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Abstract

To perform research on learning in cultures of mouse
neurons, a hardware and software system for interfac-
ing a biological neuronal culture to a robot arm has
been constructed. The software architecture is modular,
which permits simulated neurons to be used in place of
biological neurons. In both cases, the activity of the cul-
ture over time is represented as an activation vector that
captures recent spatiotemporal patterns of neuron firing.
The activation vector is converted into control signals
for the arm in a manner that can be generalized to mul-
tiple degrees of freedom. Preliminary results from the
system with both simulated and biological cultures are
presented.

Introduction
To study the behavior of small networks of biological neu-
rons, the neurons can be cultured in vitro. Growing the neu-
rons as a culture allows them to be examined more eas-
ily than they could be in a living organism. However, liv-
ing organisms have constant experience of the outside world
through their senses. This embodiment is crucial to the de-
velopment of the organism as a competent being in the
world. Embodiment allows the pre-existing structures of the
brain to acquire their full development by reinforcing those
connections which lead to successful action, and diminish-
ing those which result in failure. Many roboticists have also
noted the need for embodiment of algorithms (Brooks 1991;
Chiel and Beer 1997; Anderson 2003).

We do not propose that biological neurons in culture will
be able to develop into an effective controller for a robotic
system. Neurons are very sensitive to their environment, and
can only live in a very narrowly proscribed range of condi-
tions. Outside those conditions, or if the culture is contami-
nated by bacteria, the neurons die. Additionally, each culture
is unique. Multiple cultures may be created with similar ini-
tial conditions, but the cells will be uniquely laid out and
connected. As a result, while one can make broad and statis-
tical assertions about their behavior, there is not a high level
of inter-cultural similarity at the level of individual signaling
patterns.
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The fact that biological cultures, as currently used, do not
make a robust and repeatable robot controller does not mean
that embodying neuronal cultures in robotic systems is use-
less. Rather, embodiment provides us with a means of learn-
ing about the connectivity and growth of neurons in culture.
To that end, we have constructed a closed loop of percep-
tion, stimulation, activation, and action that allows cultured
mouse neurons to interact with the real world using a Manus
ARM robot.

Methods
There are two components of this research. The first compo-
nent is the growth of biological neuronal networks for use
as robotic controllers; the second is the simulation of these
cultures in silico to guide future research. To reach our goal
of accurately simulating the biological networks, we are us-
ing the observed behavior of the cultured neurons to guide
the development of the software for the simulator. As the
simulator’s accuracy improves, it will be able to be used to
simulate very large series of experiments in order to guide
future research with biological cells in useful directions.

Biological Cultured Neuronal Networks
In order to gather information about the behavior of neu-
rons, neurobiology researchers grow cultures of neurons. A
Multi-Electrode Array (MEA) is a type of culture dish that
provides researchers with a way to monitor the electrical
activity of neurons at or near the level of individual cells.
These cultures of neurons also allow the researchers to per-
form experiments that operate directly on the neurons, with-
out the complications that may be caused by the interacting
systems of a living organism. Research in The Center for
Cellular Neurobiology and Neurodegeneration has used this
method with bicuculline to demonstrate that inhibitory con-
nections are required for learning in cultured neurons, and
with amyloid-β to demonstrate its effects on signaling (Lee,
Zemianek, and Shea 2013; Shea 2009).

Despite the advantages of cultures, they also have draw-
backs. Complete organisms receive stimulation from their
senses for their entire lives. Before birth, the genetic and
chemical signaling within the organism organizes and dif-
ferentiates the developing neuronal tissue into specialized
layers and structures. For some time before birth, and con-
tinuously after the organism is born, incoming sensory in-



formation is handled by the pre-existing organization within
the brain to form impressions of the outside world. In cul-
ture, a neuronal network does not receive stimulation unless
it is provided by the researcher. Such stimulation accelerates
the development of the culture towards its mature state, in-
dicating that the neurons still develop in a way similar to the
way they would in a complete brain (Zemianek et al. 2012a).

The propagation of impressions through the brain results,
eventually, in motor activity, which in turn changes the or-
ganism’s relation to the world and the resulting sensory in-
put. This complete loop is what we mean when we talk about
embodiment: the ability of a system to perceive the outside
world, process that perception, and act in the world. The
brain closes the gap between perception and action, while
the world closes the loop between action and perception.
By embodying neuronal cultures in a robot, our goal is to
provide a system for investigating how incoming signals are
integrated by neuronal networks, and how this integration
affects the structure of the network.

Construction
The MEA itself consists of a glass plate with an array of con-
ductive pads laid out on it. Conductive traces extend from
each pad to the edges of the plate. When a neuron sends
a signal, its electrical potential changes, and this change in
potential is detected by sensitive amplifiers connected to the
traces for pads near that neuron.

Fetal mice are used as the cell source because their neu-
rons are still developing and forming connections. To ac-
quire cells, mice must be bred and sacrificed, and the fetal
mouse neural tissue must be surgically prepared and chemi-
cally treated before being plated on the MEA. The chemical
treatment uses enzymes to disassociate the individual neu-
rons. The neurons are added to the MEA as a suspension in
liquid medium and given some time to bond to the MEA. Af-
ter the neurons have bonded, the culture medium is replaced,
which removes any unbonded cells along with the old cul-
ture medium (Wagenaar, Pine, and Potter 2006). Typical cell
suspension densities range from 300 to 2,000 cells per mm2,
but can reach as high as 80,000 cells per mm2 (Shea 2009;
Ruaro, Bonifazi, and Torre 2005). Extremely sparse cultures
tend to have high mortality rates and do not form suffi-
cient connections to display mature signaling patterns (Shea
2009).

Since the culture is applied to the plate as a suspension of
neurons, there are limited ways to control the location and
distribution of neurons. One method is to apply the suspen-
sion of neurons to the desired regions using a micropipette,
resulting in higher neuron density in areas where the drops
were added. Another method is to apply pattern of protein
that affects how the neurons bond to the plate surface. The
pattern of cells influences the connectivity of the culture
(Sorkin et al. 2006).

When the cells are initially added to the culture, they are
not connected, but they begin to form connections quickly.
Starting at around 7 days in vitro (DIV) and continuing
to around 30 DIV, the connections are not complete, and
signaling is dominated by constant, high-amplitude spiking
(Warwick et al. 2010). The resulting signals have been de-

Figure 1: The gripper with mounted camera.

scribed as “epileptiform.” In the young, epileptiform stage,
it is impossible to isolate the neurons’ response to stimulus
from the constant spike activity, so experiments must be per-
formed after the neuron network is finished developing.

After the initial period of epileptiform activity, the cells
enter a “mature” phase, characterized by sparse bursts of
spikes separated by quiet periods. The active bursts may be
localized to one region, spread across the culture, or propa-
gate from region to region. After 2-3 months of this type of
activity, the culture eventually becomes senescent, and only
reacts to stimuli in simple, stereotyped ways (Warwick et
al. 2010). The cells can continue to live for months or even
years, assuming that equipment failure or bacterial infection
does not kill them (Potter and DeMarse 2001).

Robot
The robot used in this work is a Manus ARM (Assis-
tive Robotic Manipulator), created by Exact Dynamics. The
ARM is a 6-DOF arm with a two-fingered gripper. A Mi-
crosoft LifeCam 720p resolution webcam is mounted on the
gripper (Figure 1) to serve as a source of feedback to the
cultured neurons.

When the ARM moves, the camera moves with it, chang-
ing the view of the world. The image from the camera is
converted to HSV color space and thresholded to find con-
centrations of red pixels. The stimulation signal is a record-
ing of neuronal activity from cultured neurons, as described
in Zemianek et. al. (2012b). This stimulation provides feed-
back to the culture about the state of the world, and the cul-
ture’s reaction to the stimulus provides motion commands to
the arm to move in the world.

At present, the red pixel concentrations on the left and
right sides of the image are used to determine whether the
culture should be stimulated on the corresponding side. The
current motion control scheme is one-dimensional because
the currently available stimulation hardware provides only
two input channels, and this creates a bottleneck for feed-
back to the biological culture. By developing a more com-
plex stimulation system, particularly one which can apply a
pattern of activity over some or all of the available stimula-
tion sites, the complexity of the input to the culture can be
increased. More complex stimulation will provide a more
versatile representation of the view from the camera, ex-
panding the dimensionality of the input stimulus and thus



Figure 2: Diagram of the full system. Hardware on the left side of the diagram is located in the Robotics Laboratory, hardware
to the right side is located in the Center for Cellular Neurobiology and Neurodegeneration.

the expected dimensionality of the output.

Computer Interface
In order to read neuronal signals from the culture, the MEA
is placed in a MEA1060-INV amplifier manufactured by
Multi Channel Systems GmbH. The amplifer has 60 chan-
nels, one for each contact pad of the MEA. Each channel has
a fixed gain of 1200. The amplifier outputs are connected
to a PCI-6071E DAQ card manufactured by National Instru-
ments. The card is controlled through the Linux COntrol and
MEasurement Device Interface (COMEDI), which provides
an open source library for collecting data from DAQ cards.

The acquisition and processing software is maintained
as a collection of ROS (Robot Operating System) nodes
(Quigley et al. 2009). The node which acquires data from the
DAQ card is called “Zanni.” Zanni samples the card 1000
times per second and outputs the current value in volts of
each channel of the MEA. A collection of 60 voltage val-
ues is referred to as a “dish state” because it represents the
electrical activity of the MEA at a specific instant in time.

Dish states are collected by a ROS node which uses the
time series of voltages in each channel to determine the
mean and standard deviation of the electrical signal. In order
to determine the mean and standard deviation, the node first
buffers 3000 dish states from which to calculate the mean
and standard deviation, the number of dish states buffered
can be set from a configuration file. Any time that the signal
on a channel increases beyond 3 standard deviations from
the mean for that channel, the channel is considered to be
“spiking.” A spike on a channel indicates that a neuron near
the conductive pad for that channel has produced an action
potential. However, the mapping of neurons to pads is not
1-to-1, so activity on a channel may indicate a small group
of nearby neurons, rather than a single specific neuron.

In order to convert spikes from the culture into motion
commands for the arm, a simplified version of the control
scheme from DeMarse et al. (2001) is used. For each chan-
nel in the dish, if a spike is detected on that channel, the
activation A at that site is incremented and decayed by:
An(ti) = An(ti−1)e

−β(ti−ti−1) + 1
Activation decays exponentially over time with the decay
constant β = 1s−1. The activations over the entire culture
are collected in the activation vector V, and normalized to
the range 0.0 - 1.0 by applying
Vn(ti) = tanh(δAn(ti))

with δ = 0.1. Without normalization, recording sites with

very high spike rates can dominate the output, even if the
variation of the site in response to stimulation is minimal.
The resulting vector of 60 floating-point values is the nor-
malized activation vector for the dish at a specific time. Ev-
ery 0.2 seconds, the normalized activation vector of the cul-
ture is compared to a pair of pre-selected activation vectors.
The pre-selected vectors are a “right” and “left” vector, with
the “left” vector having maximum activation at all pads on
the left side of the dish and zero elsewhere, while the “right”
vector has maximum activation at all pads on the right side
of the dish and zero elsewhere.

The comparison is a simple calculation of Euclidean dis-
tance between the left and right vectors and the current ac-
tivity vector of the culture. If the distance from the current
activation vector to the left vector is less than the distance
to the right vector, the arm will be commanded to move left.
Similarly, if the current vector is closer to the right than the
left vector, the arm will be commanded to move right. In ei-
ther case, the difference between the distances must be large
enough to overcome a dead band, or the arm is not instructed
to move at all. Because it uses two constant vectors for com-
parison, this system only permits motion left or right, along
a single axis. By expanding the selection of vectors used for
the comparison, additional degrees of freedom could be con-
trolled.

Simulated Cultured Neuronal Networks
Because each biological culture is labor-intensive to grow
but easy to kill, simulating cultures could be a useful ap-
proach to early phases of experimentation. In order to sim-
ulate a full MEA, the simulator must model the dispersal of
cells over the surface of the MEA, the networking of those
cells, and their activity. The first part of the simulator de-
cides the distribution of the cells over an area according to
the density of the desired culture and the surface area of the
MEA plate. The process of determining the cell locations is
called “plating.” After the plating simulation has placed the
cells, a growth simulation uses the locations of the cells to
determine how the individual neurons are connected to form
the network. In order to decide which neurons are connected,
mathematical models based on the observed networking be-
havior of real neurons are used (Shultz 2013). The output of
the plating and growth simulations is the connectivity map
of a biologically plausible neuronal network. There does not
currently exist any method to determine the complete con-
nectivity of a biological neuronal network, but as imaging



and analysis techniques improve, the information they re-
veal can be incorporated into the simulation. Eventually, the
simulation system may be able to model a specific culture at
a sufficient level of detail to predict the biological network’s
activity.

Plating simulation
In a typical MEA, the cells are plated on glass prepared with
binding proteins, allowed to bond, and then washed, so any
cells that are not in contact with the glass are removed. As a
result, all of the cells in the culture are in a single layer on
the glass of the MEA. For the purposes of the plating sim-
ulation, the layout of the simulated cells is simplified into
a planar grid. Each square of the simulated grid is approx-
imately the size of a single neuron cell body (30µm), and
the full grid is 2500µm square. These parameters are config-
urable in the simulation software to support different types
of cells or configurations of MEA.

Cells are distributed on the grid according to a midpoint
displacement fractal algorithm, also known as a plasma frac-
tal (Fournier, Fussell, and Carpenter 1982). For our sim-
ulator, a midpoint displacement fractal was chosen to set
the distribution of cell adhesion probabilities because of the
similarity of its results to turbulent flows. The uneven dis-
tribution of cells in dishes is supported by the uneven areal
density of cultures, as seen in Shea 2009.

As an alternative to the plasma fractal, the simulator also
allows the use of an image to specify the cell occupancy
probabilities. The red channel of the image is mapped to the
grid of points on the dish, with the saturation of color at each
point used as the probability of that point containing a cell.

After the probability of cell placement at each location
in the dish is determined, the plating simulation marks each
location as occupied or not, based on the probabilities of a
location having a cell and the density of cells in the plating
solution. Those locations that are marked as occupied are
treated as having a cell on them. The others are assumed to
be empty space.

After the cell locations are determined, there are a series
of pruning steps that are intended to simulate cell deaths in
the culture. In biological cultures, 45-60% of the cells die
before the network is done wiring itself, within approxi-
mately the first 17 DIV (Erickson et al. 2008). Because so
many of the cells die off, they do not need to be considered
when the simulation begins to determine network connec-
tivity. In order to model the early cell mortality, the loca-
tions that the simulator has marked as occupied are deci-
mated based on the observed survival probabilities of cells
in culture.

Typical cell suspension densities are in the range of 300-
2000 cells/mm2, resulting in 1200-8000 cells in the active
area of the MEA and so millions of possible connections if
each cell could connect to any other cell (Wagenaar, Pine,
and Potter 2006). However, there are limits on cell growth
and networking which make the computation of the network
connectivity more tractable. Chemical interactions between
cells restrict the number of connections that should be con-
sidered when developing the connectivity of the dish.

Kahng, Nam, and Lee (2007) provides a model based on
observation of chemotaxis in developing neurons, but sim-
plified into a stochastic model. The growing end of an axon
moves in a random walk on a grid. Each step may take it in
any of 8 directions: up, down, left, right, or the four diago-
nals. If, after making a step, the walking point is with 20µm
of a dendrite of another neuron, the two neurons are con-
sidered connected. The probability of a connection between
two cells is effectively a function of the distance between
them, which makes it unlikely a cell will connect to itself,
but likely it will connect to neighbors, and unlikely that it
will reach very far (Segev and Ben-Jacob 2000).

Our simulator uses a Gaussian distribution to model
the probability of a pair of cells connecting based on the
straight-line distance between them, with parameters set to
maximize connectivity around 200µm from the cell body.
The Gaussian distribution also provides a limitation on the
number of possible connections that must be considered by
the program during the growth simulation. If the distance
between two cells is so large that the probability of a con-
nection between them is vanishingly small, it may be disre-
garded when the network is being laid out, thus saving com-
putation time.

In addition to the limits imposed by chemotaxis, obser-
vations of the connections in MEAs indicate that only 20-
50% of the possible connections are made. Patel, Scott, and
Meaney (2012) indicate that the out-degree of cortical neu-
rons can be modeled using a Poisson distribution with a
mean of 22. Allowing such a stochastic distribution of con-
nectivity will cause some neurons to be extremely well con-
nected while others are less connected. Such patterns of con-
nectivity are seen in biological cultures, so the Poisson dis-
tribution is used in the simulation to set the out-degree of
the neurons. Once a neuron forms a number of connections
equal to its selected out-degree, no further connections from
that neuron are considered, although other neurons may still
connect to it.

Once the model is completed, it may be run, and voltage
and spike train data collected from it. Since each neuron is in
a known location in the simulated culture, the simulation se-
lects the neurons located on or near the conductive pads for
a given MEA layout, and records data from those neurons.

Neuron models
For initial development, the cell model used was a simple
leaky integrate-and-fire (LIF) model. The LIF model was
chosen because it can approximate the spike timing of a
living neural network to a high degree of accuracy (Kahng,
Nam, and Lee 2007; Jolivet, Lewis, and Gerstner 2004).

However, while a LIF model can match the spike timing
of a living network, it does not produce biologically plau-
sible action potentials. That is, the events that the simulator
regards as spikes are timed like those of a biological net-
work, but the simulated membrane voltages of the simulated
neurons are unlike those of biological cells. To obtain more
realistic spike and sub-threshold voltages, the simulator was
converted to use Izhikevich’s integrate and fire model in-
stead of basic LIF neurons (Izhikevich 2003). Izhikevich’s
model has parameters that can be configured to reproduce



the behavior of many biological neurons. Our simulator uses
the configuration that Izhikevich calls “Regular Spiking” for
excitatory neurons and “Fast Spiking” for inhibitory neu-
rons, based on the observed behavior of biological neurons
(Izhikevich, Gally, and Edelman 2004).

Example
Control with a Biological Culture
To assess the ability of the arm to respond to signals from the
culture, the arm camera was shown a tracking target on the
left or right side of the camera’s field of view. The position
of the tracking target affects the stimulation of the culture,
and the reaction of the culture to the stimulation would trig-
ger motion in the arm. The resulting motion of the arm was
recorded by rosbag, a utility which records all of the activ-
ity of the ROS nodes. Each motion to the left was assigned
a value of -1 and each motion right a value of 1. Starting
from a center position of 0, the total motion was calculated
at every timestamp where the arm was sent a motion com-
mand. If the arm moved left, the total motion would become
increasingly negative, while right motions would cause the
total motion to become more positive.

Figure 3 shows the total motion over time as the arm
moved to track a target on the right side of its field of vision.
For the leftmost image, the arm begins moving left around
70 seconds into the recording, and has moved as far left as it
can after 120 seconds. For the center image, the arm begins
moving right after 50 seconds, and has moved nearly all the
way right by around 70 seconds. In each case, after the mo-
tion, the arm remained mostly in the left or right position,
but with some oscillation or “wiggle” around that position.

The biological culture displays significantly more wiggle
in the resulting motion than the simulated culture. Most of
this wiggle is likely due to spontaneous signaling within the
culture. However, we have some concern that some of the
wiggle is an artifact of noise from outside the recording sys-
tem. The current system displays some degree of noise at
exactly 60Hz, due to interference from AC lines in the labo-
ratory being picked up and amplified by the MEA amplifier.
In order to suppress this noise, a software filter is being de-
veloped which will suppress 60Hz noise on each channel of
the signal before attempting to classify the signal into spikes.
The expected consequence of noise in this system is to cause
the reaction of the system to stimulation to have a significant
degree of wiggle in it. Rather than cleanly responding to a
left or right stimulation with left or right motion, a noisy sys-
tem would have a chance that the noise would overwhelm
the activity of the neurons for that time period, and result
in a motion contrary to that expected from the stimulation.
Since the stimulation would be consistent, while the noise
would be effectively random, the overall motion would be
correct, but interspersed with incorrect moves. This is what
we observed in the behavior of the system under biological
control. The degree of incorrect moves is also substantially
reduced in the simulated system. The simulation does not in-
clude simulation of noise, so there is no way for noise to add
incorrect moves to the motion of the arm. Under simulated
culture control, the arm begins its move left almost immedi-

ately, stops, and reverses when the stimulation is applied to
the other side of the simulated culture. The path of the arm
under simulated culture control is depicted in the leftmost
image of Figure 3.

Control with an Artificial Culture
At present, the artificial culture cannot be run in real time.
The computational complexity of the neuronal model and
the number of neurons being simulated result in a very high
load on the processor. In addition to this load, the python in-
terpreter used to execute the simulation does not support par-
allelization across multiple processors. Because a less com-
plex neuronal model would not support realistic cell mem-
brane voltages, and reducing the number of neurons would
make the simulation unlike a biological culture, using the
simulator to control the arm is done in two steps. In the first
step, the simulator is run with simulated stimulus. The stim-
ulus is the same as the stimulus used in biological cultures, a
pre-recorded biological signal (Zemianek et al. 2012b). Prior
to the simulation run, the times that the stimulus will be de-
livered are configured by the software. Because the stimula-
tion was recorded at 1000Hz, there is a 1:1 correlation be-
tween samples of the stimulation and timesteps in the simu-
lation. The stimulation is a recording from a MEA system
like the simulator is intended to simulate, and contains a
voltage signal of the same amplitude as is received at the
electrodes, so it is assumed that the sensing range of each
pad is also the maximum reach of the stimulation applied to
that pad. During the run, at each timestep of the simulation,
the simulator determines which electrodes the stimulation
should be delivered to, and what voltage should be deliv-
ered. For each pad, the corresponding voltage is added to
the membrane voltage of the neurons around the pad, in pro-
portion to the distance between the neuron and the pad. After
the simulation is run, the recording of all of the membrane
voltages of the neurons are used to calculate the voltage at
each pad. Each neuron contributes voltage proportional to its
distance from the pad. The resulting voltages are recorded in
a Labview LVM text file format, which many of the utilities
related to the simulator are capable of processing.

In order to control the arm using a recording, a program
was written that uses the Labview LVM file as input, and
publishes dish states as if the input were received from a bi-
ological culture. Because of the modular nature of the ROS
software, this program can interface to the software that gen-
erates the activation vectors and arm motion control outputs
without modification of any other component of the soft-
ware. The arm can then be run as if it were being controlled
by a neuronal culture.

When the arm is run with a simulated recording, there is
no noise at all present. The arm moves with a very high de-
gree of correspondence to the applied stimulation. For the
simulated test run, the simulated culture started with 5 sec-
onds of no stimulation, then received 20 seconds of stim-
ulation on the left side, 10 seconds of no stimulation, 20
seconds of stimulation on the right side, and then 5 more
seconds of no stimulation. As shown in Figure 3, the arm
moves left, stops, and then moves right. The rightward mo-
tion does not completely return to the center position of the



Figure 3: Movement of the arm under the control of biological and simulated neurons. In the left and center images, the system
used the biological neurons as the controller. For the first image, a tracking target was presented on the left side of the field of
view of the camera and the arm moved left. For the second image, the target was presented on the right, and the arm moved
right. For the right image, the arm was controlled by a simulated culture which was stimulated on the left and then on the right,
resulting in a movement to the left and then to the right. 0 on the movement axis is the center of the arm’s range of movement.

arm. It also displays a greater slope in the graphic, as the
arm took a longer time to do less motion. The slower motion
to the right is likely because the stimulation on the left side
of the dish would initiate activity that would compete with
the stimulation on the right side of the dish. Because the ac-
tivity from the left side stimulation would not have died out
completely by the time the right side stimulation started, the
rightward motion would be interfered with.

Discussion and Future Work
There are computational methods for determining the ap-
proximate wiring of a developed culture, based on the prop-
agation delay of a signal in the culture and the synchrony
of activity between different sites in the culture (Erickson et
al. 2008; Esposti and Signorini 2008). These methods offer
some promise for mapping the connectivity of the dish, but
they do not give a complete or fully-accurate map. Even if it
was possible to completely map the connections of a culture,
there is no way to duplicate it, as there is no way to control
the growth of individual biological neurons and their axons.
A simulated network that uses the connectivity of an existing
dish and displays the same activity patterns could be argued
to be a duplicate of the culture at that time. Such a simulated
culture could then be backed up, shared with collaborators,
and preserved in ways that a biological culture cannot be.

It will be possible to accelerate our simulator by paral-
lelizing it on a multiprocessor computer or GPU. The cur-
rent system is written in Python, using the BRIAN simula-
tor framework (Goodman and Brette 2008). Python does not
support parallelization well due to design elements of the
Python interpreter, but frameworks and software for simulat-
ing networks of neurons on GPUs already exist. As a result,
our plating simulation can be used to set up the connectivity
and neuron locations of the culture, but the actual execution
of the network can be handed off to hardware that supports
parallel operations better.

It would be overstating the semantic content of these pat-
terns to claim that the activity within the network represents
the object that elicited the stimulus, but such pattern recog-
nition does pave the way for two-way communication with

the culture. It may be that inhibiting signaling in response
to undesired patterns of activity and exciting signaling in
response to desired patterns will allow us to interactively
train a culture to display certain patterns of activity. As de-
scribed in Zemianek et al., inversion of the stimulation sig-
nal changes whether the response at a specific site in the dish
is inhibitory or excitatory (2012b). With a fast computer in
the loop, we will be able to examine the activity of biologi-
cal cultures in real time. This will allow us to recognize the
patterns of activity that a particular input elicits in the net-
work.

The eventual goal for working with recognition of the
patterns of activity of a neuronal network, rather than the
network-wide strength of connections (e.g. DeMarse and
Dockendorf (2005)), is to allow input and output streams of
very high dimensionality. Human introspective experience
indicates that our sensorium is rich and detailed. Encoding
information purely as frequency of stimulation or purely as
location of stimulation results in a very narrow range of rep-
resentable input, and so restricts the degree of embodiment
that a neuron/robot system can support.
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