
Accepted into the Journal of Field Robotics Special Issue on the DARPA Robotics Challenge 

     1 

Analysis of Human-Robot Interaction at the  
DARPA Robotics Challenge Trials 

 
Holly A. Yanco1, Adam Norton2, Willard Ober3, David Shane3, Anna Skinner4, and Jack Vice4 

 
1Computer Science Department, University of Massachusetts Lowell, One University Avenue, 
Lowell, MA 01854, holly@cs.uml.edu 
 
2New England Robotics Validation and Experimentation (NERVE) Center, University of 
Massachusetts Lowell, 1001 Pawtucket Blvd, Lowell, MA 01854, anorton@cs.uml.edu 
 
3Boston Engineering Corporation, 300 Bear Hill Road, Waltham, MA 02451, {wober, 
dshane}@boston-engineering.com 
 
4AnthroTronix, 8737 Colesville Rd, Silver Spring, MD 20910, {askinner, jvice}@atinc.com 

Abstract 
 
In December 2013, the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge 
(DRC) Trials were held in Homestead, Florida. The DRC Trials were designed to test the 
capabilities of humanoid robots in disaster response scenarios with degraded communications. Each 
team created their own interaction method to control their robot, either the Boston Dynamics Atlas 
robot or a robot built by the team themselves. Of the fifteen competing teams, eight participated in 
our study of human-robot interaction (HRI).  We observed the participating teams from the field 
(with the robot) and in the control room (with the operators), noting many performance metrics, 
such as critical incidents and utterances, and categorizing their interaction methods according to 
number of operators, control methods, and interface automation. We decomposed each task into a 
series of subtasks, different from the DRC Trials official subtasks for points, to gain a better 
understanding of each team’s performance in varying complexities of mobility and manipulation. 
Each team’s interaction methods have been compared to their performance and correlations have 
been analyzed to understand why some teams ranked higher than others. We discuss lessons learned 
from this study, and have found in general that the guidelines for human-robot interaction for 
unmanned ground vehicles still hold true: more sensor fusion, fewer operators, and more 
automation lead to better performance. 

1.  Introduction 
 
The Defense Advanced Research Projects Agency (DARPA) began conducting robotics challenges 
in 2004 and 2005 with the DARPA Grand Challenge, an autonomous vehicle race across the desert 
in California.  The idea was to offer a large prize, as well as a considerable amount of publicity, for 
the winning team in a 150 mile autonomous unmanned ground vehicle (UGV) off-road race. This 
challenge evolved into one focused on an urban landscape in the 2007 DARPA Urban Challenge. 
As ground vehicle research migrated to commercial and consumer companies, and in light of the 
nuclear power plant disaster at the Fukushima Daiichi plant in Japan after the earthquake and 
tsunami in March 2011, DARPA developed a new challenge in 2012, the DARPA Robotics 
Challenge (DRC).   
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For the DRC, tasks were modeled within the context of Urban Search and Rescue (USAR) and 
industrial disaster response task domains, involving a set of mobility and manipulation hazardous 
duty, real world anthropomorphic tasks conducted using a combination of interface automation and 
teleoperation. The DRC is a multi-year challenge designed to radically improve the state of the art 
in rescue robotics, with the goal of having robot systems that could have assisted during the disaster 
at Fukushima Daiichi. Beginning in 2012 with the Virtual Robotics Challenge (VRC), and then 
moving to physical hardware and human-engineered physical environments in the Trials in 
December 2013 and the Finals in June 2015, the DRC provides a standardized testing environment 
in which to assess current capabilities and compare across robotics development teams.  Some 
teams were provided with a standardized robotic platform: the Atlas humanoid robot, developed by 
Boston Dynamics [BDI 2014], with 28 degrees of freedom, designed for mobility in outdoor 
environments and uneven terrain as well as for manipulating objects such as valves and tools.  
  
As part of contract W31P4Q-13-C-0136 with Boston Engineering Corporation and the University of 
Massachusetts Lowell and contract W31P4Q-13C-0196 with AnthroTronix and the University of 
Southern California sponsored by the DARPA Defense Sciences Office, we were invited to study 
the DRC Trials, with the goal of identifying areas for improvement that would lead to better HRI 
design and overall robot performance in the DRC Finals. Given that each competing team had to 
design their own interaction method, our team used the DRC Trials as a baseline for gathering data 
about a very future-forward application of robots for disaster response. The ultimate goal of human-
robot collaborative interaction is to exploit the strengths and capabilities of both the human and 
robot team members while compensating for the weaknesses and shortcomings of each, in order to 
maximize effectiveness of the team in completing mission goals safely and effectively.  Within such 
contexts, HRI designers must consider aspects of the control interface that may impede or negate 
the human’s strengths and capabilities.   
 
Despite early artificial intelligence (AI) predictions that machines would be capable of performing 
any tasks that humans can perform by this time, the field is far from achieving this goal; even basic 
tasks continue to require supervisory control from one or more operators, and complex tasks such as 
those involved in USAR domains often require continuous direct control, often by multiple 
operators. Therefore, the ability of robots to perform functions effectively depends, in part, on the 
ability of humans to control or interact with them effectively, constraining the robot’s performance 
to the operator’s skill and the design of the interface [Fong, Thorpe, and Baur 2002]. In order for a 
human-robot interface to be effective in a dynamic, hazardous environment, the interface must be 
efficient, intuitive, unobtrusive, intelligent, and, ideally, adaptable. Much research has been 
dedicated to the development of advanced robotic systems with increased autonomy, but 
comparatively minimal research has been dedicated to the development of scientifically validated 
control interfaces.  Interface design has continued to improve; however, it remains more of an art 
than a science. Interface designers must consider multiple control paradigms based not only on the 
characteristics of the robot, but of the user as well.  

2.  Background and Related Work 
 

Given that hardware for humanoid robots has only been in active development for about two 
decades, the topic of HRI design for humanoid robots is a fairly new one.  One of the most 
developed interfaces for a humanoid robot was created to teleoperate NASA’s Robonaut and 
Robonaut 2 robots [Diffler et al. 2003; Fong et al. 2013]. HRI for the Robonaut robots requires a 
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highly skilled and trained operator, in an environment that allows for simulation (e.g., NASA’s full 
sized mock up of the International Space Station) and mission planning. In contrast, after the 
tsunami hit the Fukushima Daiichi plant, a rapid response was needed in an environment that no 
longer matched the as-built plans.  Additionally, the people best qualified to understand the 
situation inside the plant, the nuclear engineers, were not skilled robot operators.  HRI design for 
another humanoid system used two joysticks to control the robot [Sian et al. 2002], which also 
required training on the system’s movement. 
 
When developing HRI for robots intended for USAR, there is a need to create systems that can be 
used by first responders as easily as possible, with the focus on ease of learnability (e.g., [Micire 
2010]). The DRC Trials offered the first opportunity to observe a large number of HRI approaches 
for USAR with humanoid robots.  
 
Our study leveraged the experience of our multi-disciplinary team in conducting HRI evaluations, 
including previous HRI studies conducted within the context of robotic competitions. We also 
reviewed relevant literature and field studies within this domain, using best practices and lessons 
learned to guide the development of metrics and data collection techniques, as well as data 
distillation, analysis, and interpretation methods to facilitate thoroughness in data collection and 
evaluation methodologies without interrupting task workflow.  These studies included evaluations 
of the American Association for Artificial Intelligence (AAAI; now called the Association for the 
Advancement of Artificial Intelligence) and RoboCup Robot Rescue Competitions [Scholtz et al. 
2004; Yanco, Drury & Scholtz 2004; Yanco and Drury 2007], as well as USAR disaster response 
and field exercise evaluations [Murphy and Burke 2005; Nourbakhsh et al. 2005].  Adams [2002] 
describes how interface methods can have direct effects on situation awareness and workload levels.  
Scholtz [2002] developed a set of evaluation criteria for assessing overall human-intelligent system 
interaction.  Additionally, Nourbakhsh et al. [2005] provided promising solutions to the vast 
complexity of USAR HRI such as multi-agent systems and simulation and control interfaces that 
incorporate the various levels of robot autonomy.  
 
These studies, along with others, guided us in using best practices and lessons learned to guide the 
development of our metrics and data collection techniques, as well as methods for data distillation, 
analysis, and ensuring thoroughness in data collection and evaluation methodologies without 
interrupting task workflow. That said, the DRC Trials was easily the richest and most advanced 
display of humanoid robots in competition, providing a unique evaluation opportunity.  
 
In a multi-year study (2002-2004) examining HRI issues within the context of the AAAI/RoboCup 
Robot Rescue Competition, Yanco and Drury [2007] evaluated the impact of various HRI 
approaches on competition performance.  The outcomes of this study led to the identification of five 
primary guidelines applicable to the design of HRI within the USAR domain:  

1. Utilize a single monitor for the interface.  
2. Avoid small video windows on the interface.  
3. Avoid window occlusion. 
4. Use one robot to view another when more than one robot is available.  
5. Design for the intended user, not the developer.   

These guidelines were established for the development of HRI interfaces for a single operator, 
whereas all of the observed DRC Trials teams employed multiple operators (counting both passive 
and active operators), working together by viewing multiple interfaces simultaneously.  
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Yanco and Drury [2007] also highlighted the importance of SA and operator’s SA strategies within 
the context of USAR robotic control tasks, as well as the inherent limitations in assessing SA both 
in real-time and via post hoc interviews and analyses.  SA issues are especially problematic within 
dynamic HRI scenarios in which changes may be simultaneously occurring in the operator, the 
robot, and the environment.  The 2013 DRC Trials task environments were static; however, future 
competitions are anticipated to involve more dynamic environments, and certainly transfer to real 
world scenarios will involve task performance within unpredictable and hazardous changing 
environments.  Therefore, the evaluation of HRI must take into account all factors impacting the SA 
of the human, the SA of the robot, and the resulting shared SA.  

3.  DRC Trials Tasks 
 
The DRC Trials were designed to test the capabilities of teams with individual, self-contained tasks 
whose layouts were known in advance and did not change during the competition [DRC 2014]. To 
simulate difficulties with communications networks during an actual disaster, DARPA alternated 
periods of high and low bandwidth for data sent between the robot and the control room, lasting one 
minute each. “Good comms” had a data rate of 1 MB/second in each direction and a delay of 100 
ms round trip (50 ms each direction). “Bad comms” had a data rate of 1 KB/second in each 
direction and a delay of 1,000 ms round trip (500 ms each direction). 
 
Below are brief descriptions of the seven tasks we observed at the DRC Trials (we did not observe 
the Vehicle task). Images of each task can be found in Table 5. Based on overall task completion 
points by all competing teams at the DRC Trials, the tasks were ranked by DARPA in terms of 
difficulty as Valve (easiest); Terrain and Hose (easier); Door, Debris, Wall and Ladder (harder); 
Vehicle (hardest) [DARPA 2014].  The DRC tasks mainly fall into two of the seven missions for 
which USAR UGVs have been used in the past, direct intervention and rubble removal and clearing 
[Murphy 2014]. 

 
The Terrain task consisted of three zones, each of which had start and end lines which had to be 
crossed in order to be considered complete. All eight teams participating in our study were observed 
on the Terrain task; however, our observation of Team B was unable to be used for a reason we will 
not explain here to preserve anonymity. This task is almost entirely a mobility task, aside from 
manipulators being used for balance, involving obstacles that can cause robots to slip, trip, and fall. 
 
The Ladder task consisted of three zones, each of which had a number of steps (1st step, 4th step, 
and 9th step/landing platform, respectively) that the robot had to stand on with both feet to be 
considered complete. Unlike other tasks, some teams performed this task with their robot facing 
backwards. Four of our participating teams were observed on the Ladder task. This task combined 
both mobility and manipulation, although some teams did not utilize their robot’s manipulators to 
aid in climbing the ladder. 
 
The Debris task consisted of two sets of debris that needed to be removed, a truss that can 
optionally be removed, and a doorway which must be traversed through for the task to be completed. 
Four of our participating teams were observed on the Debris task. This task was mainly focused on 
manipulation, although mobility was used to orient the robot’s body in order to remove debris, and 
to traverse through the doorway and around the truss, if applicable. 
 
The Door task consisted of three doors that had be opened and fully moved through to be 
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considered complete. Each door had a lever-style handle that had to be turned in order for the door 
to open. All eight teams participating in our study were observed on the Door task. Both mobility 
and manipulation were equally important to this task, requiring teams to first use them separately 
during the first two doors. Teams had to combine them during the third door (which was weighted) 
in order to hold the door open while traversing through it.  Due to wind conditions, some teams 
needed to hold the earlier doors as well to prevent them from blowing closed. 

 
The Wall task consisted of a wall segment that had to be cut and then removed. The robot needed to 
first walk over to a shelf that contained a hand drill, pick up the hand drill, and turn it on. The robot 
then had to carry the drill over to the wall and use it to make three cuts in the wall (forming a 
triangle), then remove the cut piece. Five of our participating teams were observed on the Wall task. 
This task was mainly focused on manipulation, although mobility was used to walk to the shelf, to 
the wall, and to orient the robot while picking up the drill and cut into the wall. 
 
The Valve task consisted of three valves whose wheels or levers needed to be rotated to close them. 
The valves could be closed in any order. All eight teams participating in our study were observed on 
the Valve task. This task was mainly focused on manipulation, although mobility was required to 
walk to each valve. Some teams opted to use a single hand to close valves while others used two 
arms/hands in tandem. 

 
The Hose task consisted of a hose on a reel that had to be grasped, unreeled, carried to a wye, and 
attached to the wye. Six of our participating teams were observed on the Hose task. This task was 
mainly focused on manipulation, although mobility was used to walk to the hose, to the wye, and to 
orient the robot while picking up the hose, unreeling the hose, and attaching the hose to the wye. 

4.  Methodology 
 
Our study was approved by the Institutional Review Board (IRB) at the University of Massachusetts 
Lowell. Participants were invited to join the study via email approximately two weeks before the 
DRC Trials. Teams who decided to participate completed an informed consent form and a pre-DRC 
Trials questionnaire about the design of their robot system. Eight of the fifteen teams who competed 
in the DRC Trials elected to participate in our study. 
 
We are required by our IRB to anonymize the results discussed in this paper. Therefore, we will 
label the eight participating teams as Teams A through H. To allow for some meaning in these 
labels, we have sorted the participating teams by their overall scores.  To prevent identification 
based upon publicly available data showing the correspondence of team names and overall scores, 
we do not report the overall point total for any teams in this paper. Additionally, in cases of tie 
scores, we have randomly put one team in front of the other without identifying that there was a tie. 
Of the eight participating teams, Teams A through D were in the top 8, and Teams E through H 
were in the bottom 7.  We also do not report information about the robot being used by each team, 
to avoid identifying teams with unique systems. 
 
Our evaluation team consisted of eight people, split into four pairs.  Our overall goal was to 
evaluate the impact of the interface features and the control methods on the effectiveness of the 
teams. We set an observation schedule for the two days of the event based upon a few constraints: 
 

1. Our first priority was to observe all of the participating teams on three tasks: Valve 
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(primarily a manipulation task), Terrain (primarily a mobility task), and Door (which 
combined both manipulation and mobility). 

 
2. Our second priority was to observe all of the participating teams on as many additional tasks 

as possible.  On the practice day, evaluation team members met with team representatives to 
interview them about their HRI designs and ask additional robot system design questions.  In 
this meeting, we asked teams to tell us which events they thought would be their top three 
events and to also tell us in which events they were planning not to complete.  We found that 
several of the teams did not plan to participate in the Vehicle task, so we removed that task 
from the set of tasks we would observe.  We started filling the remaining slots by ensuring 
that we covered each team’s predicted best events. Finally, we filled any free slots after that 
by aiming to balance the number of observations of each team and of each task.   

 
The matrix of teams and tasks, with an X denoting that the pair was evaluated in our study, is shown 
in Table 1. 
 

 Terrain Ladder Debris Door Wall Valve Hose Total 

Team A X  X X X X X 6 

Team B --- X X X  X X 6 

Team C X   X X X X 5 

Team D X X  X X X X 6 

Team E X X  X X X X 6 

Team F X X X X  X X 6 

Team G X  X X  X  4 

Team H X   X X X  4 

Total 8 4 4 8 4 8 6 43 
Table 1. Observation coverage across tasks for each team participating in our study.  An X indicates that we observed 
the team on that task and included the data in our analysis.  A dash means that we observed the team, but we were not 

able to include the data in our analysis (the reason can not be stated for purposes of anonymization). 
 
Our team designed data collection sheets to be used for recording observations on the field and in 
the control rooms during the trials.  During the task runs, the field observer recorded robot 
movements and critical incidents, as well as official time and scoring information.  At the same time, 
the control room observer took handwritten notes to record team dialog and information about the 
use of the interface. The control room observer also sketched the arrangement of the operators, the 
displays, and interaction methods before the run started. We noted the number of active operators 
(people directly controlling the robot) and passive operators (people offering advice or watching 
over the shoulders of the active operators). 
 
From the data we recorded, we extracted several different metrics, including successful subtask 
attempts, utterance coding, and percentage of aggregate critical incidents per team. We compared 
these metrics to aspects of each competing teams’ interaction methods (see Section 6) to find 
correlations, including subtask types vs. control methods, task-oriented utterances vs. robot-oriented 
utterances, etc. Our methods for analyzing the data collected are described in Section 5. 
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5.  Analysis Methods 
 

Our analysis relied primarily on the notes taken by our field and control room observers.  In a few 
instances, we used the DRC Trials video on YouTube [DRC Videos 2014] to clarify our data.   

5.1  Field and Control Room Notes 
 

After the DRC Trials, each handwritten set of observation sheets was typed into its own spreadsheet 
by the observer who wrote the notes. After that step, each pair of digitized control room and field 
data sheets was combined to form a single sheet for each task per team. This combination allowed 
for links to be drawn between control room observations and field observations. We analyzed these 
combined sheets to assess the situation awareness of the team; for example, the combined sheets 
would allow us to determine if the control room knew that a critical incident had happened on the 
field. Table 2 shows an example of the combined notes for Team F on the Terrain task. From the 
field, it appeared that the robot just lost its balance, causing it to fall. By using the side-by-side 
presentation, we can see that the operator forgot to click a menu item on the interface that was used 
to switch between walking states, causing the robot to fall. 
 
Field Code Control room 

Body shift forward, head up, body shift back, 
fall = INTERVENTION 

FALL Op2: "What happened?"  Op1: "I didn't click it"  Op2: 
"Balance didn't go on."  Op2: "We can do an 
intervention." 

Table 2. Combined field and control room data sheet example for Team F on the Terrain task. 

5.2 Critical Incidents 
 
Based upon our knowledge of the tasks at the DRC Trials and the problems that robots can 
encounter, we identified the critical incidents that might occur before the competition, defined as 
follows: 
● TIP (T): The robot begins to lean noticeably to one side unintentionally.  (Note that the 

normal side to side movement for walking was not coded as a TIP critical incident.)  The 
critical incident was coded even when the robot was able to recover. 

● HIT (H): Part of the robot’s body/limb hits part of the apparatus unintentionally. 
● TRIP (Tr): The robot’s foot or leg snags part of the apparatus, causing it to fall or tip. 
● MISS (M): The robot misses while attempting to grasp an object or places a footfall 

perceived to be incorrect. 
● STUCK (St): Part of the robot’s body/limb is stuck on or in part of the apparatus, potentially 

causing a trip, fall, and/or intervention.  No instances of this type were observed in our study. 
● SLIP (S): The robot’s limb slips off of part of the apparatus. 
● DROP (D): An object the robot was carrying is dropped unintentionally. 
● FALL (F): The robot falls and the belay is triggered, potentially followed by an intervention. 
● RESET (R): When an intervention was called that did not correspond to another critical 

incident (e.g. some teams called interventions to check sensor readings). 
 
A total of 77 critical incidents were observed as part of this study, of which 33 were falls and/or 
resets (called out separately due to the fact that when a fall and/or reset occurs an intervention or 
end of run is called; a team is charged 5 minutes for an intervention, which is taken away from their 
30 minute run time) and 44 were other critical incidents. Table 3 outlines the critical incidents 
observed per team and per task, listing the types of critical incidents observed. 
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 Terrain Ladder Debris Door Wall Valve Hose 
Total falls 

and/or 
resets 

Total other 
critical 

incidents 
Team A ---  --- S --- F --- 1 1 

Team B  F H F, T, H  M S, D 2 6 

Team C F, F   S, S M --- M, M, 
M, M 2 7 

Team D F, F, H F  R, F D H H, H, H, 
H, H, D 5 9 

Team E F, F, M R, F  F, F, H, H --- S --- 6 4 

Team F F F F, F   R, F, F --- 7 0 

Team G F  H, H, H, 
M, M F, S  F  3 6 

Team H R, R   S, S, S R, R, R R, R, H, H, H, 
H, H, S, S, S  7 11 

Total falls 
and/or resets 10 5 2 6 3 7 0 33  

Total other 
critical 

incidents 
2 0 6 11 2 11 12  44 

Table 3. All critical incidents observed per team per task.  Dashes indicate that no critical incidents were observed for a 
team on that task.  A gray cell indicates that the team was not observed on that task or, in the case of Team B on Terrain, 

the data could not be included. 

5.3  Subtasks for HRI Evaluation  
 
Many teams did not fully complete tasks, generally earning only 1 or 2 points, by completing 1 or 2 
DRC-defined subtasks. However, most of the DRC-defined subtasks involved many smaller actions, 
each of which could prompt a change in each team’s interaction method. For this reason, we broke 
down each DRC Trials task into finer grain subtasks than those needed to score points. For instance, 
the Debris task was decomposed into 13 subtasks: traversing from the starting point to the debris 
pile, removing each of the yellow debris pieces (5 individual subtasks), removing each of the orange 
debris pieces (5 individual sub-tasks), removing the truss (if applicable), and traversing from the 
debris pile through the doorway.  
 
While some DRC-defined subtasks were comprised of entirely mobility or manipulation (e.g., each 
subtask on Terrain was mobility-specific), others required both to be accomplished (e.g., in the 
Hose task, traversing to the wye with the hose requires first walking to the hose, grasping it, 
unreeling it, and then traversing with the hose in the hand to be accomplished). We defined four 
subtask functions: unobstructed traverse (UT), obstructed traverse (OT), manipulation (M), or 
second order manipulation (SOM), referring to the manipulation of a tool within the environment.  
After breaking down the tasks into smaller subtasks, each subtask was then categorized as one of 
these functions. With these codings, each team’s timing per task can be summed to report the total 
amount of time spent performing subtasks in each function. Table 4 shows an example of subtask 
timing comparisons between Team B and Team E on the Hose task. Table 5 outlines all of the 
subtasks and their categorizations for each task. Across all of the tasks, there are 27 mobility 
subtasks (11 UT and 16 OT) and 31 manipulation subtasks (7 FOM and 24 SOM). 
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 Team B Team E 

Traverse to hose complete N/A 2 
Grasping hose or nozzle complete 1 2 

Unreeling hose complete 6 2 
Traverse with hose to wye complete 3 2 

Point 1 10 8 
Hose nozzle touching wye complete 7 9 

Point 2 17 17 
Hose nozzle rotated to attach to wye complete --- --- 

Releasing nozzle attached to wye complete --- --- 
Point 3 --- --- 

Table 4. Teams B and E on the Hose task. Note: a marking of N/A means the subtask’s timing was not discernable from 
our observation notes. A marking of “---” means the team did not attempt that subtask. The measures in this table refer 

to the number of minutes it took each team to complete that subtask. 

5.4 Utterance Coding 
 

The majority of handwritten notes taken in each team’s garage during tasks included dialog between 
team members.  (No audio recordings were made in the control rooms.)  No dialog was noted for 
Team C on Valve or Team F on Ladder.  The control room observations for Team F on Hose were 
taken at the incorrect operator station during a team practice, so we have no recorded utterances for 
Team F on Hose.  In our analysis of coded utterances, we omitted these three observations.  The 
data set provided a total of 1397 utterances over the 40 observed team/task pairs with usable 
utterances.  Utterances were coded in five categories; the categories were influenced by the dialog 
recorded, rather than predefined, using the grounded theory method [Glaser and Strauss 1967]. The 
five main categories coded were subject, situation awareness, type, classification and emotion. 
 

The subject category was used to identify the main topic, using the following classes: 
● Comms: Utterance referred to the state or change of the communication line between the 

team’s interaction method and the robot. 
● Time: Utterance referred to the amount of time remaining in the run, an intervention, or for a 

robot action to execute. 
● Interface: Utterance referred to a data display within the interface or control method. 
● Robot: General: Utterance referred to the robot, but not the robot’s arms/hands or legs/feet. 
● Robot: Legs/Feet: Utterance referred to the robot’s legs or feet, usually about mobility. 
● Robot: Arms/Hands: Utterance referred to the robot’s arms or hands, usually about 

manipulation. 
● Obstacle: Utterance referred to an obstacle that the robot can potentially bump into or trip 

over (e.g. cinder block steps, doorway frame, etc.) or catch the robot’s hand or arm on (e.g., 
wall next to the debris, pipes on which the valves were attached). 

● Tool: Utterance referred to an object in the environment that was meant to be manipulated 
(e.g. piece of debris, door handle, drill, valve wheel, hose nozzle, etc.). 

● Patter: Used for encouragement or frustration (e.g. “Good job!” or “Stupid…”). 
● Action Plan: Utterances that referred to a plan to do something that were not coded into any 

of the other categories. 
More than one coding could be used for each utterance; for example, if an utterance mentioned 
opening the robot’s hand to grip the drill, it coded as Robot: Arms/Hands and Tool (drill).   
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Table 5. Outline of each task’s breakdown into subtasks and each subtask’s corresponding function(s). 
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The situation awareness (SA) category was used to code whether or not the utterance indicated an 
awareness, or lack thereof, of the state of the robot’s limbs, the environment state, etc. Utterances 
were not coded as SA if they did not refer to it. 
● Good SA: Used when an utterance referred to correct/positive awareness of the state of the 

robot, the environment, etc. (e.g. “It is not turning anymore”, referring to the drill bit having 
stopped moving). 

● Neutral SA: Used when an utterance referred to awareness of the state of the robot, the 
environment, etc. (e.g. “Check my grasp” where the speaker is aware that there may be a 
problem with their manipulator’s grasp). 

● Bad SA: Used when an utterance referred to incorrect/negative awareness of the state of the 
robot, the environment, etc. (e.g. “I can’t tell if the drill is spinning”). 

 
The type category was used to code the utterance’s purpose. 
● Command: Used when an utterance was instructing another team member to do something. 
● Inquiry: Used when an utterance was asking a question. 
● Response: Used when an utterance was responding to an inquiry. 
● Notification: Used for unprompted statements. 

 
The classification category was used to code whether an utterance was positive, negative or neutral.  
The emotion category was used to code if an utterance displayed any stress or encouragement.  A 
majority of the statements were coded as having neither. 
 
Table 6 shows a sample of utterance coding from Team E on the Wall task. 
 
 Subject SA Type Classification Emotion 

“If it’s not turning…” Tool Neutral SA Notification Neutral None 
“I thought you guys said it was.” Tool Bad SA Notification Neutral None 
“Stuck?” Tool Neutral SA Inquiry Neutral None 
“It is stuck.” Tool Good SA Response Neutral None 
“4 minutes” Time --- Notification Neutral None 

Table 6. An example of utterance coding from Team E on the Wall task. 
               

Inter-rater reliability was established using Cohen’s Kappa for each of the classification groups. For 
the subject of the utterance, κ=0.84 excluding chance (κ=0.88 if chance was not factored out). For 
situation awareness, κ=0.63 excluding chance (κ=0.80 if chance was not factored out). For utterance 
type, κ=1.0 excluding chance (κ=1.0 if chance was not factored out). For the classification, κ=0.67 
excluding chance (κ=0.88 if chance was not factored out). Finally, for emotion, κ=0.55 excluding 
chance (κ=0.81 if chance was not factored out). Emotion was the most difficult category to code, 
given that some observers used exclamation points to indicate tone of voice, while others did not. 

6. Team Interaction Methods 
 
Each of the eight teams observed during the DRC Trials custom-designed their human-robot 
interaction (HRI) methods and interaction tools. Each consisted of a different number of display 
screens, input methods (although every team used at least one keyboard and mouse), sensor fusion, 
and autonomy levels, among other factors. This section describes the HRI method, interface 
technology, and team dynamics for each of the competing teams.  
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6.1 Interface Displays 
 
Table 7 shows the type of data displays each team’s interaction method used as well as the number 
of unique instances of each; this number mostly varied on number of simultaneous camera feeds 
displayed. Table 8 shows the data displays that were used to form a unique instance of sensor fusion 
in each team’s interaction method. The data displays checked in each column were able to be fused 
with each other within a single window on a screen, but most had the ability to turn the fusion on 
and off depending on operator and task preferences. Table 9 shows another unique instance of 
sensor fusion for each team, if applicable. Four teams had a single instance of unique sensor fusion, 
while the other four teams had two instances of unique sensor fusion. It is important to note that our 
distinction for each team’s use of sensor fusion is purely from an operator perspective, meaning the 
display method for the operator to interpret the data. This measure does not take into account any 
back end processes used to fuse the data before presenting it to the operator, although we can 
assume that this occurs at some level in order for it to be represented appropriately. 
 
Note that the top four teams had a second sensor fusion method, reported in Table 10, while the 
bottom four teams did not. In Section 8, we present further results showing that sensor fusion in the 
human-robot interface leads to better outcomes across several metrics. 
 

 
Camera 

feeds 
Point 
cloud 

3D robot 
avatar 

Sim objects 
or obstacles 

2D distance 
visualization 

2D height 
maps 

Status messages, 
sensor readings, etc. Total 

Team A 3 1 1 1   1 7 

Team B 3 1 1 1   1 7 

Team C 2 1 1   2 1 7 

Team D 4 1 1    1 7 

Team E 4 1 1 1 1  1 9 

Team F 1 1 1 1   1 5 

Team G 6 1 1    1 9 

Team H 1    1  1 3 
Table 7. Number of unique data displays per team. 
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Single 

camera view 
Foveated 

vision 
Point 
cloud 

3D robot 
avatar 

2D distance 
visualization 

Sim objects 
or obstacles 

Joint sensor 
readings Notes 

Team A X X    X  Left window, 
center/right screen 

Team B X X      Different screen than 2 

Team C X  X X    Viewable on right screen 

Team D   X X    Duplicated throughout 
interface screens 

Team E X X X X  X  
Viewable throughout 
interface screens with 
different data displays 

turned on or off 

Team F   X X  X  
Viewable throughout 
interface screens with 
different data displays 

turned on or off 

Team G   X X    Viewable throughout 
interface screens 

Team H X    X   Viewable on right screen 
Table 8. Number of combined data displays for one unique instance of sensor fusion per team. 

 

 
Single 

camera view 
Foveated 

vision 
Point 
cloud 

3D robot 
avatar 

2D distance 
visualization 

Sim objects 
or obstacles 

Joint sensor 
readings Notes 

Team A X  X X  X  Right window, 
center/right screen 

Team B   X X  X  Different screen than 1 

Team C X  X     Viewable on right screen 
in separate window 

Team D X      X Used to highlight hand in 
camera views 

Table 9. Number of combined data displays for another unique instance of sensor fusion per team. Teams E through H 
are not listed because they only had one unique instance of sensor fusion. 

6.2 Operators, Input Devices, and Screens 
 
The composition of each team’s set of operators in their control room varied greatly. The roles of 
the operators on each team also varied, but there were some common roles. Most teams had primary 
operators who were responsible for sending commands to the robot that resulted in robot movement, 
planning operators who were responsible for programming appropriate plans for the robot to 
execute, and operators who were focused on strategy or robot status, such as monitoring comms 
levels. Operators were generally confined to a cluster of display screens, which we refer to as 
stations. Figure 1 provides an overview image of the composition of all teams’ average 
operator/screen ratio.  
 
Team A used a single station consisting of three monitors. The left monitor was used to launch the 
robot’s controller at the start of the run. The center and right screens displayed the same information, 
with the center used by the operator and the right by a supervisor. During task execution, the 
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supervisor provided a second set of eyes and aided the operator with strategy and reminders during 
task execution. Team A throttled down the amount of bandwidth needed to communicate with their 
robot such that changes in comms strength had no effect on their performance. 
 
Team B used four stations to control their robot. The left station was used by the primary operator 
to control the robot and to plan robot actions. The center right station was used by a perception 
operator who was responsible for placing pre-made 3D models of objects into the environment for 
the primary operator. The right station was used for checking status and communications. The 
center left station was used for cues and configuration changes during task execution. 
 
Team C used a single station with two displays (left and right). The right screen displayed state 
information (e.g. network connectivity, command feedback, data message rates) and most other data 
from their robot. All content on the right screen could be hidden or displayed based on operator 
preference and task needs. The left screen generally displayed a single camera feed, but was able to 
display any of the available data displays. To reduce the amount of data sent over the network, point 
cloud/camera feed data was displayed in grayscale and the point cloud data was discretized to 
varying levels of detail, depending on the task being performed (e.g. lower resolution for mobility 
and higher resolution for manipulation). 
 
Team D used four stations to control their robot. The front left and front right stations were used by 
the two primary operators. Their screens shared the same content, although the bottom two screens 
and top two screens were switched between stations, (i.e. the front left station’s bottom two screens 
would display the same content as the front right station’s top two screens) allowing the two 
primary operators to see what the other was doing. The back left and back right stations displayed a 
subset of the data displays from the front left and front right stations to supervisors. 
 
Team E used three stations to control their robot. Every screen at each station was able to display 
all of the possible data displays. Each one of the center station monitors was primarily dedicated to 
one of the data displays. The center station was used by the primary operator to plan and perform 
each task, and was the only station that sent motion commands to the robot. The right station was 
used for acquiring new and updating existing 3D point clouds and camera images used in the center 
station. The operator at the right station also had the ability to identify points of interest within the 
3D point clouds and camera images for the primary operator. The left station was mainly used for 
communications and status checks of the robot’s onboard computer.  
 
Team F used two interaction method setups. Method 1 used three stations, as did method 2, albeit 
in a different layout. Throughout their interface, a single camera feed was displayed along with a 
fusion of a 3D robot avatar and point cloud data. Status messages and sensor readings were also 
displayed. 
 
Team G used three stations to control their robot. Each of the three stations had two display screens. 
A game controller was used on the right station to manually place footsteps within the environment 
for the robot to execute. 
 
Team H used three stations to control their robot. Each of the three stations had one display screen. 
A gesture recognition device was used in the right station to control the hands and arms of the robot. 
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Figure 1. Operator/screen ratios and set-ups for all teams that participated in our study.  

Active operators are rendered darker and passive operators are rendered lighter. 
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Table 10 shows the average number of active, passive, and total operators for each team on the 
observed tasks as well as the total input devices and screens used as part of their interaction method 
(for Team F the maximum number of input devices and screens was used, given that they had two 
operating configurations). We defined an active operator as someone controlling an input device for 
robot control and a passive operator as someone observing task execution, providing feedback on 
comms, sensor readings, strategic advice, etc.  Anyone present in the garage during task execution 
who was watching or supporting an active operator was considered to be a passive operator. 
 

 

Active 
operators 
(average) 

Passive 
operators 
(average) 

Total 
operators 
(average) 

Keyboard 
and mouse 

Game 
controller 

Gesture 
Recognition 

Display 
screens 

Team A 1 1.3 2.3 1   3 

Team B 2 3 5 4   11 

Team C 1 3 4 1   2 

Team D 2 2.3 4.3 4   12 

Team E 3.2 4 7.2 3   8 

Team F 2.8 1.2 4 4   7 

Team G 2.5 3.5 5.8 3 1  6 

Team H 2.3 2.5 4.8 3  1 3 
Table 10. Average number of operators, number of input devices, and number of display screens per team. 

 
Table 10 shows that all teams had a heavy reliance on keyboards and mice for interacting with the 
robot system. Two of the eight teams also included alternative methods, Team G with a game 
controller and Team H with gesture recognition; however, these two teams were the lowest scoring 
teams in our study. While that result leaves us unable to suggest that the use of anything other than 
a keyboard and mouse would lead to the best performance, it is not necessarily the case. It is 
important to note that the interaction methods designed for the DRC Trials were used by the system 
developers, wherein the use of only a keyboard and mouse was most likely sufficient. 

6.3 Control Methods 
 
Each team used a variety of methods to control their robot on mobility and manipulation tasks, 
ranging from fine-grain individual joint control to more automated processes like waypoint 
placement. While almost all of the control methods were custom built as part of a team’s interaction 
method, there were common qualities that each shared, which we distilled into six categories of 
control methods: 
● Individual joint control by typing numbers (JN): manually entering numbers to rotate 

individual joints 
● Individual joint control using robot avatar (JA): rotating joints by manipulating a 3D robot 

avatar on screen by using a Cartesian rotation tool 
● Pre-made script for action (PM): executing a pre-made script for a single action (e.g. 

sidestepping, crouching, etc.), with some variable input (such as distance, speed, etc.) 
depending on implementation 

● Motion planning by 3D object linking (OBJ) (manipulation only): planning trajectories by  
linking a simulated limb of the robot to a 3D model that the operator places into the 
environment and then manipulating the model. When the model moves the simulated linked 
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robot limb moves with it and sends this trajectory to the robot 
● Manual footstep placement (FP) (mobility only): placing individual footsteps on a surface  
● Waypoint placement (WP): placing a waypoint or end goal for the robot to follow, with 

automated planning of footsteps/trajectories 
 
Teams varied which control method they used by task and subtask. Use of one control method is not 
excluded from another; for example, Team D used pre-planned scripted actions to execute a task 
and adjusted movements during execution by manually placing footsteps.  
 
An important difference between each of the control methods described above is the amount of 
input required by the operator to achieve a certain output. The amount of knowledge that the robot 
and/or operator must have about environmental features that could potentially affect performance 
(e.g., the location of the hurdle in the Terrain task, which could cause the robot to trip) is also 
important. We have defined three categories of interaction amount, defined by these factors. To 
more easily compare them we can look at an example wherein the output is held constant. For 
instance, consider a mobility task like commanding the robot to take 5 steps forward: 
● Low amount of interaction: placing a single waypoint or end goal for the robot to walk to 

(WP). Footsteps and their accompanying trajectories are automated, and the robot plans 
around environmental features during/before execution as needed 

● Medium amount of interaction: manually placing five footsteps for the robot to perform (FP). 
Trajectories for each footstep are automated, and the robot plans around environmental 
features during/before execution as needed 

● High amount of interaction: using pre-made scripts to command the robot to step forward 
five times (PM). Trajectories for each footstep are automated based on input variables such 
as distance, speed, etc. from the operator, but the environmental features must be known to 
allow for proper planning, or the robot may have reactive features to adapt during execution 
as needed. Controlling individual joint angles either by manipulating a 3D simulation of the 
robot avatar or by typing numbers to achieve five footsteps (JN/JA), where nothing is 
automated, does require more interaction than PM, but for simplicity we are including it in 
this category. Every team in our study exhibited both JN/JA and PM, so the distinction 
between the two is unnecessary.   

 
For a manipulation task, manual footstep placement (FP) for the medium amount of interaction 
category does not apply, and is instead replaced with motion planning by 3D object linking (OBJ). 
Trajectories for each arm and hand movement are automated, and the robot plans around 
environmental features during/before execution as needed. Also, the low amount of interaction 
category would still be waypoint/end goal placement (WP), but would take the form of placing a 
simulated robot hand pose or other goal identifier into the environment. For example, on the Valve 
task, Team F placed a shape over their acquired point cloud data to tell the robot where the valve 
wheel was, signifying the goal. The robot would then automate rotating the valve without any 
further operator input.   
 
Note that this categorization does not take reliability into account, because that is specific to each 
team’s implementation of the control method. Each team’s performance dictates whether or not a 
control method was effective; one is not inherently better than the other. Table 11 shows each 
team’s control methods for mobility and manipulation tasks, and the associated amounts of 
interaction.  
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Control methods for 

mobility 
Amount of interaction 

for mobility 
Control methods for 

manipulation 
Amount of interaction for 

manipulation 

 JN JA PM FP WP High Med Low JN JA PM OBJ WP High Med Low 

Team A X  X X X X ✔ ✔ ✔ X  X X X X ✔ ✔ ✔ 

Team B X  X X X X ✔ ✔ ✔ X  X X X X ✔ ✔ ✔ 

Team C X  X X X X ✔ ✔ ✔ X  X X  X ✔  ✔ 

Team D X  X X X  ✔ ✔  X  X X   ✔   

Team E X  X X  X ✔  ✔ X  X X  X ✔  ✔ 

Team F X   X   ✔   X  X X  X ✔  ✔ 

Team G X  X X X  ✔ ✔  X  X X   ✔   

Team H X   X   ✔   X   X   ✔   

Table 11. Mobility and manipulation control methods used by each team and their associated amounts of interaction. 

7. Results and Discussion 
 

Of the many analysis methods described above, we have found positive correlations between many 
of the metrics used to measure performance and to measure interaction features. Not all of our 
planned metrics ended up being used, but the pertinent and telling correlations are explained below. 
Most of the tables in this section have cells that are colored from lightest to darkest, which 
corresponds to the range of the data for each metric and is based on the magnitude of each 
individual data point within the dataset.  

7.1 Critical Incidents 
 

As described in Section 5.2, we coded critical incidents that occurred with the robots on the course 
during task runs.  We divided these critical incidents into two categories. The first category 
clustered falls and resets, as these critical incident types led to a loss of 5 minutes from the team’s 
run time when an intervention was called or to the early end of a run, if less than 5 minutes 
remained when the intervention was called. The second category clustered the remainder of the 
critical incidents, none of which resulted in an immediate time penalty, although it certainly might 
have slowed the progress of the robot. All of the critical incidents for the observed teams and tasks 
are shown in Table 3 in Section 5.2. 
 

 % of falls and/or resets  % of other critical incidents % of all critical incidents 
Team A 3.0% 2.3% 2.6% 
Team B 6.1% 13.6% 10.4% 

Team C 6.1% 15.9% 11.7% 

Team D 15.2% 20.5% 18.2% 

Team E 18.2% 9.1% 13.0% 

Team F 21.2% 0.0% 9.1% 

Team G 9.1% 13.6% 11.7% 

Team H 21.2% 25.0% 23.4% 
Table 12. Percentages of the aggregate of falls and/or resets vs. other critical incidents vs. all critical incidents per team.  

This table is sorted by the leftmost column, overall team performance.   
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In Table 12, we present a comparison of the number of critical incidents for each team compared to 
the total number of observed critical incidents, in falls and resets, other critical incidents, and 
overall. Teams who had a greater percentage of the falls and resets, incurring time penalties, fared 
worse overall than teams with a lower percentage of such critical incidents. The other critical 
incidents and overall critical incidents categories were less predictive of the team’s overall ranking. 

7.2 Subtask Performance 
 

As described in Section 5.3, we broke the DRC Trials Tasks into functional subtasks, resulting in a 
finer granularity than the scoring method used for each task. We then categorized each subtask as 
unobstructed traverse (UT), obstructed traverse (OT), first order manipulation (M) and second order 
manipulation (SOM; use of a tool). 
 
Table 13 shows the percentages of successful attempts in these four categories for each team. This 
metric allows us to look at the success of teams on subtasks that they were trying to complete, rather 
than including all of the subtasks that were not attempted, either due to a lack of time or a lack of 
capability.  We also show the percentages of successful attempts for both of the mobility subtasks 
(UT + OT) and both of the manipulation subtasks (M + SOM). Unsurprisingly, we see that, for the 
most part, the top teams had the higher percentages of success for both mobility and manipulation 
subtasks. 
 

 

Unobstructed 
traverse 

(UT) 

Obstructed 
traverse 

(OT) 

Mobility 
subtasks  

(UT and OT) 

First order 
manipulation 

(M) 

Second order 
manipulation 

(SOM) 

Manipulation 
subtasks 

(M and SOM) 
Team A 90% 100% 94% 100% 100% 100% 

Team B 100% 0%* 73%** 100% 91% 94% 

Team C 100% 71% 86% 100% 100% 100% 

Team D 89% 67% 76% 100% 50% 80% 

Team E 89% 38% 65% 100% 67% 89% 

Team F 57% 82% 72% 33% 100% 50% 

Team G 60% 67% 63% 100% 67% 80% 

Team H 100% 0% 63% 0% N/A 0% 
Table 13. Average successful subtask attempts per team by team rank. As noted in Table 1, Team B was observed on 

Terrain, but we were not able to include the data in our analysis. If we had, * would be 50%, and ** would be 79%   
 
The top four ranked teams in our study have the highest percentages for successful mobility subtask 
attempts (UT and OT) across all tasks. The top three ranked teams in our study also have the highest 
percentages for successful manipulation subtask attempts (M and SOM) across all tasks. To try to 
understand why Team E knocked Team D out of this ordering, we can test against a few additional 
axes. In Table 24 we can see that Team E required less interaction for manipulation than Team D. 
Given that Team E had fewer manipulation related falls and/or resets and other critical incidents 
than Team D, we can conclude that Team E’s control methods for manipulation were more reliable. 
 
The values in Table 14 show a comparison between the average time required to complete the 
subtasks, separated by subtask function. The values show the percentage of time difference with 
respect to the aggregate.  For example, the value for Team A in unobstructed traverse (UT) is -31%, 
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meaning that Team A used 31% less time for these subtasks than the average across all teams for 
these subtasks. A positive value in a cell means that the team performed that type of subtask more 
slowly than the average across all of that subtask type. This data was analyzed in an attempt to find 
correlations between situation awareness and task speed. We hypothesized that teams with greater 
situation awareness would tend to perform the tasks more quickly. However, no correlations could 
be made with the time breakdown shown here, suggesting that interaction methods and situation 
awareness did not impact speed. The DRC Trials did not reward speed with extra points, so there 
was no benefit to a team completing a subtask quickly, unless they had plans to complete additional 
subtasks in the overall task.  This lack of reward for speed might have led to the lack of a 
correlation between speed and SA. 
 

 

Unobstructed 
traverse 

(UT) 

Obstructed 
traverse 

(OT) 

Mobility 
subtasks  

(UT and OT) 

First order 
manipulation 

(M) 

Second order 
manipulation 

(SOM) 

Manipulation 
subtasks 

(M and SOM) 
Team A -31% 13% -8% 1% -9% -5% 
Team B -16% 62% 26% 5% 12% 7% 
Team C 35% 41% 33% 67% 140% 103% 
Team D -13% -17% -19% -4% 30% 12% 
Team E 5% 41% 22% -20% 30% 5% 
Team F 47% -22% 2% -37% 180% 72% 
Team G 68% 196% 136% 99% 120% 108% 
Team H 68% N/A N/A N/A N/A N/A 
Table 14. Percentages for teams that are above (positive) or below (negative) aggregate average time per subtasks.  

Larger negative values mean the team was much faster than average.  Table sorted by team rank (left column). 
 
The data in Table 15 shows differences in the points scored by the teams with respect to the 
aggregate, broken down by subtask. This analysis was performed to explore team capabilities for 
specific types of tasks and also to find any correlations between function capability and interaction 
methods. In general, team aptitudes for task type varied, though no correlations could be made to 
specific interaction methods.  Of note is the correlation of the unobstructed traverse (UT) values to 
the team ranking; the faster walking teams for UT subtasks scored better in the overall competition. 
Four of the five teams who earned more than the average number of points for obstructed traverse 
(OT) were the top four ranked teams.  First order manipulation has a similar finding for the top five 
ranked teams. 
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Unobstructed 
traverse 

(UT) 

Obstructed 
traverse 

(OT) 

Mobility 
subtasks  

(UT and OT) 

First order 
manipulation 

(M) 

Second order 
manipulation 

(SOM) 

Manipulation 
subtasks 

(M and SOM) 
Team A 83% 104% 140% 92% 276% 167% 
Team B 60% 31% -20% 28% 41% 33% 

Team C 37% 16% -20% 60% 41% 52% 

Team D 14% 31% 60% 28% -53% -5% 

Team E 14% 2% -20% 28% -53% -5% 

Team F -54% -42% -20% -68% -100% -81% 

Team G -54% -42% -20% -68% -53% -62% 

Team H -100% -100% -100% -100% -100% -100% 
Table 15. Percentages for teams that are above (positive) or below (negative) aggregate average points per subtasks. A 

large positive percentage indicates that the team was well above the average points scored for a subtask across all teams. 

7.3 Utterance Coding 
 
An analysis of the utterances between team members can provide us with some insight as to the 
success of or problems with their interaction design. We note that this analysis has some limitations. 
First, some teams spoke more than others; to account for this variability to the amount possible, we 
report results as a percentage of the total utterances made by the team over all observed tasks. 
Second, some of our observers recorded everything said in the control room, within the limitations 
of handwriting the notes, while other observers seem to have recorded less, judging from the 
number of utterances across different tasks for the same team when observed by different people. 
However, despite these limitations, we found some trends in the team utterances, which we report 
here. Such trends suggest that audio recording in the control room during runs, with later 
transcription, could be a valuable data set for analysis in the DRC Finals or other similar 
competitions. 
 
7.3.1 Stress 
 
Table 16 shows the percentage of a team’s overall utterances that were coded as being stressed. 
There are lower percentages of utterances coded as stressed for three of the top four teams (Teams 
A, B, and D). However, the other top team, Team C, had the highest percentage of stressed 
utterances, a majority of which were recorded during the Door task.  We believe that this anomaly 
was due to the fact that the team used a different operator for this task than for all of the other tasks, 
a fact explicitly told to the observer in the control room before the run started.   
 
The amount of stress in a team might be caused by the team knowing that the run is going badly, or 
might be a predictor of a run about to go badly. One possibility for learning about the causality 
between the two would be to use biometrics, which could allow for timing comparisons of when 
stress rose in the operators and when the robot had critical incidents. If stress rises before the critical 
incident occurs, it could be attributable to the interface design. More importantly, if stress was 
found to occur before the critical incident, it might be avoided through better interface design. Such 
investigations are an open problem for human-robot interaction. 
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 % of total utterances coded as stressed 
Team A 6.0% 
Team B 5.2% 
Team C 15.2% 
Team D 4.0% 
Team E 8.5% 
Team F 6.2% 
Team G 11.4% 
Team H 12.9% 

Table 16. Percentage of a team’s overall utterances that were coded as being stressed. 
 
7.3.2 Comms 
 
On the Terrain task, six of the eight teams scored points. The teams who scored points had no 
utterances about comms at all. Teams F and H scored no points and had 12.2% and 5.5% of their 
total utterances on the Terrain task about comms, respectively. A similar pattern is revealed for the 
Wall task, where the two teams who scored points (Teams A and C) had no utterances about comms, 
while Teams D, E, and H had 2.2%, 20.7%, and 10.0% of their total utterances on the Wall task 
about comms, respectively. The pattern almost holds for Door, where we observed all of the eight 
teams; three of the four teams who scored points had no utterances about comms. This data can be 
seen in Table 17.   
 

 

Points 
scored 

on 
Terrain 

% of total 
utterances 

about comms 
during the 

Terrain task  

  

Points 
scored 

on 
Wall 

% of total 
utterances 

about comms 
during the 
Wall task  

  Points 
scored 

on 
Door 

% of total 
utterances 

about comms 
during the 
Door task  

Team A 4 0.0%  Team A 4 0.0%  Team A 4 0.0% 

Team B 3* 0.0%*  Team C 1 0.0%  Team B 1 0.0% 

Team D 2 0.0%  Team D 0 2.2%  Team C 1 1.0% 

Team C 1 0.0%  Team E 0 20.7%  Team G 1 0.0% 

Team E 1 0.0%  Team H 0 10%  Team D 0 0.0% 

Team G 1 0.0%      Team E 0 6.3% 

Team F 0 12.2%      Team F 0 2.3% 

Team H 0 5.5%      Team H 0 6.6% 
Table 17. Teams in order of points scored for the Terrain (Left), Wall (Center), and Door (Right) tasks vs. the 

percentage of total utterances about comms during each task, respectively. *Observed values shown in this table, 
although excluded from other analyses, for a reason withheld to preserve anonymity. 

 
These results indicate that teams performed better when they did not have to spend time talking 
about the variable data rate and delay. Team A designed their system to only require the amount of 
bandwidth available at the lower level, and thus they never had to be concerned with the comms 
level. Some teams, such as Team C, reduced their camera feeds to grayscale to limit the amount of 
bandwidth needed.  Looking at the overall utterances for teams across all of the tasks on which they 
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were observed, three of the top four teams (Teams A, C, and D) had fewer utterances about comms 
and also had no utterances about comms that were coded as negative, as seen in Table 18. 
 

 % of total utterances about comms % of total negative utterances about comms  
Team A 0.0% 0.0% 
Team B 4.6% 0.0% 
Team C 0.8% 5.9% 
Team D 3.4% 0.0% 
Team E 6.3% 0.0% 
Team F 9.3% 5.3% 
Team G 4.6% 0.0% 
Team H 6.2% 18.2% 

Table 18. Percentage of total utterances about comms vs. negative utterances about comms, sorted by team performance. 
 
7.3.3 Talking about task related items instead of robot control 
 
The ability of a team to discuss aspects of the task at hand, rather than focusing on the appropriate 
methods for controlling a robot, should lead to better performance. We found that teams who had 
more utterances coded as obstacle, which meant the walls and other unmovable parts of the course, 
or tool, which meant the pieces of wood acting as debris, the handles of the valves, and the drill, had 
better performance on the task. 
 
On the Debris task, two of the four observed teams, A and B, scored points; Team A had 28.6% and 
Team B 18.2% of their utterances coded as obstacle, while teams not scoring points had no 
utterances in this category, as seen in Table 19.  We saw a similar split for tool utterances, with 
Team A having 28.6% and Team B 45.5% of utterances coded as tool, but 0% and 2.7% for non-
point scoring teams.  

 
On the Wall task, two of the five observed teams scored points (A and C); teams with points had 
19.4% and 22.2% of their utterances coded in the obstacle category (the wall itself and table that 
held the drill were considered obstacles in our coding) and the three teams who did not score points 
had 0%, 0%, and 5.6% (see Table 19). 
 

 
Points 

scored on 
Debris 

% of total 
utterances about 

the obstacle during 
the Debris task  

% of total 
utterances about 
the tool during 
the Debris task  

 

 
Points 

scored on 
Wall 

% of total 
utterances about 
obstacle during 
the Wall task  

Team A 1 28.6% 28.6%  Team A 4 19.4% 

Team B 1 18.2% 45.5%  Team C 1 22.2% 

Team F 0 0.0% 0.0%  Team D 0 5.6% 

Team G 0 0.0% 2.7%  Team E 0 0.0% 

     Team H 0 0.0% 
Table 19. Left: Teams observed on the Debris task, in order of points, with the percentage of total utterances coded as 
about an obstacle and percentage of utterances coded as about a tool. Right: Teams observed on the Wall task, in order 

of points, with the percentage of total utterances coded as about an obstacle. 
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For tasks that involve tools (Debris, Door, Hose, Valve, and Wall), the top four teams had the 
highest percentages of total utterances about the tool (e.g., the piece of wood in Debris, the drill in 
Wall, the valve handle and wheel in Valve), which is likely to be an indication that the team was 
able to focus on the task at hand rather than robot or interface mechanics.  
 
We expect a correlation between this result and the use of manipulation control methods that 
involve the operator directly interacting with the tool, such as waypoint placement (wherein the 
operator places a waypoint onto the tool) and motion planning by 3D object linking (wherein the 
operator manipulates a 3D model of the tool), and the use of simulated 3D models of objects within 
a data display. Table 20 shows the inclusion of these additional axes, which shows the correlation. 
Note that Team E is within the top four in this ordering by percentage of utterances about tool. 
Table 20 provides evidence as to why Team E knocked out Team D for this ordering: Team E used 
simulated 3D models of objects (many of which are the subject of tool utterances) as part of their 
interaction method, whereas Team D did not, involving much less direct interaction/consideration 
of the tools being used. If we also look at the percentage of manipulation related falls and/or resets, 
we see that Team D had 3.0% to Team E’s 0%, which removed time that could have been used to 
score points. 
 

 
% of total utterances 

about the tool on 
relevant tasks 

Sim objects 
or obstacles 

Waypoint 
placement 

Motion 
planning by 3D 
object linking 

Team percentage of the 
aggregate of manipulation 
related falls and/or reset 

Team B 26.5% X X X 0.0% 
Team E 12.7% X X  0.0% 
Team A 12.3% X X X 0.0% 
Team C 11.9%  X  0.0% 

Team D 6.9%    3.0% 

Team H 6.5%    6.1% 

Team F 5.1% X X  6.1% 

Team G 1.3%    0.0% 
Table 20. Percentage of total utterances about the tool on relevant tasks vs. tool interaction data displays and 

manipulation control methods vs. manipulation related falls and/or resets. Teams are ordered according to their 
percentage of total utterances about the tool on relevant tasks. 

7.4 Sensor Fusion 
 
Teams can be compared by the amount of sensor fusion their interface utilized in presenting the 
data back to the operator. Based on the number of data displays that were combined to form unique 
instances of sensor fusion they can be split into three categories: high (Team A), medium (Teams B 
through E), and low (Teams F through H). The top four teams in our study all utilized high or 
medium sensor fusion, while the bottom four teams all utilized medium or low sensor fusion. 
 
If we compare all teams across their amount of sensor fusion and their average successful subtask 
attempts, shown in Table 21, we see the top four ranked teams had the highest average successful 
subtask attempts for mobility. For manipulation, the top three ranked teams had the highest 
averages; Team D got knocked out by Team E. Both teams had the same level of sensor fusion 
(medium), but if we also look the amount of falls and/or resets, as seen in Table 21, Team E had 
more falls and/or resets than Team D, suggesting why Team E was not ranked in the top four. 
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Amount of 

sensor fusion 

Average successful 
mobility subtask attempts 

(UT and OT) 

Average successful 
manipulation subtask 

attempts (M and SOM) 

Team percentage of 
the aggregate for falls 

and/or resets 
Team A High 94% 100% 2.9% 
Team B Medium 73% 94% 11.4% 
Team C Medium 86% 100% 5.7% 
Team D Medium 76% 80% 14.3% 
Team E Medium 65% 89% 17.1% 
Team F Low 72% 50% 20.0% 
Team G Low 63% 80% 8.6% 
Team H Low 63% 0% 20.0% 

Table 21. Amount of sensor fusion vs. successful subtask attempts for mobility and manipulation vs. falls and/or resets.  
 

Three teams (A, B, and E) used foveated vision as part of their interface. Those three teams also 
used simulated 3D models of obstacles and objects in the environment to plan robot movements. 
Given that foveated vision gives the operator a wider view of the robot’s environment it is expected 
that less critical incidents would occur. Also, the use of simulated 3D models of objects should 
provide more accurate planning, given that the characteristics of the model are known to the system 
rather than having to rely solely on point cloud data or camera views, assuming the models are 
placed into the environment correctly, thus also resulting in less critical incidents. Team F also used 
simulated 3D models, but given their low percentage of successful manipulation subtask attempts, 
we can assume that other factors contributed (Team F was observed falling twice on the Valve task 
due to what appeared to be balance issues after manipulating the valve wheel). Compared to the 
other teams, teams A, B, and E had a statistically significant faster subtask time. On average, these 
teams completed the subtasks in 75% of the time taken by the other teams (p< 0.01). If we also 
include additional axes for falls and/or resets and other critical incidents, as seen in Table 22, we 
can see that Teams A, B, and E had no manipulation related falls and/or resets, and had the least 
amount of other critical incidents after Team F. However, Team F had the highest falls and/or resets, 
which are more detrimental to performance than other critical incidents.  
 

 Foveated 
vision 

Sim 
objects or 
obstacles 

Team percentage of the 
aggregate of manipulation 
related falls and/or resets 

Team percentage of the 
aggregate of manipulation 

related other critical incidents 

Average time to 
complete 

manipulation subtasks 

Team A X X 0.0% 2.3% -5% 

Team B X X 0.0% 11.4% 7% 

Team E X X 0.0% 2.3% 5% 

Team C   0.0% 16.0% 103% 

Team D   3.0% 20.5% 12% 

Team F  X 6.1% 0.0% 72% 

Team G   0.0% 13.6% 108% 

Team H   6.1% 25.0% N/A 
Table 22. Foveated vision and simulated 3D models of objects vs. manipulation related falls and/or resets and other 

critical incidents vs. average time to complete manipulation subtask above or below the aggregate. 
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7.5 Control Methods and Interaction Amount 
 

Lower interaction amounts require less effort from the operator and reduces his/her cognitive load 
by abstracting the level of detail to which commands must be entered. With lower cognitive load, 
we would expect higher performance. There is a correlation between average successful subtask 
attempts and lower interaction amounts, for both mobility and manipulation, respectively, as seen in 
Tables 23 and 24. Given that each team created their own control methods that fall under the 
medium and low categories interaction amount (some high interaction amount control methods 
were not custom made and came with the robot platform), we can infer whose were more effective 
than others (such as the ordering of Teams A, B, C, and E for mobility).  
 
However, there are outliers in each. While the top four ranked teams are also had the highest 
success rates for mobility subtasks, Team E used the same interaction amount as Teams A, B, and C, 
but is in the bottom half for success rate. We can further investigate this issue by including an 
additional axis of average total operators (active and passive) and mobility related critical incidents, 
seen in Table 23. With the addition of these variables, we can attribute Team E’s poor mobility 
performance to having the highest number of average operators. This high number of operators 
could have resulted in a “too many cooks in the kitchen” scenario; while more operators can spread 
out cognitive load, too many can make the information difficult to manage. We can also see that 
Team D had less falls and/or resets and other critical incidents than Team E, which could be 
attributed to the number of operators and/or differences in control method implementation. While 
Team E exhibited low interaction amounts, their custom made mobility control methods were most 
likely less accurate and reliable than Team D’s which required medium interaction amounts. 
 
The top three ranked teams also had the highest success rate for manipulation subtasks, with Team 
E knocking Team D out of its scoring rank. This finding makes sense, given that Team D’s 
interaction amount is higher than Team E’s. By additionally comparing against manipulation related 
critical incidents, as seen in Table 24, we can see that Team D had more falls and/or resets and other 
critical incidents than Team E, the inverse of their performances in mobility. The difference in 
interaction amounts supports this finding. It is important to note that our coverage of tasks per team 
is not a factor when comparing Team D and E, as we observed the same tasks for both teams. 
 

 
Average 

successful 
mobility subtask 

attempts 

Amount of interaction 
for mobility 

Percentage of 
mobility related falls 

and/or resets 

Percentage of 
mobility related 

other critical 
incidents 

Average 
total 

number of 
operators High Med Low 

Team A 94% ✔ ✔ ✔ 3.0% 0.0% 2.3 

Team C 86% ✔ ✔ ✔ 6.1% 0.0% 4 

Team D 76% ✔ ✔  12.1% 0.0% 4.3 

Team B 73% ✔ ✔ ✔ 0.0% 2.3% 5 

Team F 72% ✔   15.2% 0.0% 4 

Team E 65% ✔  ✔ 18.2% 6.8% 7.2 

Team G 63% ✔ ✔  9.1% 0.0% 4.8 

Team H 63% ✔   15.2% 0.0%   5.8 

Table 23. Average successful mobility subtask attempts per team vs. amount of interaction for mobility vs. mobility 
related falls and/or resets and other critical incidents vs. average total number of operators. Teams are ordered according 
to their average successful mobility subtask attempts. 
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Average 
successful 

manipulation 
subtask attempts 

Amount of 
interaction for 
manipulation 

Percentage of 
manipulation related 

falls and/or resets 

Percentage of 
manipulation related 

other critical 
incidents 

Average 
total 

number of 
operators High Med Low 

Team A 100% ✔ ✔ ✔ 0.0% 2.3% 2.3 

Team C 100% ✔  ✔ 0.0% 16.0% 4 

Team B 94% ✔ ✔ ✔ 0.0% 11.4% 5 

Team E 89% ✔  ✔ 0.0% 2.3% 7.2 

Team D 80% ✔   3.0% 20.5% 4.3 

Team G 80% ✔   0.0% 13.6% 4.8 

Team F 50% ✔  ✔ 6.1% 0.0% 4 

Team H 0% ✔   6.1% 25.0% 5.8 
Table 24. Average successful manipulation subtask attempts per team vs. amount of interaction for manipulation vs. 
manipulation related falls and/or resets and other critical incidents vs. average total number of operators. Teams are 

ordered according to their average successful manipulation subtask attempts. 

8. Lessons Learned 
 
The DRC Trials provided the first opportunity to study strategies for the design of human-robot 
interaction for legged robots, most of them humanoid, that were required to complete disaster 
response tasks. Before this event, there had never been such a collection of humanoid or legged 
robots in a single location to complete the same set of tasks.  
 
At a high level, we found that teams needed to be capable in the following areas to be successful: 

1. Robot mobility, 
2. Robot manipulation, 
3. Situation awareness of the robot and its surroundings, and 
4. An effective way to command the robot. 

  
Robot mobility and manipulation both were improved when control methods with lower interaction 
amounts were used (see Tables 23 and 24). Having the ability to command a robot to a waypoint or 
being able to show the robot where to place its feet are much more automated processes than 
individual joint control; these higher levels of control require much less effort from the operator, 
and, when implemented correctly, can make the HRI more efficient and less prone to errors. For 
example, Team F moved its robot on the Terrain task by typing numbers in text boxes to change 
joint angles. When the operator wanted to move between static and dynamic walking, the operator 
needed to press a button on the interface. When the operator forgot to press the button, the robot fell. 
A lower cognitive load on the operator might have prevented this error. Instead, much of the effort 
applied by the team was in controlling the robot’s mobility instead of focusing on the task at hand. 
 
However, as we see in the data, it is not enough for the robot’s control methods to enable it to be 
highly capable in the areas of mobility and manipulation. Teams A, B, C and E all exhibited low 
interaction amounts for mobility, and Teams A, B, C, E, and F all exhibited low interaction amounts 
for manipulation. Yet Team A ranked higher than all other teams. The difference comes in the 
interface design. 
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Team A had the highest amount of sensor fusion. In fact, they were able to display everything 
needed to control the robot on a single monitor. They had a second monitor duplicating the fused 
information, which only used by the supervisor. A third monitor, to the left of the operator’s 
primary monitor, was only used to start up and monitor the robot’s controllers as needed. This 
method enabled them to efficiently maintain SA, noted by their lack of critical incidents (see Table 
14) and use of a single active operator. 
 
In contrast, many teams had multiple operators with each operator interacting with multiple data 
streams, either fused or unfused. A lack of sensor fusion and lack of operator fusion is detrimental 
to the overall performance (see Table 26). For a single operator with multiple data streams, the 
operator must interpret all of the separate streams to build situation awareness – the essence of de-
centralized SA. This problem is further compounded when multiple operators have different 
information that must be fused in order to effectively control the robot. For example, Team E’s 
instance of sensor fusion was propagated throughout many monitors in different forms. The left and 
right operators were able to adjust the level of sensor fusion on their displays as needed, but the 
main operator viewed the available data spread out across three monitors, splitting the camera feed, 
3D point cloud with robot avatar, and 2D local distance visualization. This interface produced a lack 
of operator fusion, causing their performance to degrade. 
 
We saw many instances in the utterances by teams where one operator would correct another 
operator about a direction in an utterance (e.g., “Move left and forward.” “You mean right and 
forward?” “Yes.”). The lack of sensor fusion as well as the lack of operator fusion leads to 
diminished SA, leading to more critical incidents and lower performance. The average number of 
operators was predictive of the overall rankings of our study participants, with the top half of teams 
having 1 or 2 active operators while the bottom half had an average of more than 2 active operators, 
with a high of 3.2 for Team E (see Table 10). 
 
All eight teams used some number of keyboards and mice. The two bottom ranked teams added 
alternative interaction methods in addition to their keyboards and mice (Team G had a game 
controller to place robot footsteps and Team H had a gesture control device for arm movements). 
While this result leaves us unable to suggest that the use of anything other than a keyboard and 
mouse would lead to the best performance in this case, this is not necessarily the case. It is 
important to note that the system developers used the interaction methods designed for the DRC 
Trials; keyboards and mice can be sufficient for developer interfaces. It is also worth noting that 
development time for some teams was very short, resulting in incomplete interfaces.  
 
Human-robot interaction designed for the first responders who one day would be the users of these 
systems would need be significantly different. Even for the top ranked teams, it would take an 
impractical amount of training before a non-roboticist first responder would be able to control the 
robot effectively, let alone proficiently. As these types of robot systems mature from development 
to use, we expect to see changes in the interaction methods and suggest that developers start to 
create these interaction methods now, rather than after the robot hardware and controllers are fully 
mature. Integrating the design and development of the human-robot interaction with the design and 
development of the robot system will lead to higher performing, easier to use systems. 
 
Yanco, Drury and Scholtz [2004] also discussed the fact that HRI evaluations conducted in a 
robotics competition setting have traditionally involved robot operation by developers, rather than 
end users.  However, their study also included a domain expert, a special operations fire chief 
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trained in search and rescue and with experience operating robots.  A comparison of task 
performance across the expert user and the developers participating in formal competition trials 
revealed that the developers relied more heavily on sensor data while the expert was more 
dependent on live video feed data. While the current DRC Trials study involved only developers as 
operators, this finding is relevant to the interpretation of our results in that the primary sources of 
information used may not translate to end users.  Within the current study, operators often relied on 
point cloud, simulation data, and sensor data independently or in conjunction with video data.  
Furthermore, Yanco, Drury and Scholtz [2004] found that more sensor types did not necessarily 
increase awareness, especially if the sensor data was not well fused into information for the operator.  
The success or failure of multiple sources of sensor data by DRC teams may have been mediated by 
the quality of data fusion and presentation. 
 
With the move from wheeled or tracked robots to walking robots, mobility and balance is now as 
much of an issue for robot control as manipulation has been over the past decades. For example, 
Team F on the Valve task appeared to be able to manipulate the large valve wheel with ease, using 
both arms and hands simultaneously, but upon releasing their grip the robot fell forward. At this 
stage of robot development for a tracked or wheeled robot, an operator generally moves a joystick 
in a direction that makes the robot drive in that direction, with few worries about stability when not 
on extreme terrain.  However, legged, especially bipedal, mobility is much more complicated, with 
many joints moving in tandem to produce a single step in a direction, generally moving very slowly, 
for which balance must always be accounted. An operator cannot control all of these variables 
individually, but rather must rely on automated kinematic control to produce a proper trajectory to 
move the robot. The lowest interaction amount for mobility, waypoint placement, is a good example 
of removing the need for the operator to worry about individual joint angles, footstep placement, 
and keeping the robot balanced. To reach the same level of proficiency currently attained in a 
tracked robot platform, allowing the operator to think about the movement of the bipedal robot in 
more directional manner, a much lower amount of interaction and autonomy than what is currently 
available, is needed, based on our observations of the participating teams. 
 
Our analysis showed that, of the tasks we observed, the subtasks whose functions were categorized 
as “obstructed traverse” were, on average, more difficult than the other types of subtasks. The 
Terrain task consists entirely of obstructed traverse subtasks (save for walking to the finish line, if 
applicable), and had the highest number of falls (see Table 3). Even more telling is that, for the 
teams we observed, the percentage of the successfully completed mobility subtasks (unobstructed 
traverse and obstructed traverse combined together) predicted if a team would be in the top half or 
bottom half (see Table 15). These humanoid/legged robots did make a step forward in mobility with 
the ability to navigate a steep stairwell, a task not easily accomplished with today’s existing systems. 
However, there was a technological step backward made with the ability to cross hurdles, a task 
easily accomplished with numerous existing robotic platforms. In these early years of the 
technology, we will need to balance the leaps in technical capability of complex operations (such as 
heavy debris removal and ascending steep stairwells) with similar advances in existing, 
straightforward tasks (such as traversal over minimal obstructions). 
 
The more successful teams used mobility control methods that required low or medium amounts of 
interaction in which the operator could place a point or points in the environment, to which the 
robot would then walk. The success of these methods is mostly due to the fact that the task 
environments were static. If the environments were dynamic, say with malleable terrain such as 
mud or with blocks that could be in different locations, the mobility control methods would likely 
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not have performed as well, due to a lack of autonomous capabilities during execution. We 
observed that one team had completely planned its route through the terrain in advance by having 
their team members measure distances between each obstacle on the Terrain task and make the plan. 
Such access would not be possible in during a real-world disaster response scenario.  
 
With the addition of degraded communications, some amount of autonomy is even more desirable.  
In the face of degraded communications, the most successful team (Team A) always used a data rate 
low enough to communicate to their robot at the same speed during good and bad comms, which 
allowed them to have their peak performance during the entire run, rather than every other minute. 
As the DARPA Robotics Challenge moves towards the finals, where the tasks will run end to end 
and the competition will include a surprise task, the robots’ autonomous capabilities will need to 
increase. 
 
If we take the DRC Trials as an indicator of the future of USAR robotic platforms, we are seeing 
HRI move from the ratio of one operator to one or more robots, often desired by members of the 
military, to multiple operators to a single robot. Recognizing that these systems are very complex, 
what could be done to reduce the number of operators needed? One possibility would be to reduce 
the amount of HRI needed for mobility. Teams A and C had one active operator, so it is possible for 
a bipedal robot to not only be put through the DRC Trials tasks with a single operator, but also for it 
to be done with a top ranked score. Team B had two operators: one was building models and the 
other planning the robot’s motions. Likely, these two positions could be combined into one as well. 
The fact that the tasks were being run in a competition was probably a contributing factor to the 
increased number of operators. Prior competitions have included the number of operators in 
denominator of the scoring metrics (e.g., AAAI/RoboCup Rescue in 2001 and 2002).  If the same 
were done for the DRC, would we see a great improvement in performance? Would this scoring 
change, penalizing teams for larger number of operators, drive teams to streamline their interfaces? 

8.1 Categories of Operator Effort 
 
Throughout the observations and data analysis, we identified a common theme associated with the 
human-robot interaction techniques and performance, which was focused on how effort was applied 
towards completing the task. We explored this theme in an attempt to generalize our findings, but, 
although it is derived from the data, it is unable to be directly supported. We have included this 
discussion because we believe it is effective at uniting and providing greater context of the data and 
analysis described previously.  
 
We found that operator effort applied to completing a task fell into three categories. These 
categories range from the lower-level robot control and developing situation awareness to the 
highest level of interacting with the environment. These categories build on each other such that 
effective lower-level control is required for effective higher level interaction. Our evaluation is in 
agreement with this as we found that teams that were able to apply more operator effort at the 
higher levels performed better than teams that only applied their operator effort at the lower levels. 
To be effective at completing a task, the team needs to apply their effort at this highest level as 
opposed to the lower levels of control and SA. Operator effort is applied to one of these categories:  
 

1. Interacting with the robot through the interface, 
2. Developing an understanding of the environment and how the robot can interact with it, and  
3. Interacting with the environment. 
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To be effective at the first category, the teams required centralized SA and streamlined methods for 
controlling the robot. Robot automation reduces the amount of effort required in this category. 
Additionally, methods of sensor fusion helped the teams to understand the robot and its place within 
the environment. Some teams attempted to compensate for a lack of effective SA by increasing the 
number of operators, but we found that this was ineffective because of the lack of centralized SA. 
Bandwidth issues also fall within this discussion, as it provides a distraction for operators when they 
should be focusing on the task at hand.  
 
The second category consists of enabling the robot to interact with the environment. This requires 
interpreting the environment in which it is operating, locating things like debris and valves and 
determining how best to interact with them. The top teams were the ones that were effective at 
generating this understanding such that they could effectively command the robot to interact with it. 
These teams used tools such as combining live video with a simulation to provide this 
understanding. By placing virtual objects with the properties of the objects in the real world (e.g., 
the dimensions and dynamics of a valve wheel), teams conveyed this understanding to the robot. 
Less effective teams applied a much greater effort here and subsequently had less effort to apply to 
actually interacting with the environment.  
 
The third category is operator effort applied to completing the task at hand. The most effective 
teams are the ones that were able to apply their operator effort in this category as it directly converts 
operator effort towards task completion. Effective implementations of control methods that 
exhibited medium and low amounts of interaction for mobility and manipulation (such as those 
methods discussed in section 6.3) saw those teams applying more effort in this category. For 
successful teams, little operator effort is required for the first two categories, enabling more effort to 
be applied in this category. In the circumstance in which all effort is applied at this level, the robot 
has become an extension of the human him/herself, with no constraints in the flow of information 
through the interface. The interface here is effectively invisible in terms of robot control. 

8.2 Design Guidelines 
 
We propose the following design guidelines for human-robot interaction with humanoid/legged 
robots for disaster response and other situations with remote interaction, noting that there is some 
overlap with the HRI design guidelines suggested by evaluations conducted of USAR studies with 
tracked and wheeled robots (e.g., [Yanco, Drury & Scholtz 2004; Yanco and Drury 2007]).  
 
Increase sensor fusion.  Build an effectively fused representation of the data streams rather than 
require an operator to do the same thing mentally using separate windows.  Better sensor fusion 
reduces the cognitive load for the operator, freeing him or her up for other tasks. 
 
Decrease the number of operators.  The use of more operators leads to the need for more 
collaboration, which opens the door to increased misunderstandings and confusion. Centralized SA 
is a must for effective operation. 
 
Decrease the amount of operator input needed to control the robot. More automated 
capabilities of the robot can improve performance by reducing the amount of effort required to 
address the lower-level tiers described above. If the robots have greater capabilities for mobility and 
manipulation, the human-robot interaction can occur at a higher level and effort can be applied to 
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the higher tiers. We have seen that lower amounts of interaction, when implemented effectively, led 
to better performance. However, most of the interaction amounts exhibited are not very far from 
teleoperation. With even more automation, the HRI can be designed in a way that will be faster (e.g., 
showing where the robot should end up rather than placing every single step in the interface), less 
prone to errors (e.g., mistyping a number in a text box for joint control), and enable the operator to 
focus on the higher-level tiers, building an understanding of the environment and interacting with it.   
 
Don’t separate the robot into legs and arms.  Most teams had a mobility phase and a 
manipulation phase, switching back and forth as necessary. If we stick to this division, we will fail 
to create a unified robot system. A division of task types create breaks in the SA and keeps 
operators narrowly focused rather than maintaining higher-level awareness. 
 
Plan for low bandwidth.  In the DRC Trials, teams were given advance notice of the bandwidth 
restrictions and the manner in which it would be implemented.  The highest ranked teams either 
designed their system to work at the low bandwidth all of the time or had a method for only pulling 
high-resolution data during the periods of high bandwidth. 
 
Design for the intended users.  While fully understanding the complexity of the robot systems, 
human-robot interaction that does not consider the end user at the start of the development of the 
robot system will never be as effective as HRI that is designed as such from the beginning. It’s not 
just the robot capabilities that shape the HRI, but the capabilities and needs of the human that 
should shape the HRI and the robot capabilities as well. 

9. Planned Evaluation Improvements for the DRC Finals 
 
During the evaluation of the DRC Trials, we have noted some areas where improvements could be 
made in future evaluations. We expect to complete a similar evaluation for the DRC Finals, and 
intend to incorporate as many of these evaluation improvements as possible.  
 
Improved understanding of each team’s interface. This knowledge would allow us to understand 
what each team was doing at a more detailed level and how they were interpreting their feedback. 
Additionally, it might allow us to comment with more detail on missed critical information and 
situation awareness during task execution.  Such understanding could be achieved through visits 
with teams prior to the competition, given that teams are unlikely to have time once on site. 
 
More detailed tracking of control methods per task. Having the ability to track each specific 
control method used by a team per task would make our analysis much more impactful, as we could 
better call out techniques for each subtask type. A better understanding of each team’s interface will 
allow these measures to be more easily tracked during the competition. 
 
Increased detail on team utterances. We will focus on methods to categorize operator interaction, 
and develop our note-taking sheets to assist in this process. Electronic recording of the dialog would 
assist as well (assuming teams would agree to it). 
 
Track the data bandwidth changes more closely. In the DRC Finals, DARPA intends to continue 
the inclusion of a variable bandwidth choke on the system. Tracking these changes automatically 
during observations would help determine if issues arose as a result of these bandwidth fluctuations. 
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Ultimately, evaluation of robot competitions is limited by the need to allow teams to compete 
without interference.  However, such competitions provide a unique opportunity to directly compare 
a relatively large number of systems designed for the same task.  The findings of such studies can 
lead to the development of improved robot systems, allowing the community to learn the lessons of 
many teams at once and in comparison to one another, rather than reports of individual results.  
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