
“Off the Grid”: Self-Contained Landmarks for
Improved Indoor Probabilistic Localization

Eric McCann Mikhail Medvedev Daniel J. Brooks and Kate Saenko
Computer Science Department

University of Massachusetts
Lowell, Massachusetts 01854

Email: {emccann, mmedvede, dbrooks, saenko}@cs.uml.edu

Abstract—Indoor localization is a challenging problem, espe-
cially in dynamically changing environments and in the presence
of sensor errors such as odometry drift. We present a method for
robustly localizing a robot in realistic indoor environments. We
improve a popular probabilistic approach called Monte Carlo
localization, which estimates the robot’s position using depth
features of the environment and is prone to errors when the
topology changes (e.g., due to a moved piece of furniture). We
propose a technique that improves localization by augmenting the
environment with a set of QR code landmarks. Each landmark
embeds information about its 3D pose relative to the world
coordinate system, the same coordinate system as the map. Our
algorithm detects the landmarks in images from an RGB-D
camera, uses depth information to estimates their pose relative
to the robot, and incorporates the resulting position evidence in
a probabilistic manner. We conducted experiments on an iRobot
ATRV-JR robot and show that our method is more reliable in dy-
namic environments than the exclusively probabilistic localization
method.

I. INTRODUCTION

Mobility promises to be the next frontier in robotics, with
wide-ranging applications in manufacturing, personal robotics
and healthcare. In this paper, we address robot localization, one
of the fundamental problems in mobile robotics [1]. Typically,
a map of the area is first obtained with Simultaneous
Localization And Mapping (SLAM) [2], followed by
localization in the resulting map’s coordinate frame. Most
contemporary localization methods require accurate odometry
to maintain an accurate estimate of the robot’s position in the
world. However, unreliable odometry can negatively affect
these methods. Such unreliability need not be as severe as a
hardware failure, and can manifest itself, for example, as mere
wheel slippage on smooth floor surfaces. Odometry from motor
or wheel encoders, an inertial measurement unit, or a camera
are all susceptible to drift as a result of error accumulating
over time. In indoor environments where Global Positioning
Systems (GPS) are not available, odometry is often augmented
with sensor measurements of the environment features, such as
image features [3]–[5], planar laser scans, and 3D point clouds.

Popular probabilistic methods such as Adaptive Monte
Carlo Localization (AMCL) [6] account for the uncertainty
in the feature measurements, but can nonetheless be affected
by inaccurate odometry. Furthermore, they fail when the
input map is inaccurate or the environment is dynamic. Many
realistic indoor environments are dynamic, with moving
people and furniture causing discrepancy between what the
sensor sees and the map. Even slight discrepancy can be

sufficient for incorrect hypothetical positions to seem more
probably to AMCL than the robot’s unknown ground truth.

We present an augmentation to wheel odometry and laser
methods, similar to GPS in that it provides absolute position
estimates regardless of prior beliefs, but different in that it can
function reliably indoors. Our proposed algorithm incorporates
an estimate of the robot’s position (x, y, and z) and orientation
(roll, pitch, and yaw) obtained using values decoded from
2D barcode landmarks pre-placed in the environment. While
several landmark types are feasible, we choose to use QR
(Quick Response) codes for their cost effectiveness, ease of
creation, error correction, arbitrary text storage ability, and the
high availability of libraries with which to decode them.

Our approach consists of the following steps: 1. adaptive
local thresholding is applied to the RGB image to enhance
the readability of the QR code; 2. resulting binary images are
then passed to a QR code reading library to read and find
the corners of any QR codes in the image; 3. the coordinates
of the corners in the image are then used to look up the 3D
positions that correspond to those positions in the point cloud
received from a Microsoft Kinect sensor; 4. the robot’s pose
in the world is then estimated based on the camera relative
position of the QR code, and the position of the QR code in the
world (encoded in the QR code); 5. if more than one QR code
is detected in the same image, their estimates are averaged;
lastly, 6. the robot’s pose is updated based on the landmark’s
position using a Kalman filter; this information is then used to
reinitialize AMCL’s point cloud around the estimated position.

We believe our approach is cost effective, robust, and useful
in many indoor mobile robotics applications. We present an
experimental evaluation demonstrating promising results in
using our algortithm to augment AMCL, most notably with
respect to improved reliability in AMCL’s degradative cases.

II. BACKGROUND

Adaptive Monte Carlo Localization (AMCL) is a local-
ization method commonly used in indoor environments by
academic researchers. In this work, we employ an open source
version included as a component in the Robot Operating Sys-
tem (ROS) navigation package. Based on Thrun’s Monte Carlo
Localization [6], it uses a particle filter to make inferences
about the robot’s position based on wheel odometry and on the
correspondence between range finder data and what the map
should look like from a particular location. While considered
to be a reliable form of localization, it requires an accurate

map of the environment to be generated a priori. Substantial
changes to the environment, such as moving furniture, can
cause problems with proper localization. Furthermore, if wheel
odometry values become corrupted, it can cause the particle
filter update function to give inaccurate results.

Simultaneous Localization and Mapping (SLAM) algo-
rithms, such as GMapping [2], are another form of localization.
With SLAM, the origin of the world coordinates is considered
the starting point of the robot, and the map is generated as
the robot travels through the environment. While this has the
advantage that no map is needed a priori, the coordinates
computed at run time will not be consistent unless the robot
starts from exactly the same place each time (i.e., location and
orientation). SLAM can be used to generate a map for AMCL
to later use. GMapping also uses a particle filter with wheel
odometry and laser range scanners.

2D barcode assisted localization has been proposed and
evaluated previously. Kobayashi [7] used an encoding scheme
that allowed for information about the QR code’s position,
normal vector, and dimensions to be encoded. However, re-
lying entirely on camera calibration to calculate the position
of the code relative to the camera and back-solve the robot’s
position yielded potential errors including up to 10◦ of yaw.
We drastically reduced the amount of information that needs
to be encoded in the QR code by using depth information from
a Kinect rather than computer vision methods that require the
code’s physical side length be encoded within it. Additionally,
we calculate the normal vector based on the 3D positions of
its corners, rather than encoding it in the QR code, once again
reducing the quantity of information we need to encode in it.
This decrease in information density in the QR codes allows
making the QR codes smaller, more redundant, or viewing
them from further away. Additionally, employing the Kinect’s
depth data rather than relying on computer vision methods
exclusively has resulted in comparatively higher accuracy,
which was reported by Kobayashi as being “not very good”
[7].

Many landmark-assisted localization techniques employ
sensor fusion [8] to combine readings from other sensors with
pose information contained in 2D barcodes. Rather than fuse
the landmark estimates with another localization method’s esti-
mate, our landmark estimates are used to trump the converged
estimate of a probability-based localization method, replacing
its point cloud with a point cloud of low-covariance Bayesian
distribution centered at the estimated position. Probabilistic
methods for localization provide estimates based on a mo-
tion model (odometry) and correspondence between sensor
readings and previous measurements (often in the form of a
map). These estimates often converge on the true position and
orientation of the robot, but in various failure cases, they may
not. Our calculated robot position does not succumb to the
same degradation of accuracy in dynamic situations, so instead
of fusing it with a possibly inaccurate probabilistic method, we
correct the probabilistic method. By forcing convergence on
the known position, we guarantee convergence on a more cor-
rect position estimate while codes are in view, and increase the
likelihood of the probabilistic method’s being correct after we
no longer see the QR code, at least temporarily. Our algorithm
is intended for use with a sparse distribution of landmarks in
the robot’s operating environment, relying on AMCL to get be-

Adaptive Local
Thresholding

QR Code
Detection &

Pose Calculation

Image Processing Pipeline

Kinect Camera

Compressed Raw
Depth and RGB Images

Rectified RGB

Point Cloud

Rectified Mono
Robot

HW Driver

Point Cloud

Laser
Ranger

Probabilistic Localization
AMCL

Corrected
Pose

Odometry

QR Code Pose
and Data

Estimated Robot Pose
Calculation and

Filtering

Robot Pose

Fig. 1: Overview of our localization method.

tween gaps in landmarks, though a sufficiently dense landmark
configuration could replace probabilistic localization entirely.

III. IMPLEMENTATION

Our approach implements a highly modular design built
using ROS Fuerte [9], [10]. Figure 1 describes the main
components of our system. First, we pre-process the RGB-D
values obtained from the Kinect camera (Section III-B). Adap-
tive Local Thresholding (Section III-C) is used to filter the
RGB image to improve barcode detection before passing it to
the QR code detection system (Section III-D). The landmark
pose (in the camera frame) and landmark pose decoded from
the barcode data (in the world frame) are used to calculate
the robot pose in the world coordinate frame; the estimated
pose is then used to reinitialize AMCL’s hypotheses with low
covariance around the calculated pose (Section III-E).

A. Representation of Position in Landmarks

We use QR (Quick Response) Codes as landmarks for
our system. QR codes have an easily perceivable orienta-
tion, are quickly decoded, and have built-in error correction.
Additionally, QR codes can store large amounts of arbitrary
information; for example, researchers have investigated the
use of QR codes to encode navigation instructions [11],
relational information about nearby objects [12], and prop-
erty information about a particular object [13]. They also
provide an inexpensive solution as compared to hardware
based landmarks such as active light LEDs (e.g., ByteLight
[14], NorthStar [15]) and RFID tags [16]. In comparison to
non-self-contained landmark encoding methods, self-contained
landmarks are harder to detect at larger distances due to their
inherently increased information density. However, unlike non-
self-contained landmarks, a priori knowledge of their locations
is unnecessary.

We developed a specialized encoding scheme in order to
increase the robustness of the QR code detection and decoding.

A QR code can contain up to almost 3Kb of binary data. For a
fixed QR code size, only a certain amount of information can
be stored to allow decoding with a limited resolution camera
at given distance. The minimum possible size of a QR code
is 21 by 21 modules, which can store up to 17 decimal digits
encoded with maximum redundancy of 30% (Figure 2). Our
pose encoding-decoding scheme XXXX-YYYY-ZZZZ-AAAAA
uses the first 12 digits to encode the position in 3D space, and
last five for orientation.

x =
XXXX

10
−500

y =
YYYY

10
−500

z =
ZZZZ

10
−500

yaw

9
= AAAAA mod 402

pitch

9
=

AAAAA − roll
40

mod 40

roll

9
=

AAAAA − roll − pitch ∗ 40
402

We encode world position coordinates ranging from -500.0 m
to 499.9 m in increments of 10 cm, and orientation at angular
resolution of 9 degrees.

B. Kinect Data Preprocessing

In order to detect the 3D position of the QR code in
the 2D image, we need depth information. While this could
be accomplished with a calibrated RGB camera, we used a
low-cost RGB-D sensor, a Microsoft Kinect ($110). A benefit
of not relying solely on computer vision for the 2D to 3D
conversion of the landmark position is that QR code size need
not be known a priori or even be consistent between landmarks.
The Kinect uses a structured light method to extract depth
information for each pixel of the RGB image of a scene.

ROS provides a software package called OpenNI, which
packages camera drivers for the Kinect together with ROS’s
built in Image Pipeline tools. Many robots use power efficient
or embedded computers that are not well equipped to deal
with image processing. Running OpenNI on the robot can be
very computationally expensive, depending on the information
requested. To reduce onboard power consumption, we run im-
age processing remotely over a network. The OpenNI camera
drivers send compressed image and depth information, along
with camera calibration information to a server. The server then
rectifies both color and depth images, produces point cloud
data from depth information, and sends this information to be
processed by downstream components.

C. Adaptive Local Thresholding

The Kinect automatically compensates for light conditions.
This introduces variability in image contrast, especially when
the camera is facing upwards, due to the lights shining directly
into the aperture as the robot passes under them. We have
found this to drastically reduce overall system reliability. In
favorable lighting conditions (Figure 2 top), with the camera
facing a single QR code on the ceiling, detection and pose
computation of the QR code occurs at an average of 10.5 times
per second on thresholded input, while it only occurs at 2.5
times per second in the un-thresholded image. In unfavorable
lighting conditions (Figure 2 bottom), QR code recognition and
camera-relative pose calculation occurred an average of 5 times
per second with thresholding, and did not occur without it.

Source RGB Thresholded image

Fa
vo

ra
bl

e
lig

ht
in

g
U

nf
av

or
ab

le
lig

ht
in

g

Fig. 2: Adaptive local binary thresholding of 21 module QR
code (21 cm × 21 cm printed size)

We use adaptive local thresholding [17] to mitigate prob-
lems that could potentially impede the successful detection
of a QR code. Local thresholding allows us to stabilize the
contrast of the image to be nearly constant, regardless of
lighting conditions. First, every pixel in the RGB bitmap is
converted to a single byte of intensity, by taking a weighted
average of its values in the red, green, and blue channels.
Every pixel is then compared with the average intensity of its
neighboring pixels within an empirically determined window
(±5 pixels). If a pixel’s intensity is higher than its neighbors’
intensities by an empirically determined threshold (0.008), it
becomes white in the output image, otherwise, black. As the
2D barcodes are black and white, no useful information is lost
by a conversion to gray-scale. We found experimentally that
the thresholding increased the frequency of true positive QR
code identifications, without introducing any false positives.

As a naive implementation of such a sliding window
thresholding algorithm would be prohibitively computationally
expensive, we utilize an optimization that reduces the computa-
tional complexity from O(Pixelswindow ∗ Pixelsimage−size)
to O(Pixelsimage−size). Our optimized algorithm uses a
summed area table [18], alternatively known as an integral
image [19]. The integral image precomputes a table containing
the sum of all the pixels with x and y pixel coordinates less
than or equal to that of the corresponding position in the image,
allowing for constant-time lookup of the sum of any region in
the image during thresholding. In addition to being extremely
efficient once the table has been created, the pre-computation
can be done in linear time.

It should be noted that the maximum distance at which the
codes could be detected was not limited by the depth sensor,
but by the RGB camera resolution (640x480). We observed
that the detection rate degraded quickly as the apparent QR
module size approached angular camera resolution (about 3
meters in our case).

D. QR Code Detection

There are multiple existing libraries for reading data from
QR codes. We selected the ZBar library [20], which we found
to be highly reliable under normal lighting conditions and

easy to use. Additionally, the library is capable of finding and
decoding multiple QR codes in a single image. The library
provides us with four sets of pixel coordinates for each QR
code, locating the box containing the QR code in the image.

The decoder begins by passing thresholded images to the
ZBar library for barcode identification. If any barcodes are
detected, their coordinates are passed to a fast lookup function
that returns the 3D camera-centric points in the point cloud
that correspond to their 2D pixel coordinates. Due to artifacts
(such as “shadows”) in the point cloud generation process, not
all pixels have corresponding 3D coordinates. Such artifacts
manifest themselves as 3D points containing NaNs. When such
an artifact is found, a small search is done in the immediate
vicinity of the invalid pixel for a valid one within 10 pixels. If
such a point is not found, the corner of the QR code is deemed
invalid. If all corners are valid, their 3D points are then used
to calculate the 3D camera-centric position of the QR code.

To find the 3D orientation of the QR code, we calculate a
unit vector normal to three of the four points and positioned
in the midpoint of the code. The midpoint is calculated by
placing two intersecting vectors between the corners of the
code, and finding the midpoint of the shortest line segment
perpendicularly connecting the two vectors. We then calculate
a final orientation vector, which originates at the midpoint and
points in the direction of the midpoint between two of the
“front” corners of the code.

E. AMCL + QR Code Correction

All the detected QR code poses are in the Camera Frame
of reference. The next step is to resolve the robot pose in
the Map Frame using the information stored in the QR code.
As described in Section III-A, QR landmark stores its own
pose relative to the Map Frame (landmarks are self-localizing).
Essentially, a detected landmark’s position is known in both
the Camera Frame and in Map (World) Frame. The Camera
Frame’s relationship to the Robot Frame is static. (Figure 3
lower left). In this context the robot pose can be represented
as a transform from Map Frame to Robot Frame, and can
therefore be computed from the QR code’s position in the
Map Frame, and its position in the Camera Frame (Figure 3).

ROS uses TF framework to deal with coordinate frames
and transforms between them. TF keeps track of all the frames
using an acyclic tree structure and provides functionality to
compute transforms between any two frames of a connected
tree. To resolve the robot pose in the Map Frame, a temporary
transform tree is built: RobotFrame → CameraFrame →
Landmark → MapFrame. The robot’s pose in the Map
Frame is obtained by walking the temporary tree and accumu-
lating transformations.

If multiple QR codes are detected within a single image,
we compute the average as follows. We compute one robot
pose estimate in Map Frame per QR landmark on that image,
as described above. These robot poses are then averaged to
produce a single pose. For example, if there are three QR
landmarks on the image, we would average three robot pose
estimates to produce a single pose. To stabilize the pose
estimates, they are passed through a Kalman filter before being
published as the robot’s estimated position.

Fig. 3: Coordinate frames and transforms between them. The
transform source is parenthesized.

The final step is to update the AMCL belief so it rep-
resents the correct (according to the landmark) robot pose.
To accomplish this, AMCL’s existing hypotheses are cleared,
and reinitialized with a low covariance bayesian distribution,
centered at the calculated position and orientation. When no
QR codes are detected, AMCL functions normally.

IV. VALIDATION

The evaluation experiments are conducted with the robot
driving to the set of waypoints while localizing using each of
the localization methods.

A. Experiment Setup

1) Robot System: We use iRobot ATRV-JR robot (Fig-
ure 3). Onboard computer has 4GB RAM with Intel Core2 Duo
at 3.00GHz, and running Ubuntu Server 12.04. The robot has
two laser range finders: a SICK LMS200 mounted in front, and
Hokuyo URG-04LX faces back. The Microsoft Kinect RGB-D
sensor is mounted facing upward. Some of the processing is
offloaded to the desktop station with Intel Core i7-2600 CPU
at 3.40GHz, 8 GB RAM, running Ubuntu 12.04.

The robot is able to autonomously navigate to a set of
waypoints using one of the localization techniques.

2) Environment: We augmented the environment with
eleven QR landmarks, each containing their own pose infor-
mation. The printed markers were 21 cm × 21 cm, which we
placed on the ceiling in two areas. Based on the architectural
drawing of the building, we placed six QR landmarks in the
hallway (bottom right red area in Figure 4) and five inside an
office (top left). The QR codes could be detected at a distances
of less than 3 m. It should be noted that the height of the ceiling
in the hallway was lower than in the office (2.45 m and 2.68
m, respectively). Additionally, one of the five QR landmarks in
the office was placed on a soffit (Figure 2). Finally, it should
be noted that the hallway flooring was industrial vinyl tile, and
the office a low pile, industrial carpet.

0 5

SCALE METERS

1

2

3 16

4 5

13

978

14

12

10 11

6

15

Fig. 4: Locations at which the measurements are taken,
numbered in order. Red shaded areas are covered with QR

landmarks. (Best viewed in color)

3) Ground Truth Estimation: To evaluate localization al-
gorithms quantitatively, we need to know the ground truth
location of the robot to compare against. It is very hard to
obtain the exact ground truth; it was outside the scope of our
work to use a MoCap system, such as used by Sturm [21]
to record one of the localization benchmark datasets. For our
evaluation, we estimate ground truth using SICK LMS-200
laser range finder measurements. At each waypoint, the robot’s
movement was suspended and the laser readings were aligned
with the environment map. When the alignment was achieved,
the origin of the laser scan was determined to be ground
truth. The error was then calculated as the Euclidean distance
between the ground truth and the position calculated by the
localization algorithm.

B. Procedure

A single experiment run for a condition consisted of 16
waypoints 4 causing the robot to pass through areas with QR
landmark coverage at multiple points in the run. Two runs
with the same waypoints were conducted per condition. At
each waypoint, the estimated error was measured. The error
was computed as the difference between the ground truth and
the perceived location.

The experiment had 4 conditions:

1) AMCL: We first obtained the baseline ACML perfor-
mance by conducting two consecutive runs with the standard
AMCL used for localization. The map used internally by
AMCL was created with GSlam ROS package just prior to
the experiment, and no changes were intentionally introduced
to the environment.

2) AMCL+QR: Similarly, the performance of AMCL aug-
mented with QR landmarks was obtained, with no changes
intentionally introduced to the environment. In these runs,
AMCL was reinitialized whenever a QR landmark was visible
and could be decoded. Approximate location of QR landmark
visibility is marked on Figure 4.

3) AMCL in changed environment: To simulate a dynamic
environment, items in the environment were rearranged. The
differences before and after the rearrangement is illustrated in

Fig. 5: Changes in the environment: red obstacles are in the
original map, green obstacles are in the changed map. (Best

viewed in color)

Mean Error, m σ
AMCL 0.054 0.028

AMCL+QR 0.094 0.044
AMCL * 0.153 0.135

AMCL+QR * 0.099 0.055

Fig. 6: Total error means across all conditions. Conditions
with changed environment marked with an asterisk (*).

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 2 4 6 8 10 12 14 16

E
rr

o
r,

 m

Measurement waypoint index

AMCL
AMCL+QR

AMCL *
AMCL+QR *

Fig. 7: Measured error across all conditions. Conditions with
changed environment marked with an asterisk (*). (Best

viewed in color)

Figure 5. There are notably more changes near waypoints 4
and 5, in the office.

4) AMCL+QR in changed environment: As IV-B2, but with
the changes to the environment as in IV-B3.

V. RESULTS AND DISCUSSION

We performed two runs for each condition, 16 measure-
ments in each run, 8 runs total. The results from our experi-
ments are displayed in Figures 6 and 7.

In Condition 1 (baseline AMCL performance), AMCL
showed good performance with an average error of 5.4 cm
at the 16 locations measured twice. These results were unsur-
prising, since AMCL relies on having an accurate map and this
run was performed just after the environment was mapped.

Condition 2 (AMCL with QR code correction) did not
perform as well as AMCL alone, with an average error of 9.4
cm. At first glance, a 4 cm increase in error introduced by our
correction algorithm may seem counter productive. However,
it should be noted that for many dynamic indoor environments,
a 4 cm error in localization may be completely reasonable. We
believe this error was the result of accumulated error in the
hand placement of the QR codes and the calibration of our
Kinect sensor.

Condition 3 (AMCL in a changed environment) highlights
AMCL’s failure scenario. The error was much higher near
waypoints 4 and 5, which was an area of high local difference
compared to before rearranging was performed. The maximum
and average errors for this condition were 48 cm and 15.3
cm, respectively. Again, these results should be unsurprising,
as AMCL’s accuracy is entirely dependent on correlation
between the map and range readings. It is interesting to note
the environment was modified the most near waypoint 4,
where AMCL had the most trouble localizing (See Figures
5 and 7). AMCL’s estimates only reconverged later due
to the environment not being as heavily modified at those
waypoints. It should be further noted that the changes made
to the environment for this condition were rather minimal in
nature when compared to dynamic environments in the real
world, such as warehouses, museums, or shopping malls.

Condition 4 (AMCL in a changed environment with QR
code correction) showcases the advantage of using our correc-
tion algorithm. The error in this condition was much lower than
that of Condition 3, averaging only 9.9 cm. Overall, we believe
the proposed method has the potential to improve probabilistic
localization (AMCL) for the cases when it fails, e.g., for highly
dynamic environments.

One limitation of our work is that we tested a single
failure case – a non-static environment. There are a number of
extensions to this work, particularly in the areas of crowded
environments (e.g., a shopping mall [22], a museum field trip)
and also for long-term operation of a robot in a space.

VI. CONCLUSIONS AND FUTURE WORK

We hope to further optimize our algorithm to a point at
which it can be run entirely on our robot’s onboard computer,
and even eventually be run on Atom-powered hardware such
as a FitPC. This in part should be possible with ongoing
improvements in the area of RGB-D sensing. These sensors
are also getting cheaper; for nearly one hundreds dollars, it is
possible to replace the functionality of a commercial indoor
localization system.

We will further investigate the distribution and placement
of QR codes in the environment. We intend to move the
RGB-D sensor from an upward-facing to a forward-facing
configuration, and evaluate localization accuracy with QR
codes located on walls in a crowded public space.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Holly A. Yanco for
use of her laboratory and robot.

REFERENCES

[1] S. Thrun, “Robotic mapping: A survey,” Exploring artificial intelligence
in the new millennium, pp. 1–35, 2002.

[2] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[3] H. Andreasson, A. Treptow, and T. Duckett, “Localization for mobile
robots using panoramic vision, local features and particle filter,” in
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation. IEEE, 2005, pp. 3348–3353.

[4] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks,” The interna-
tional Journal of robotics Research, vol. 21, no. 8, pp. 735–758, 2002.

[5] ——, “Vision-based global localization and mapping for mobile robots,”
IEEE Transactions on Robotics, vol. 21, no. 3, pp. 364–375, 2005.

[6] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo
Localization for mobile robots,” Artificial Intelligence, vol. 128, no. 1-2,
pp. 99–141, 2000.

[7] H. Kobayashi, “A new proposal for self-localization of mobile robot by
self-contained 2d barcode landmark,” in Proceedings of SICE Annual
Conference. IEEE, 2012, pp. 2080–2083.

[8] D. Tick, J. Shen, Y. Zhang, and N. Gans, “Chained fusion of discrete
and continuous epipolar geometry with odometry for long-term local-
ization of mobile robots,” in IEEE International Conference on Control
Applications (CCA). IEEE, 2011, pp. 668–674.

[9] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, no. 3.2, 2009.

[10] Willow Garage. (2013, Jan.) Robot operating system (ROS). [Online].
Available: http://www.ros.org

[11] T. Takahashi, M. Shimizu, and M. Okaya, “A navigation method of
service robots at shelters,” in IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE, 2011, pp. 105–109.

[12] Y. Xue, G. Tian, B. Song, and T. Zhang, “Distributed environment
representation and object localization system in intelligent space,”
Journal of Control Theory and Applications, vol. 10, no. 3, pp. 371–379,
2012.

[13] P. Wu, L. Kong, and S. Gao, “Holography map for home robot: an
object-oriented approach,” Intelligent Service Robotics, pp. 1–11, 2012.

[14] bytelight indoor location. With light. [Online]. Available: http:
//www.bytelight.com

[15] Evolution Robotics. (2005) NorthStar. Low-cost, indoor localization.
[Online]. Available: http://web.archive.org/web/20101216070615/http:
//www.evolution.com/products/northstar.pdf

[16] M. Boccadoro, F. Martinelli, and S. Pagnottelli, “Constrained and
quantized kalman filtering for an RFID robot localization problem,”
Autonomous Robots, vol. 29, no. 3, pp. 235–251, 2010.

[17] B. Banko. (2011) Realtime webcam sudoku solver.
[Online]. Available: http://www.codeproject.com/Articles/238114/
Realtime-Webcam-Sudoku-Solver

[18] F. C. Crow, “Summed-area tables for texture mapping,” SIGGRAPH
Comput. Graph., vol. 18, no. 3, pp. 207–212, Jan. 1984. [Online].
Available: http://doi.acm.org/10.1145/964965.808600

[19] K. Derpanis, “Integral image-based representations,” Department of
Computer Science and Engineering, York University, Paper, 2007.

[20] J. Brown. (2011, Jul.) ZBar bar code reader. [Online]. Available:
http://zbar.sourceforge.net

[21] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proc. of
the IEEE Int. Conf. on Intelligent Robot Systems (IROS), 2012.

[22] K. Zheng, D. F. Glas, T. Kanda, H. Ishiguro, and N. Hagita, “Super-
visory control of multiple social robots for navigation,” in Proceedings
of the 8th ACM/IEEE international conference on Human-robot inter-
action. IEEE Press, 2013, pp. 17–24.

