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Abstract—People with cognitive and/or motor impairments
may benefit from using telepresence robots to engage in social
activities. To date, these robots, their user interfaces, and their
navigation behaviors have not been designed for operation by
people with disabilities. We conducted an experiment in which
participants (n=12) used a telepresence robot in a scavenger
hunt task to determine how they would use speech to command
the robot. Based upon the results, we present design guidelines
for speech-based interfaces for telepresence robots.

I. INTRODUCTION

Designing a telepresence user interface for people with
cognitive and/or motor impairments is a first step towards
having our target population take the active role of the robot
operator. Telepresence robots may then be used as a means for
social engagement. For example, some people may wish to tour
a museum or attend an art exhibit opening, concert, sporting
event, or theatre performance [1]. Others may simply want to
be present in a space to feel more included in an activity, like
attending high school via telepresence robot (see [2]).

Telepresence robot systems have been used as healthcare sup-
port tools (see [2] for a brief overview); the design of the robots
and their interfaces has been focused on the doctor, healthcare
staff, or family caregiver. Many commercial telepresence robot
interfaces are designed for teleoperation from a computer using
a combination of key presses and/or mouse clicks, mostly with
low level forward, back, left, and right (FBLR) commands (e.g.,
Giraff, QB, R.BOT 100, Texai, VGo). For example, a robot
will move forward when the up arrow key is pressed, remain
moving forward until the key is released, and then stop. Input
devices for these commercial telepresence robots require a fine
level of manual dexterity, which may not be suitable for people
with motor impairments [3]. It is difficult to keep a telepresence
robot driving straight down a hallway, rather than zig-zagging,
when using teleoperation due to network lag and dynamic envi-
ronments [4]. Additionally, people with cognitive impairments
may have difficulty decomposing complex tasks [5].

Our research investigates how people with cognitive and mo-
tor impairments would want to a direct telepresence robot in a
remote environment, and specifically focuses on a speech-based
interface. A number of corpora have been constructed investi-
gating spoken spatial commands between people (e.g., [6]–[9]),
and spoken by a human to a robot (e.g., [10], [11]). However,
none of the corpora and data sets involved people with disabili-
ties as participants, who are often overlooked when developing

interfaces for human-computer interaction (HCI) [12]. It is
unknown how our target audience, particularly those with cog-
nitive impairments, would want to direct robots in a remote envi-
ronment. Also, there is an underlying assumption in the human-
human corpora that people will talk to robots in the same
manner that people talk with other people (e.g., [6]–[9]). We
conducted an experiment to investigate the differences and simi-
larities between participants from the target audience giving spa-
tial commands to a person versus a remote robot, which was per-
ceived to be autonomous through “Wizard of Oz” control [13].

II. SCAVENGER HUNT EXPERIMENT

We designed an experiment in which people gave verbal
instructions to guide a remote shopping assistant within a space
similar to a retail store. Our goal was to see how the language
used changed if the participants thought that 1) they were
commanding an autonomous robot in the environment, or 2) a
person was moving a camera in the environment for them.
A. Recruitment and Participants

We recruited 12 participants for our between-subjects study.
Participants were members of the Crotched Mountain Rehabil-
itation Center community, including inpatient clients from the
Brain Injury Center and participants in the residential program.
Each spoke English and had a condition that significantly lim-
ited their ability to travel and maintain contact with important
individuals. Their medical conditions included amyotrophic
lateral sclerosis (ALS), cerebrovascular accident (CVA, or
stroke), muscular dystrophy (MD), spina bifida (SB), spinal
cord injury (SCI), traumatic brain injury (TBI). We excluded
people with blindness, low arousal levels, or other conditions
preventing benefits from use of the robot. People with severe
cognitive challenges who were unlikely to understand that the
robot was a representation of themselves, as opposed to a TV
show or video game, were also excluded.

Ten men and two women participated in the experiment; the
average age was 40.3 years (SD=17.3). A summarized descrip-
tion of their abilities is given in Table I. All participants had
functional vision ability; one participant had visual field loss
on his right side (P9) and another had significant hemispheric
neglect (P10). Eleven participants had intact literacy ability; P7
had moderate literacy. All participants had intact speech ability.
P2 and P8 used tracheostomy tubes for assisted respiration.
P5 drew oxygen from a tube and had limited breath support;



TABLE I
PARTICIPANT DESCRIPTIONS

P# Age Gender Medical Cognitive Literacy Speech Ability Vision Ability
Condition Impairment Ability

P1 36 M TBI moderate intact intact functional when corrected with glasses
P2 63 M ALS none intact intact; uses trachostomy tube functional when corrected with glasses
P3 67 M TBI moderate intact intact functional
P4 45 M TBI moderate intact intact functional when corrected with glasses
P5 32 M MD none intact intact; limited breath support functional
P6 24 F TBI moderate intact intact functional when corrected with glasses
P7 20 F SB mild moderate intact functional
P8 22 M SCI none intact intact; used trachostomy tube functional
P9 32 M TBI mild intact intact visual field loss on right side
P10 52 M TBI moderate intact intact functional vision when corrected with

glasses; significant hemispheric neglect
P11 64 M CVA moderate intact intact; clarity slightly affected functional when corrected with glasses
P12 27 M TBI moderate intact intact functional

consequently, he had a quiet voice. P11 had a cerebral stroke,
which slightly affected the clarity of his speech.

P2, P5, and P8 had intact cognition. P7 and P9 had mild
cognitive challenges (able to function in most environments
independently and execute activities of daily living with assis-
tance from memory aids). The remaining seven had moderate
cognitive challenges (may have significant memory loss but
able to perform most activities of daily living with minimal
support, except cooking and bathing for safety reasons).

Four participants had prior experience with voice recognition.
P2 and P8 had used Dragon NaturallySpeaking, and P12 used
Dragon Dictate. P5 noted that he had experience with a voice
activated computer but did not list specific software.

B. Experimental Design

Participants provided their informed consent or assent, as
appropriate. Then, the experimenter read a script describing the
remote shopping experience. The premise was that participants
were to host a themed party. They would shop for costumes,
food, drinks, party games, and movies to show at their parties
(Task 1, 15 min.) with the help of a remote shopping assistant
located at “KAS Party Central.” The remote shopping assistant
would show the store to the participants using a webcam. At
the end of the scenario, they would finalize their choices at a
checkout station with a party planner (Task 2, 5 min.).

The live video from the webcam on our VGo robot, Margo
(Fig. 1 left), was maximized on a 22 inch (55.9 cm) Dell
monitor. The webcam was described as having 2-way audio,
so that they could hear what was going on at the store,
and the remote shopper could hear anything they said to it.
Participants were told to talk to tell the shopper where to go
and what they were looking for. Participants were also told
that there was a few second delay between when they spoke
and when the remote shopper heard them.

The experimenter provided the participants with a store
directory (Fig. 1 center) and a written description of the two
tasks, including the shopping list (i.e., 2 types of snacks, 1
drink, 1 movie as recommended by a party planner, 1 party
game, 1 costume). After completing both tasks, participants
were asked to draw their path on a map and engaged in a post-
experiment interview. At the end of the session, the telepresence
robot and wizard were introduced to the participant, and the

researchers answered any remaining questions about the study.
Estimated time for this study was 60 minutes, and participants
were compensated with a $20 gift certificate.

It should be noted that a training period was not provided
as the purpose of this study was to understand how people
provide verbal navigation instruction. Our experiment featured
a single wizard whose role was to interpret the participants’
verbalized navigation instructions. The wizard then controlled
the telepresence robot in accordance with the given instruction.
For both the robot-agent and human-agent conditions, the
instructions were interpreted in the same manner, and the wizard
moved the VGo telepresence robot using a USB gamepad.

C. KAS Party Central

We divided a space (approximately 20×40 ft (6.1×12.2 m))
into four sections. There were two large sections which each
had two subsections; the snacks and drinks were located in the
“grocery” section, and the movie posters and party games in
the “entertainment” section (Fig. 1 center). The party planning
station was co-located with the checkout in an adjacent room.
The costumes were grouped together in one section. Large,
green signs denoted the costume, grocery, entertainment, and
party planning sections, and smaller, blue signs denoted the
subsections within grocery and entertainment (Fig. 1 right).
A call box was set in the middle of the store, out of the
line-of-site of the party planning station.

We populated the store with party refreshments and theme
items. There were multiple images associated with each
choice, as the participants may not have been familiar with
any one in particular. It was not important for the participant
to select one specific image within a choice. Fig. 1 (top right)
shows examples of the two types of the four drink choices
(orange soda, fruit punch, milk, and water) on one side of the
grocery section. The snack choices were cupcakes, cookies,
pretzels, and apples. We created four party themes (i.e., robot,
Halloween, Christmas, circus), and each theme was assigned
three times. There was one choice for each theme’s costume
and party game, and three movie choices per theme. Costumes
were comprised of a t-shirt and a mask, wig, or hat (Fig. 1
top right). Movie choices were shown as large poster and
grouped according to theme (Fig. 1 bottom right).



Fig. 1. (Left) Margo, a modified VGo telepresence robot [14]. (Center) “KAS Party Central” store directory. Numbered triangles indicate location and
orientation for “go to named destination” instructions for the wizard. (Right) View of the games table and movies. Best viewed in color.

D. Wizarding

We anticipated that the participants would use a wide range
of language including low level FBLR directives (e.g., turn right,
go right), relative descriptions using local area information (e.g.,
take the next left), and global destinations (e.g., go to a named
location). In addition to the robot moving as directed by the
participant, our wizard provided a limited amount of scripted
verbal feedback. Koulouri and Lauria [15] found that when
a small set of limited feedback is provided to a robot operator,
the operators reverted to giving low-level FBLR commands,
ignored the feedback, and focused on the robot’s movement.
In another experiment, their wizard was additionally allowed
to “request clarification” from and “provide information” to
the robot operator in an open text format. Our verbal protocol
expanded on this level of feedback, which we detail as we
define how the wizard controlled the robot.

In general, the wizard rephrased the participant’s command
with acknowledgement. For example, our wizard responded
“going to <named destination>” when initiating movement,
and “Ok, I’m here” when the robot was positioned and
oriented. The choices for each of the shopping list items
were not known to the participants beforehand; the shopping
assistant started each run as if the list were unknown to
the robot or person as well. Thus, “go to <named object>”
and “find the <named object>” instructions were not valid
(e.g., “go to the robot movies,” “find the cupcakes”), as prior
knowledge about the environment was not a dependent variable
in this experiment. The wizard responded “I don’t understand”
or “I don’t know” to invalid or ambiguous instructions.

FBLR command actions were set according to what people
would expect For example, “turn right” resulted in the robot
turning at most 90 degrees, as opposed to turning to the right
continuously until commanded to stop. If the wizard was
instructed to drive for a potentially long distance (e.g., “drive
straight,” “drive forward,” “drive down the hall”), the wizard
followed the instruction until a wall, shopping display, or
obstacle was encountered. The wizard did not provide verbal
feedback for FBLR directives.

Our verbal protocol included a number of additional feedback
messages. When a participant indicated an item selection,
the wizard responded by saying “picture taken.” The wizard
prompted the participant at the beginning of Task 1 (“how

can I help you?”) if he or she did not initiate instruction,
and also during the task if the participant was silent for 60
seconds after the last robot movement or command (“what
would you like me to do?”). If a participant chained multiple
commands, the wizard acknowledged the sequence, rephrased
and acknowledged the first command (e.g., “going to ...”),
acknowledged the completion of the first command, rephrased
and acknowledged the second command (e.g., “now going to
...”), and so on. The wizard incorporated awkward silences
between words in the robot agent condition; otherwise, the
wizard used her regular speaking voice.

E. Data Collection and Analysis

We recorded video and audio for each session, and the record-
ings were transcribed using CastingWords [16]. We developed
and refined a categorical coding scheme through open and axial
coding [17] based on the participants’ utterances (Table II).
Utterances are separated by a verbal response from the wizard,
the start of the command action by the wizard, or elapsed
silence by the participant of at least 10s. Cohen’s kappa for inter-
rater reliability was computed as κ=0.86 (excluding chance).

Eleven of the twelve participants completed the primary
shopping task within the 15 minutes allotted; we have removed
P10 from the statistical analysis due to non-completion of the
task. We coded 312 total utterances. As utterances could contain
more than one sentence or phrase, we considered the whole
utterance and noted all appropriate categories. Participants
in the human agent condition (nH=6) spoke a total of 178
utterances (x̄H=29.67, SD=12.88), and participants in the
robot agent condition (nR=5) spoke a total of 134 utterances
(x̄R=26.80, SD=15.12). Unless otherwise noted, we computed
two-tailed Student’s unpaired t-tests with a confidence interval
of 95% (α=0.05) on the categorial frequency count between
the human agent and robot agent conditions.

III. RESULTS AND DISCUSSION

Overall, speech used to direct the human remote shopper
and the robot remote shopper had few statistically significant
differences (Table III). We believe that this result is due
to the experimental design. In both conditions, participants
were given a very simple and limited description of the
remote shopper’s capabilities. We did not provide details in
the scenario description as to how the remote shopper would



TABLE II
CATEGORY CODING DEFINITIONS; κ=0.86 (EXCLUDING CHANCE)

Category Description Examples
ENVIRONMENTAL KNOWLEDGE
None The requested command can be done regardless of the robot’s location

(disregarding obstacle avoidance)
Stop, forward, back, left, right, tilt,
zoom

Local The requested command requires information from local sensors (i.e.,
camera view)

Take a picture

Global The requested command requires knowledge beyond local sensors Go to <named destination> not in
the camera’s current field of view

SENTENCE COMPLEXITY
Simple One independent clause:1 simple or compound subject and simple or

compound verb
Go to the snacks.

Compound Two independent clauses joined using: for, and, nor, but, or, yet, so Go to the snacks and turn right.

Complex One independent clause joined with one or more dependent clause(s)
using a subordinating conjunction (after, although, as, because, before,
if since, though, unless, until, when, whenever, where, whereas,
wherever, while) or relative pronoun (that, what, who, which)

Go to the snacks, which are on the
other side of groceries from drinks.

SENTENCE TYPE
Declarative Sentence that makes a statement Ex. 1: I need a snack. Ex. 2: The

first item on the list is a snack. Ex.
3: I choose pretzels.

Imperative Expresses a command, request, or selection. Subject may be implicit
(“you”) or explicit (proper name of remote shopper). Verb may be
implied when the predicate is only an adverb phrase or direct object.

Ex. 1: [You,] go to the snacks. Ex.
2: [You, turn] left. Ex. 3: [You, go
to] snacks, please.

Interrogative Sentence that asks a question Could you go to the snacks?

Interjection A single word or non-sentence phrase which is not grammatically
related to the rest of the sentence

Ok, all right, yes, well, hi, thanks

FEEDBACK TO REMOTE SHOPPER
Praise Utterance includes positive feedback given to remote shopper when

beginning, while executing, or completing an instruction.
Good, excellent

Confirmation/
acknowledgement

Utterance includes neutral feedback given to remote shopper when
beginning, while executing, or completing an instruction.

Ok, yes

SOCIAL ETIQUETTE
Greeting Utterance includes acknowledgment of remote shopper. Hello, hi

Expressing polite request Utterance includes “please.” Please

Expressing polite gratitude Utterance includes “thank you.” Thank you, thanks

Addressing by name Utterance includes the remote shopper’s name. Margo (robot), Kelsey (human)
OTHER
Not to remote shopper The utterance is not directed at or spoken to the remote shopper.

No code There is no appropriate category for this utterance.
1A clause has a subject and a predicate; a predicate minimally contains a verb. An independent clause is a sentence.

move in the environment, if the remote shopper implicitly
knew to avoid obstacles, and if the remote shopper knew what
items were located in the store and where they were located.
Additionally, we did not ask the participants any pre-experiment
questions to prevent biasing their language style. We solicited
the participants’ experience with voice recognition at the end.

The differences in the participants’ verbal instructions can
largely be attributed to personal style. Some participants in both
conditions primarily gave imperative commands that did not
require any environmental knowledge to fulfill the request
(Fig. 2 left: left, right, turn, stop). P2 in the robot agent
condition gave three times as many commands that did not
require environmental knowledge (n=33) than global ones
(n=11), and P5 in the human agent condition gave more than

four times as many (n=40 and 9, respectively). All participants
utilized commands that required global environmental knowl-
edge (Fig. 2 right: go to). P3 (human agent condition) primarily
used declarative language, while P6 and P8 (robot agent
condition) used interrogative language. Two participants, P2
and P5 (one in either condition), praised the remote shopper’s
completed actions. The majority of the utterances were simple
sentences; two participants, P5 and P6 (one in either condition),
provided the majority of the compound and complex language.

A. Declaring Item Selection

Participants in the human agent condition spoke significantly
more declarative utterances (nH=67, x̄H=11.2, SD=8.2) than
participants in the robot agent condition (nR=13, x̄R=2.6,



Fig. 2. Unique word histograms of top 21 utterances coded by levels of environmental knowledge. (Left) None: Directives require no environmental knowledge,
and the request can be performed regardless of the robot’s location; n=384, 67% representation. (Center) Local: Directives require information from the
robot’s sensors at an instance in time; n=573, 51%. (Right) Global: Directives require knowledge beyond the robot’s local sensors; n=802, 51%.

TABLE III
RESULTING FREQUENCY COUNTS FROM CATEGORICAL CODING OF

PARTICIPANTS’ TRANSCRIPTS, EXCLUDING P10

Category Condition n x̄ SD p

ENVIRONMENTAL KNOWLEDGE

None H 51 8.5 15.5 0.75
R 57 11.4 13.4

Local H 46 7.7 3.2 0.55
R 46 9.2 4.6

Global H 45 7.5 3.7 0.85
R 39 7.8 0.4

SENTENCE COMPLEXITY

Simple H 134 22.3 11.3 0.67
R 132 26.4 17.8

Compound H 6 1.0 2.0 0.70
R 3 0.6 1.3

Complex H 18 3.0 1.9 0.56
R 9 1.8 4.0

SENTENCE TYPE

Declarative H 67 11.2 8.2 0.05∗

R 13 2.6 1.9

Imperative H 79 13.2 18.0 0.71
R 89 17.8 21.8

Interrogative H 22 3.7 5.2 0.24
R 49 9.8 9.3

Interjection H 79 13.2 6.9 0.02∗

R 18 3.6 3.2
FEEDBACK TO REMOTE SHOPPER

Praise H 5 0.8 2.0 0.83
R 3 0.6 1.3

Confirmation H 58 9.7 4.8 0.01∗∗

R 9 1.8 2.9
SOCIAL ETIQUETTE

Greeting H 3 0.5 0.5 0.77
R 3 0.6 0.5

Please H 8 1.3 2.2 0.21
R 17 3.6 3.0

Thank you H 4 0.7 1.2 0.92
R 3 0.6 0.9

Address by name H 6 1.0 0.9 0.30
R 50 10.0 16.9

SD=1.9); p=0.05 with t(9)=2.25. We found that 55 of the 67
declarative utterances in the human agent condition (82.1%)
and 8 of the 13 in the robot agent condition (61.6%) were
first person declarative sentences (e.g., “I want,” “I need,” “I’ll
take,” “I’ll choose”). Participants in the human agent condition
spoke significantly more first person declarative utterances
(x̄H=9.7, SD=7.2) than the participants in the robot agent

condition (x̄R=1.6, SD=1.8); p<0.05 with t(9)=2.27. The
functions of these first person declarative utterances related
to item selection and specifying locations, which require local
and global knowledge, respectively.

We further investigated the function of the commands that
required local environmental knowledge, which included item
selection by taking a picture. Seventy-seven of the 92 utterances
that required local environment knowledge (83.7%) involved
item selection. Participants in the human agent condition had
a similar number requiring local knowledge (nH=40, x̄H=6.7,
SD=2.7) as the participants in the robot agent condition
(nR=37, x̄R=7.4, SD=2.7); p=0.67.

We then looked at the sentence type corresponding to
item selection and found that participants spoke a total
of 24 declarative utterances (nH=13, nR=1), 38 imperative
(nH=17, nR=21), and 23 interrogative (nH=6, nR=17). Again,
participants in the human agent condition spoke significantly
more declarative utterances (x̄H=3.8, SD=3.1) than those in
the robot condition (x̄R=0.2, SD=0.4); p=0.03 with t(9)=2.52.
Participants in the robot agent condition spoke a greater number
of imperative utterances (x̄R=4.2, SD=4.1) and interrogative
utterances (x̄R=3.4, SD=3.2) than those in the human condi-
tion (x̄Himp=2.8, SD=2.7; x̄Hint=1.0, SD=2.4, respectively),
though not significantly so (p=0.54 and p=0.21, respectively).

Finally, we note that for all utterances involving item
selections, all but four identified the specific item. Participants
also provided descriptive information including the color of the
item (e.g., P7: “I’ll do the black shirt with the skeleton”), its
location in the camera’s field of view (e.g., P6: “And also the
milk that’s on the right side of the bottom?”), and its location
with respect to other items (e.g., P9: “Up above the black
shirt, there was a mask. Can you take a picture of that?”).

B. Interjections Indicating Confirmation

In addition to participants in the human agent condition using
more declarative statements, they also used more interjections
(x̄H=13.2, SD=6.9) than those in the robot agent condition
(x̄R=3.6, SD=3.2); p=0.02 with t(9)=2.90. Fifty-eight of the
79 (73.4%) interjections in the human agent condition were
categorized as confirmation or acknowledgment feedback to the
remote shopper, in contrast to 9 of the 18 (50%) interjections
spoken to the robot shopper. This difference was also significant
(p=0.01 with t(9)=3.25; x̄H=9.7, SD=4.8; x̄R=1.8, SD=2.9).
We believe this difference is due to the perception of giving



instructions to a person versus robot. In both conditions, the
wizard performed commands and provided feedback in the same
manner. The webcam was used solely to provide the participant
a view of the remote environment and not used to coordinate
with the remote shopper in the human agent condition. Verbal
acknowledgements are a compensatory strategy used in human-
human remote collaboration (e.g., [7], [18], [19]).

C. Margo, stop!

It is imperative that the robot is able to stop on command.
There were 23 utterances that contained the keyword “stop”
(nH=4, nR=19). In 21 of these 23 utterances (91.3%), the
participant was directing the remote shopper to cease the
current movement. There was no statistical difference between
the human agent condition (x̄H=0.3, SD=0.8) and the robot
agent condition (x̄R=3.8, SD=6.9); p=0.36. Additionally, there
were five utterances containing an implied stop command
(nH=4, nR=1). Colloquialisms including “that’s good” (n=1)
and “[blank, hold it, stay] right there” (n=4) should also be
given the same importance as “stop.”

D. Social Etiquette

Six of the eleven participants greeted their remote shopper by
name (nH=3, nR=3). Two participants introduced themselves
by name as well: one in either condition (P9, P12). Four par-
ticipants thanked their remote shoppers (nH=4, nR=3). P1 and
P9 (human agent condition) said “thank you” once and three
times, respectively; P2 and P12 thanked their robot shopper
once and twice, respectively. Six participants said “please” a
total of 26 times (human agent: nP3=3, nP5=5; robot agent:
nP4=2, nP6=3, nP8=5, nP12=8). There was no significant
difference between the human agent (x̄H=1.3, SD=2.2) and
robot agent (x̄R=3.6, SD=3.0) conditions; p=0.20.

There were 47 instances in which a participant addressed the
robot by its name, in addition to the three greetings. Addressing
the robot by name was one strategy for giving a new command.
Three participants said “Margo” in this manner (nP2=40,
nP6=2, nP8=2). It was also used for checking if the robot was
still awaiting commands by P6 and P8 (n=3); participants gave
a subsequent request following the robot’s acknowledgement. In
the human agent condition, the remote shopper’s name “Kelsey”
was spoken in 6 instances: three times as a greeting and three
times at the start of a declarative sentence (P1, P3). There was
no significant difference between the human agent and robot
agent conditions (p=0.30). In a one-to-one scenario, addressing
the remote shopper by name may have been considered
superfluous; vocative expression is an explicit manner of direct
address which people use in group situations [20].

IV. GUIDELINES FOR HRI DESIGN

The use of a speech interface ultimately depends on a
person’s communication skills including comprehension, vo-
cabulary, speech clarity, and rate of speech. Speech recognition
software, such as Dragon Naturally Speaking, has been utilized
by people with physical disabilities who cannot use traditional
physical computer access methods (e.g., [21]) and people with
mild, moderate, and even severe speech impairments (e.g.,

[22]–[24]). Finally, speech interfaces overall are increasing
in popularity. Voice-activated personal assistants exist on
contemporary smartphones (e.g., Apple’s Siri [25], Android’s
Andy [26]). Based upon the results of our experiment, the
following guidelines should be used for creating interfaces for
remote telepresence robots:

Guideline 1: Levels of feedback expected from the
remote robot and given back to the robot are not equal.
Verbal responses and the robot’s actions provide feedback that
the given commands have been understood (or not). Participants
were explicitly told of delays between giving an instruction
and the remote shopper hearing it; Green et al. [27] note that
the time elapsed to a system’s response may lead to repeating
the desired command. Sufficiently detailed feedback must be
given by the robot in order to elicit spoken spatial navigation
commands similar to those given by one person to another;
otherwise, robot operators revert to FBLR directives [15]. In
the post-experiment interview, P8 commented specifically on
the robot’s verbal feedback: “It [Margo] gave the feedback I
asked it to do. [It] went to the place I asked. When it got there,
it said it arrived to confirm.”

However, the robot should not rely on feedback from a
person for confirmation of its actions. Participants in the human
agent condition spoke 58 utterances (of 312, 18.6%) indicating
acknowledgement, as opposed to 9 utterances (2.9%) from
participants in the robot agent condition. It should be noted that
the remote shopper always acted in accordance with requests,
thus it is unknown if or how a person might reprimand the
robot (e.g., “no!” [28]) and correct the current command. Kim
et al. [28] discuss how people are willing to provide feedback
to a robot teaching it a task. Robot operators should not be
expected to give the same level of explicit confirmation in
order for the robot to act on every command (e.g., [27], [29]).
Sugiura et al. [30] have begun investigating when and how to
confirm a robot’s pending action(s).

Guideline 2: Expect simple commands with phrase
variations corresponding to the same underlying command.
It is unrealistic to expect a user to memorize and recall verbatim
large numbers of commands, destination labels, etc. Human
mobility follows a power-law distribution (e.g., by vehicle
[31], walking [32], activities of daily living at home [33]). We
observed that the participants’ word choices in their utterances
also followed this pattern considering the participants gave
navigation instructions in an unconstrained manner (Fig. 2).

We found that the majority of the utterances were categorized
as simple sentences (85.3% overall). There were 312 total
utterances; participants in the human agent condition spoke
134 simple sentences (42.9%), and those in the robot agent
condition spoke 132 (42.3%). The majority of the types of
sentences spoken to a robot in the scavenger hunt experiment
were imperative (nR=89); for example, “go to the snacks.”
Imperative commands can be rephrased into interrogative
questions thereby increasing its politeness; for example, “could
you go to the snacks?” Interrogative statements were the
second most frequent utterance spoken to the robot (nR=49).
Additionally, imperative commands can be rephrased into



declarative sentences expressing desired functionality; for
example, “I want you to go to the snacks” or “You can go
to snacks.” It was rare, however, for a participant to speak a
declarative utterance to the robot (nR=13), and, in this respect,
there was a statistically significant difference between speaking
to a robot versus to a human (nH=67; p=0.05).

Guideline 3: Halt the robot whenever “stop” is parsed.
The robot’s safety should not be solely the responsibility of the
user, and the robot should proactively keep from harming itself
and the remote environment. Telepresence robot operators from
our target audience may not be able to perceive environmental
hazards (e.g., obstacles, cliffs) and comprehend if evasive action
(e.g., stop) is needed in a timely manner depending on their
cognitive ability [34]. Further, they may not be able to articulate
the evasive action due to speech and/or language disorders;
real-time speech generation is similar to real-time control of a
physical device (e.g., power wheelchair).

However, it would be prudent to immediately halt motor
commands when the keyword “stop” is parsed, even if the
language processing is incomplete. Although “stop” was only
spoken in less than 0.1% of the utterances (23 of 312), the
resulting action of the robot ceasing its current movement
would have been correct 91.3% of the time (21 of 23). We did
not observe any instances in which a participant spoke a “stop”
command with intense, negative affect [28] to prevent the robot
from bumping into an obstacle or wall; only P8 stated that he
“thought the robot might crash” in his interview.

Guideline 4: Be cognizant of the addressee. A voice
command interface for giving spatial navigation commands
does pose a “Midas touch” issue, as the primary purpose for
telepresence robots is communication using two-way audio
and video. There is potential for confusion as to whom the
robot operator is speaking: the robot or a person in the remote
environment. Dowding et al. [35] trained a language model on
known robot-direct speech and investigated if robot-directed
speech could be distinguished in predominantly human-human
dialogues. Trafton et al. [19] have investigated perspective
taking as a means to establish if the robot’s perspective is
the same as the person’s. Although only a few participants
addressed the remote shopper by name, it may be appropriate to
leverage vocative expression to indicate direct address. There
are a number of human-robot communications that utilize
calling the robot by its name or simply “robot” as a conversation
marker (e.g., [11], [19], [27], [36]). However, it should not be
required to start every robot command with the robot’s name.

V. CONCLUSIONS AND FUTURE WORK

The primary focus of our current research with the telepres-
ence robots is to assist users with spatial navigation tasks. We
conducted a formative assessment of user expectation utilizing
a participatory approach, performed an experiment with twelve
participants from our target audience, and collected a corpus
of their first-hand spatial commands. We can now begin to
understand how people from our target audience would direct
telepresence robots. Overall, our analysis of the corpus showed
few statistically significant differences between speech used

in the human and robot agent conditions. We believe that, for
the task of directing a telepresence robot’s movements in a
remote environment, people will speak to the robot in a manner
similar to speaking to another person.

One limitation of our study is the small sample size with re-
spect to the number of participants, which prohibited analyzing
the corpus of utterances using the participants’ level of cognitive
impairments and/or medical condition as an independent
variable. Three participants had intact cognition, and nine had
cognitive challenges ranging from mild to moderate, which we
described in terms of a person’s independent functional ability
as opposed to specific aspect(s) of cognitive impairment (i.e.,
attention, memory, perception, organization, and/or abilities
to problem-solve and conceptualize [37], [38]). Additionally,
it should be noted that all of our study participants had
intact speech ability. Cognitive-communication disorders are
commonly associated with neurologically impaired medical
conditions such as traumatic brain injury and stroke [38].
People with severe physical impairments (e.g., amyotrophic
lateral sclerosis, cerebral palsy, muscular dystrophy) may also
have speech disorders (e.g., dysarthria). The guidelines for
developing speech-based robot interfaces described above are
applicable to all telepresence robot systems, and may increase
the ease of use for typically abled people as well.

Our corpus provides insights regarding the level of navigation
functionality these robots are expected to have, specifically the
ability to understand low level FBLR commands in addition to
local interest points within the robot’s field of view and global
destinations. Robot teleoperation through a constrained view
of the remote environment [39] is difficult and requires the
operator to give low level FBLR commands while remembering
the end goal and any subgoals. In our study, we found that
participants in both the robot and human agent conditions used
this approach. For a speech-based interface, low level directives
can be cumbersome as a user may repeat the same directive
several times (e.g., left, left, left), or rely on timing to give
another low level command to interrupt the one executing (e.g.,
left, stop); P10 primarily employed this approach, but was not
able to finish the task within the given time allocated.

Instead, higher level commands requiring more robot au-
tonomy can be used as macros or shortcuts. This approach
can reduce the overall task complexity and minimize the
number of correctly sequenced directives given, provided
that the user has the cognitive ability to both understand the
robot’s autonomous behavior(s) and appropriately make use of
them. By investigating a speech-base interface and providing
sufficient feedback in our Wizard of Oz study, we found that all
participants elicited directives requiring global environmental
knowledge, although the variety of utterances was limited given
the scope of the experiment and simplistic store directory.

We believe that the understanding of a robots autonomous
capabilities should be facilitated by the HRI interface presen-
tation and system feedback. Our next step is to develop a
supplementary augmented-reality graphical user interface that
provides cognitive support for our target audience. Simple
language and familiar real world analogies may allow robot



drivers recognize how to use the interface rather than having to
recall how to use it from training and/or their own experience
[40]. Hints about the robot’s autonomous navigation capabilities
and the robot’s local and global environmental knowledge will
be overlaid on the robot’s video. For example, our telepresence
robot interface will provide cognitive support by displaying
the path to the robot’s current global destination projected as
an overlay on the robot’s video in a manner similar to Google
Street View [41] or a car GPS navigation system. Local points
of interest within the robot’s field of view could be highlighted
and labeled with descriptive titles. We will then conduct a
usability case study with three users from our target audience
to evaluate our telepresence robot’s ease of use.
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