interface led to a noticeable
difference in situation awareness. Participant responses to
questions testing situation awareness showed better results for
the DR experiment when compared to the LSA experiment,
t(96)=-2.9 p < 0.01.

The objective performance and subjective data including
operator trust were examined using a two-way ANOVA on
the effects of Experiment (DR, LSA) and Reliability (A, B,
C, D). Where appropriate a post hoc Tukey’s HSD test was
conducted to identify significant differences within effects. Of
these, the highlights are listed in the following section.

A. Trust

A two-way ANOVA showed a significant effect for Ex-
periment, F(1,139)=5.40, p<0.05. No significant effect was
found for Reliability, F(3,139)=1.32, p=0.27 or the interaction,
F(3,139)=0.14, p=0.93. Trust was significantly higher in LSA
(µ=7.03, σ=2.02) than DR (µ=6.14, σ=2.22) (Fig. 4). This
analysis shows that participants trusted the system more when
their situation awareness was lowered. We suspect this might
be due to the forced reliance on the fully autonomous mode.

B. Effect on Control Allocation

To examine how much the participants relied on the fully
autonomous mode in both experiments we conducted a two-
way ANOVA. The results of the analysis showed significant
effects for Experiment, F(1,135)=4.22, p<0.05. No significant
effect was found for Reliability, F(3,135)=2.37, p=0.07 or
the interaction, F(3,135)=0.20, p=0.89. Participants relied
significantly more on the fully autonomous (FA) mode in LSA
(µ=9.74, σ=3.37) than in DR (µ=8.20, σ=4.74). This data
indicates that participants did rely more on the autonomous
behavior when their situation awareness was lowered.

We also wanted to examine if there was an increase in
the autonomy mode switches due to lower SA. A two-way
ANOVA for autonomy mode switches showed a significant
effect for Reliability, F(3,136)=7.39, p<0.01. No significant
effect was found for Experiment, F(1,136)=2.78, p=0.09 or



the interaction, F(3,136)=1.51, p=0.21. A post hoc Tukey’s
HSD test showed that there were significantly fewer autonomy
mode switches in Reliability A (µ=2.47, σ=3.39) compared
to Reliability B (µ=6.05, σ=6.27, p<0.01) and Reliability
C (µ=7.50, σ=6.13, p<0.01). While the difference between
DR and LSA was only marginally significant, it did show
that participants in LSA had more mode switches. This data
indicates that, since the participants were forced to rely more
on the FA mode, they might have been more cautious of the
robot’s actions and hence switched modes when appropriate
and that led to a better control allocation strategy. Control
allocation strategy is a metric that compares the operator’s
control allocation strategy with the ideal strategy [27].

To examine the control allocation strategy we conducted
a two-way ANOVA. The results of the analysis showed a
significant effect for Experiment, F(1,135)=7.08, p<0.01. No
significant effect was found for Reliability, F(3,135)=0.78,
p=0.50 or the interaction, F(3,135)=0.10, p=0.95. Control
allocation strategy was significantly better in LSA (µ=10.85,
σ=3.07) than DR (µ=9.21, σ=3.60) (Fig. 4) indicating that
participants in LSA made better (more appropriate) use of the
autonomous modes.

C. Performance

We analyzed the performance by looking at three metrics;
the number of hits, the time taken to finish the task, and the
number of wrong turns.

1) Hits: A two-way ANOVA for hits showed no significant
effects for Reliability, F(3,136)=1.37, p=0.25, Experiment,
F(1,136)=0.22, p=0.63, or the interaction, F(3,136)=0.66,
p=0.57. This data shows that a drop in SA did not result
in an increase in hits as expected. We suspect this was the
case because of higher reliance on FA mode by participants
in LSA, during which there were no hits.

2) Time: A two-way ANOVA for run time showed
significant effects for Reliability, F(3,136)=6.37, p>0.01,
Experiment, F(3,136)=9.05, p>0.01, and the interaction,
F(3,136)=3.45, p>0.01. Participants in LSA took significantly
more time (µ=687, σ=153) than participants in DR (µ=626,
σ=102). A post hoc Tukey’s HSD test for Reliability showed
that participants took less time in Reliability A (µ=593,
σ=92) then Reliability B (µ=677, σ=151, p<0.01) and
Reliability C (µ=678, σ=126, p<0.01). This data matches
our expectation that participants would need more time to
perform their task when SA drops.

3) Wrong Turns: A two-way ANOVA showed significant a
effect for Reliability, F(3,136)=11.95, p>0.01. No significant
effect was found for Experiment, F(1,136)=0.16, p=0.68 or
the interaction, F(3,136)=0.03, p=0.99. A post hoc Tukey’s
HSD test showed that there were fewer wrong turns in
Reliability A (µ=0.08, σ=0.28) than in Reliability B (µ=2.05,
σ=1.67, p<0.01), Reliability C (µ=1.61, σ=1.55, p<0.01),
and Reliability D (µ=1.86, σ=1.69, p<0.01). This data indi-
cates that even though participants in LSA had a better control
allocation strategy they did not show an improvement in the
number of wrong turns. We suspect this because they had a

higher number of wrong turns in the robot assisted (RA) mode
due to the lowered SA and higher workload.

D. Subjective Ratings

To investigate the impact on workload (NASA-TLX [25]),
we conducted a two-way ANOVA. The results showed
significant effects for Reliability, F(3,136)=3.69, p>0.05 and
Experiment, F(1,136)=8.09, p>0.01. No significant effect
was observed for the interaction, F(3,136)=0.15, p=0.92.
The workload was significantly higher for LSA (µ=10.85,
σ=4.14) than DR (µ=8.85, σ=4.03). A post hoc Tukey’s HSD
test showed that the workload was significantly lower for
Reliability A (µ=7.43, σ=3.98), than Reliability B (µ=10.13,
σ=4.11, p<0.05), Reliability C (µ=10.44, σ=4.19, p<0.05),
and Reliability D (µ=10.07, σ=3.78, p<0.05). This data
shows that participants in LSA felt higher workloads due to
lower SA and similarly, the workload was exacerbated when
reliability dropped.

We also looked at how reducing SA impacted participants’
subjective ratings of performance and risk. A two-way
ANOVA for self-performance rating showed a significant
effect for Reliability, F(3,136)=4.21, p>0.01. No significant
effect was found for Experiment, F(1,136)=0.11, p=0.73 or
the interaction, F(3,136)=0.20, p=0.89. A post hoc Tukey’s
HSD test showed that self-performance rating in Reliability
A (µ=5.55, σ=1.44) was significantly higher than the rating
in Reliability B (µ=4.19, σ=1.70, p<0.01) and marginally
higher than Reliability C (µ=4.52, σ=1.42, p=0.06) and
Reliability D (µ=4.63, σ=1.67, p=0.06). This data shows
that reducing SA did not impact their self-performance rating,
but they did blame themselves for poor performance when
reliability dropped.

A two-way ANOVA for the robot’s perceived perfor-
mance rating showed a significant effect for Experiment,
F(1,136)=6.02, p>0.05. No significant effect was found
for Reliability, F(3,136)=0.56, p=0.63 or the interaction,
F(3,136)=0.50, p=0.67. The robot’s performance rating was
significantly lower in LSA (µ=5.77, σ=1.22) compared to DR
(µ=6.21, σ=0.90). This data indicates that participants could
have blamed the robot for providing poor SA.

A two-way ANOVA for perceived risk showed no significant
effects for Experiment, F(1,136)=1.59, p=0.20, Reliability,
F(3,136)=2.57, p=0.05, or the interaction, F(3,136)=0.08,
p=0.96. We report Reliability as not significant as the subse-
quent post hoc Tukey’s HSD test comparing the four reliability
conditions did not result in any significant findings.

V. CONCLUSIONS

As expected, the drop in SA led to more reliance on
autonomy; however, it did not result in better performance.
While the amount of time needed increased due to the lower
SA, especially during the RA mode, there was no difference in
hits or wrong turns. We suspect that since participants drove
more in FA mode in LSA, the number of hits did not increase.
Also, as expected there was an increase in the workload.
We expected the workload to increase in LSA because the



participants would have to work harder to maintain sufficient
SA. We found an increase in trust and suspect that was due
to the increased reliance on the FA mode. However, it is
surprising to find that the robot’s performance rating decreased
in LSA. We suspect the participants blamed the robot for the
poor SA provided via the user interface.

All of these findings demonstrate the importance of situation
awareness for remote robot tasks, even when the robot has
autonomous capabilities. In real world situations, it is very
likely that autonomous systems will experience periods of
reduced reliability. Providing operators with the means to build
up the best situation awareness possible will improve their use
of the robot system. Based on these finding we recommend
the following guidelines that would benefit operator interaction
with remote autonomous robots:

• Reduced SA leads to higher reliance on autonomous
behaviors. Intentionally reducing SA to force operators
to rely on autonomous behaviors is not recommended as
a design strategy due to the other undesirable side effects.
However, such influence does remain a possibility, but
should only be exercised when absolutely necessary, since
doing so can potentially impact safety and performance.

• Suspend or defer non-critical tasks when SA is reduced.
Even with higher reliance on automation, the workload
is expected to increase, so tasks that are not critical
should be suspended or deferred to offset the increased
workload and to prevent an overall detrimental impact on
performance.

• Switch functions unaffected by reduced SA to automation.
Functions not impacted by reduced SA can be switched
over to automation in an attempt to reduce workload.

• Educate operators about SA. Operators associate robot
performance with SA and therefore operators must be in-
formed (during training or during the interaction) that low
SA does not necessarily impact the robot’s performance.
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