
Sense, Plan, Triple Jump

Daniel J. Brooks, Eric McCann, Jordan Allspaw, Mikhail Medvedev, and Holly A. Yanco
Department of Computer Science, University of Massachusetts Lowell, Lowell, Massachusetts 01854

{dbrooks, emccann, jallspaw, mmedvede, holly} @ cs.uml.edu

Abstract—In the field of human-robot interaction, collabo-
rative and/or adversarial game play can be used as a testbed
to evaluate theories and hypotheses in areas such as resolving
problems with another agent’s work and turn-taking etiquette.
It is often the case that such interactions are encumbered by
constraints made to allow the robot to function. This may affect
interactions by impeding a participant’s generalization of their
interaction with the robot to similar previous interactions they
have had with people. We present a checkers playing system
that, with minimal constraints, can play checkers with a human,
even crowning the human’s kings by placing a piece atop the
appropriate checker. Our board and pieces were purchased
online, and only required the addition of colored stickers on the
checkers to contrast them with the board. This paper describes
our system design and evaluates its performance and accuracy
by playing games with twelve human players.

I. INTRODUCTION

This paper describes a checkers playing robot which aims
to be capable of playing the game of checkers against a human
opponent. The creation of a robot capable of playing a board
game is not a new or novel concept. Some people trivialize
the idea, classifying the concept as being more suitable for
a class project than a subject for research, a thing you might
build using legos during your spare time. This perspective
is not unreasonable or surprising; others have successfully
created chess and checkers playing robots long before us.
However, these systems often struggle to perform the basic
manipulation tasks needed to play the game while not even
attempting to perform advanced tasks such as stacking pieces.
Furthermore, they are subject to many limitations (e.g. strict
lighting requirements, fixed board position, and nonstandard
boards and pieces) [1], [2], [3] which can create a very rigid
and unnatural playing environment.

Simplified systems frequently suffer from problems with
perceiving the state of the game. Lewis and Bailey write that
their robot chooses its next move after seeing that there are
the same number of enemy pieces on the board, and one has
moved. This puts the game at risk of illegal moves which could
be exploited in the form of cheating, such as transforming
pawns into kings [2]. Bem specifically described his system
as unable to recognize special situations, “especially cheating
from the human side” [3]. Illegal moves violate what game
theorists such as Huizinga refer to as the “magic circle,” in
the confines of which the rules are supposed to be binding.
Without boundaries to the game, players’ engagement and
enjoyment will suffer due to lack of competition [4]. Without
adequate perception, the game is much less compelling.

The inability to manipulate normal checkers pieces com-
bined with the presence of intrusive infrastructure surrounding
or attached to the game board can add a distinct reminder
that the opponent is non-human. For example, one cantilever

arm design reached over the board and lifted steel pieces
with an electromagnet. The stepper motors controlling the
positioning of the arm did not allow for the robot to flip a
pawn into a king, nor did the electromagnet have the strength
required to lift two pieces simultaneously. Therefore, this robot
required the human to flip the game pieces to create kings
for both players [2]. To provide a compelling interaction, the
robot needs the ability to manipulate the game pieces in every
scenario according to the rules of the game, and to do so using
using standard game components.

In contrast, the Gambit chess playing robot [5] represents a
robust system that shares many of our same design goals such
as using an unconstrained game board, unmodified playing
pieces, and intelligent game state reasoning. While our system
is much more closely related to Gambit than to any of the
checkers robots described, the perception and manipulation
challenges are quite different. Chess has more types of pieces
than checkers which must be distinguished by the system.
However, the locations of these pieces are easy to determine
using point cloud processing and are easy to manipulate due to
their fairly large nature. Checkers are all regular in shape and
differ only in color. However, they are also short and therefore
hard to “see” in point clouds, which also makes it difficult to
distinguish between kings and pawns. Their short height also
makes them difficult to manipulate, a problem compounded by
the fact that sometimes they must be moved as stacks.

II. SYSTEM OVERVIEW

We have designed a checkers playing system using a
Rethink Robotics’ Baxter research platform [6] that strives
to eliminate the shortcomings of these previously mentioned
systems. A redundant and adaptive checker detection system
eliminates the need for special lighting conditions or a fixed-
position game board. Baxter’s two 7 degree of freedom (DOF)
arms with custom manipulators eliminate the need for special
playing pieces and allow us to achieve previously unobtain-
able actions such as stacking and moving “kings”. Finally,
a sophisticated perception system provides a framework for
performing human-robot interaction (HRI) studies, setting the
stage for future work that will try to differentiate not only
between legal and illegal moves, but also whether the human
player was attempting to cheat or had simply made a mistake,
then handling the different situations appropriately.

A. Platform and Environment

Baxter is a low cost, two armed, stationary robot intended
for performing manufacturing tasks. Our system was designed
so that a person could play a game of checkers with the robot
using a generic checkers board game. Rather then using an
overhead camera that would have required a special rig, we
outfitted the robot with an Asus Xtion 3D camera system which



Fig. 1. Baxter Robot with Checkers Board and expanded rendering of our
gripper design with the “Claw” on the left and the “Tooth” on the right.

we used as our primary sensor for looking at the board. The
only modifications made to the board game were the addition
of colored stickers that we placed on the checkers to give them
a different color scheme than the board. The game was placed
on a table positioned in front of the robot as shown in Fig. 1.

Baxter was designed to be compliant; it can safely operate
with people inside its work area without the risk of causing
injuries. This was an important feature since anyone playing
with the robot would be well withing the robot’s reach. The
robot made use of both arms to provide a maximum range of
motion, each of which had a wide angle color camera, distance
sensor, and linear actuator. At the end of the robot’s turn, it
would draw both arms away from the board into a lowered,
non-threatening position. The robot also features an articulated
25.4 cm screen with a built-in camera, usually used to portray
the robot as having a face in commercial models. We used
this screen to draw several different facial expressions which
we paired with actuation such as head nodding and a text-to-
speech system to provide audio and visual cues about whose
turn the robot thinks it is.

B. Gripper Design

Each of Baxter’s arms comes mounted with a linear actua-
tor and stock plastic paddles for grasping objects. Although
the paddles could grasp a single checker, we struggled to
grasp and hold two stacked checkers as the plastic would
bow slightly around the top checker. The stock paddles’ size
also created problems when working with the confined space
between checkers on a regular sized game board. We therefore
decided to create custom grippers built out of an acrylic photo-
polymer and constructed using 3D printing technology.

Our grippers (Fig. 1) are the result of several iterations of
designs and testing, and feature several improvements over the
stock paddles while retaining the aesthetics used by Rethink
Robotics. The paddles of the stock grippers were designed
to be symmetric, with the grasping point in the middle of the
arm’s major axis. While an excellent design for general use, the
positioning was not ideal for visual servoing (further discussed
in Section V-B) since grasped checkers were not entirely
visible in the camera frame due to its position. We shifted
the grasping point to be located as close to directly below
the camera as possible without obscuring the distance sensor.
Next, we replaced the paddles with a V shaped “claw” to grasp
from two points on one side of the checker and on a triangular

“tooth” which acted a single point of contact on the other
side. This firmly grasped a range of different sized checkers
(22-25mm diameter) using the smallest footprint possible to
reduce the likelihood of bumping other pieces on the board
during manipulation. The claw had a beveled bottom so that
as it descended for grasping it would push the checker into
position. The flat face of the tooth was wide enough to prevent
checkers from becoming pinched between one of the tips of
the claw. For grasping stacks of checkers, the sides of the claw
were also tall enough to prevent the top checker from falling
out, and the tooth was made slightly smaller then the average
checker height to prevent grasping problems.

C. Software Architecture

Baxter’s software interface was designed using ROS
[7]. This allowed us to link our custom control software
directly with the robot and also take advantage of other
open source robotics software packages published by the
ROS community. Our architecture could be broken into three
major categories - Sensing, Perception, and Manipulation
(see Fig. 2). The modules in the sensing category used
3D point cloud analysis and computer vision techniques
to find the game board and checkers in the world. This
information was then passed on to our perception pipeline
which tracked objects, assigned meaning based on the objects’
relative locations, and interpreted that meaning as a game of
checkers. Finally, the results of the perception were sent to our
manipulation modules which planed the robot’s movements
and manipulated game pieces using visual servoing.

III. SENSING

The primary sensor used in our system is an Asus Xtion
3D camera which we used to detect the playing board and
checker pieces using a combination of computer vision and
point cloud processing techniques. We made no assumptions
about the location or positioning of the game board or checkers
pieces other than that everything would be within the robot’s
reach, correctly set up at the beginning of the game, and
reasonably oriented (e.g. the board not turned ambiguously
sideways). Therefore, the first problem we needed to solve
was identifying where the board was located.

A. Board Detection

Knowing the position and orientation of the game board
was crucial for assigning meaning to the locations of the
checkers on the table and describing their positions in a board
relative coordinate space. The board was initially located using
OpenCV to process the camera’s RGB image. Hough lines
were fit to Canny edges found in the image, which were
then searched for quadrilaterals. If a quadrilateral was found,
the intersections of those lines represented the corners of the
board. We then calculated the real world position of the board
corners using the 3D point information that corresponded with
the image pixel locations for the corners. If no quadrilateral
was found or if the intersections did not have feasible values,
the board was inferred to be occluded.

The real-world board corner positions were used to create
a coordinate transform between the robot and the board such
that future calculations could be written relative to the playing
board. This allowed us to compute a square, cropped, top down



Fig. 2. Software system overview, showing the flow of information.

view perspective image and corresponding point cloud of the
playing board which we used to speed up the detection of
checkers on the board. Additionally, we were able to use the
transformation to calculate the approximate locations for the
centers of the squares on the board.

B. Checker Detection

We took advantage of both computer vision and point cloud
processing techniques to identify the locations, sizes, and col-
ors of the checkers. The only assumptions we made about the
checkers being used were that they were circular, reasonably
sized (2cm to 2.5cm diameter), different colors than the board,
and not deformable. This meant we needed to identify not only
where the checkers were, but also what they looked like.

We leveraged OpenCV to find the locations and colors
of checkers on the playing board. Hough Circle detection
was applied to the perspective board image provided by the
board detection to locate possible positions of checkers. A
weighted history consisting only of pixels inside the detected
circles was maintained to reduce noise. Watershed was then
applied to the weighted history to detect closed regions, which
we considered to be the most likely locations of checkers.
Frequency counts of the hue of pixels inside the detected
checkers were then used to approximate the colors of the
playing pieces being used. This process proved very fast and
effective; however it did not allow us to distinguish between
kings and pawns, could not find checkers located off the
board, and would occasionally miss a piece due to light glare.

To resolve these shortcomings, we made use of the 3D
point cloud information provided by the camera. This informa-
tion was processed using the Point Cloud Library (PCL) [8] at
a much slower rate then our computer vision detector. A voxel
filter was used to reduce the density of the information being
processed, and plane segmentation was used to eliminate back-
ground noise such as arms resting on the table. We then used
a Euclidean clustering algorithm to identify checkers which
could then be matched to the colors produced by the computer
vision to distinguish between players pieces. Clusters could be
identified as being a king if they contained points at a height
only achieved by stacking two checkers. We used an alternative
clustering method called color based region growing to identify

the locations of checkers not on the board. Information from
these two detection methods were then combined and pre-
sented as a single source of information describing the most re-
cent estimate of each checker’s position, color, and king status.

IV. PERCEPTION AND LOGIC

After detecting the board and checkers, the information
needed to be interpreted as a meaningful representations of
the game of checkers. The first step in this process was to
construct a world model which could track and smooth the
locations of the game board and checkers pieces, which we
were able to do using the ROS-enabled WIRE [9] software.
WIRE tracked objects’ positions as well the checkers’ color
(as a discrete value referred to as red, blue, or unknown) and
whether each checker was a pawn, king, undetermined.

With WIRE tracking all the physical components of the
game in the world model, the next step was to build asso-
ciations between individual checkers objects and the squares
marked on the game board. Each checker in the world model
was classified as being clearly located on a particular square,
on the board but ambiguously placed, or not on the board.
Information about the color of each checker and whether it
was a stack was then used to assign state to individual squares,
unless the checker’s position was ambiguous in which case
it was added to an “unplaced checkers” list. We called this
reorganization of semantic information a game board model.

A. Game Board Modeling
The processes of generating a game board model was

based on fulfilling two constraints on which the game state
logic (discussed in Section IV-B) relied. The first was that
each square on the playing board held at most one checker
(or stack of checkers). The second constraint was that this
representation was supposed to be very conservative compared
to a human’s interpretation, always erring on the side of being
incomplete rather then incorrect. These constraints resulted in
the following four steps:

1) Filtering overlapping objects reported by the world model,
2) Discretizing checker locations into unique squares,
3) Assigning state to squares based on its checker type, and
4) Filtering/censoring potentially unreliable results.

The world model would occasionally report multiple over-
lapping objects, especially whenever attributes would change
such as when a pawn became a king. In the case of this
example, we would keep the king while discarding the pawn.
Overlapping objects with different hues were considered am-
biguous and were discarded. Otherwise, if all the objects had
matching attributes they were combined into a single object.

The next step was to associate each checker object with
the square on the game board that it was sitting on, a problem
otherwise known as weighted bipartite matching. All the
checkers objects were initially all marked as “Unassigned”
and the squares were marked as “Free”. The process of
discretizing checker locations iteratively matched each checker
to the center of the nearest square, and each square to the
nearest checker, creating a set of bi-directional matches as
shown in Algorithm 1. Each iteration, checker-square pairs
that marked each other as closest and whose distance apart
was less then half the width of a square were removed from



Algorithm 1 Checker to Square Matching Algorithm

Inputs: Lists of all Checkers (C) and Squares (S) as 3-tuples
with location (L), a matched object (M ), and status (R).

Output: Checker (c ∈ C) and Square (s ∈ S) objects which
have been matched to each other (cM = s ⇔ sM = c),
unoccupied squares (sR = Free), and ambiguous or off
board checkers (cR =Unplaced).
C = {〈L,M,R〉, ...}
S = {〈L,M,R〉, ...}
C ′ = {∀k ∈ C : kR = Unassigned}
S′ = {∀k ∈ S : kR = Free}
while ∃k ∈ C ′ do

for each c ∈ C ′ do
for each s ∈ S′ do

if dist(cL, sL) < dist(cL, [cM ]L) then
cM ← s

if dist(sL, cL) < dist(sL, [sM ]L) then
sM ← c

for each s ∈ S′ : ∃sM do
c← sM
if s = cM then

if dist(cL, sL) < width(s)/2 then
cR ← Placed
sR ← Occupied

else
cR ← Unplaced

the unplaced checkers and free squares pools by changing
their statuses to “Placed” and “Occupied”, respectively. If the
threshold was exceeded the checker’s status was changed to
“Unplaced” while the square remained “Free”. The process
repeated until all the checkers had been marked as either
“Placed” or “Unplaced”.

In the third step, every square containing a checker was
given a state based on the checker’s attributes. A square
could have seven possible states. Squares that had been
marked as Free during the previous step simply kept
their designation. “Occupied” squares were reassigned as
Human Pawn, Human King, Human Unknown, Robot
Pawn, Robot King, or Robot Unknown according to
the associated checker object’s color and height attributes.
Which color pieces belonged to which player was determined
at the beginning of each game by checking the colors of the
checkers on each side of the board just prior to the first move,
with the color closest to the robot being the robots color. The
colors were remembered, and used to identify each player’s
pieces the remainder of the game.

Although the world model was usually very reliable, sens-
ing inaccuracies and the non-instantaneous convergence time
of its filters resulted in periods of low reliability that would
propagate through the rest of the system if left unchecked.
Therefore, the final step in generating game board models was
to evaluate every model for potentially unreliable results, as
shown in Algorithm 2. This was accomplished by tracking
the state history of every square on the board in individual
first-in first-out (FIFO) queues, which were used to compute
each square’s “consistency”. Consistency was computed as the
number of times the queue’s mode value occurred divided
by the queue’s length. A square was declared “stable” if the
consistency was greater then an acceptThreshold, or “unstable”

if the consistency dropped below a rejectThreshold. Game
board models were considered reliable if the most recent state
value for every “stable” square matched its historical mode.
All model values were recorded for evaluating future results,
however only reliable models were reported to the game logic.
Although it was not required for all the squares to be marked
as “stable” for a game board model to be considered reliable,
unstable squares were changed to look like they were free and
their checkers were added to the “unplaced” list just before
the model was reported.

B. Game State Logic and Tracking
The game logic was responsible for tracking the progress

and state of the game though the use of a finite state automata
called the Checkers State Machine (CSM). The CSM defined
the structure of each players turn (see Fig. 3), tracked which
player’s turn it was, and provided contextual information for
evaluating perceived game board models.

The Check-Game State (CGS) divided the CSM into two
sets of five states which defined each players turn. A persistent
reference to a stripped down version of the Raven Checkers
game engine was stored inside the CGS and used to track the
definitive state of the game. Transitioning between player’s
turns could only occur when the CGS received a valid game
board model that it could use to update the game engine. The
rules of checkers allowed us to deterministically calculate the
set of all valid changes which could be made to the game at any
point in time. Combining this knowledge with the conservative
nature of our game board models allowed us to confidently
accept or reject perceived models that were marked as highly
stable. Less stable models could be compared with known legal
moves to distinguish between sensing discrepancies and invalid
changes to the game.

Each player’s turn began with the initialization state.
During the human’s turn this state was used simply to inform
the player that it was their turn, while during the robot’s turn
it calculated the optimal move to make by analyzing the game
state. Adversarial game engines often accomplish this using
search algorithms such as alpha-beta and its relatives minimax
and negamax. These algorithms weigh the benefits of possible
next moves in terms of moves the opponent could make in
successive turns.

The initialization state was followed by the action state.
During the human player’s turn this was characterized by
waiting for the person to make their move (which was detected
Algorithm 2 Model Reliability Assessment

procedure ISRELIABLE(gameboardmodel)
reliable← True
for all square in gameboardmodel do

history← GETSQUAREHISTORY(square)
expValue← MODE(history)
consistency← history.count(expValue)/history.length
if consistency > acceptThreshold then

square.isStable← True
else if consistency < rejectThreshold then

square.isStable← False
if square.isStable & expValue ! = square.curr then

reliable← False
return reliable



Fig. 3. A single player’s side of the CSM.

by changes to the game board model). On the robot’s turn,
the system would determine the necessary steps to perform
the strategy it had calculated during initialization and execute
them one at a time.

Anytime a change was detected in the perceived game
board model the currently executing state would jump to
the Pre-Transition Check State (or PTC) for analysis and
determining what should happen next. If the game board
model represented an invalid configuration but also had a
list of unplaced checkers, the PTC would try using context
information to identify this as a valid move. This was done
under the assumption that the stable components of the model
were perfectly accurate, while disparities between “free”
squares and any valid configurations might be resolved by
disambiguating the locations of unplaced checkers. The PTC
would then attempt to update the game board model to match
a valid configuration by considering the location of each
unplaced checker, whose turn it was, the state of the game at
the end of the last player’s turn, and what legal moves could
be made during the current turn. If it was determined that a
change was falsely detected due to sensing errors, control was
returned to the action state. If the board had been changed
and the change was identified as the result of a legal move,
the game board model was submitted to the CGS to transition
to the next player’s turn. Otherwise, if an illegal move had
occurred, control was shifted to the invalid change state.

In addition to the PTC finding no change, a legal change,
or an illegal change, a fourth scenario was possible. When
a player’s pawn became a king, the opposing player was
obligated to “King” the piece by stacking a second checker
on the pawn, thus “crowning” it. This was a special scenario
since normally each player’s turn could not be completed until
the board was in a valid configuration. Furthermore, the next
player was normally prohibited from making changes to the
board until the current player’s turn was finished. However, in
this case the current player would have finished their move and
waited for their opponent to make the final modification that
would result in the valid board configuration needed to end
their turn. This special scenario was handled by the Award
King State. During the human player’s turn, the Award King
State would permit the robot to king the pawn. To do this,
the robot would first grasp one of the human player’s pawns
that had been removed from the game, and place it on top of
the piece to be crowned. During the robot’s turn, the system
solicited the human to crown its pawn using audio and visual
prompts. The results of the crowning process would then be
detected as a change to the game board model, and control
would transfer back to the PTC.

The board could be detected as having an illegal change

made to it for a number of reasons, and the illegal change state
was implemented to handle these situations. The first possi-
bility is that there is actually nothing wrong with the board,
but rather that despite our best efforts the most recent game
board model did not accurately reflect the real world. In most
cases, this would resolve itself after an updated game board
model arrived and control was transitioned back to the PTC
for evaluation. Alternatively, it may be the case that our model
did match the real world, and it was the physical board which
needed to be fixed before the game could continue. During the
human player’s turn, this would have happened either because
the person accidentally made a mistake, or intentionally tried
to cheat. During the robot player’s turn, this could have
happened if the robot fumbled a manipulation or accidentally
bumped something, or could even have been the result of the
person trying to cheat while the robot was busy with its turn.
Our current implementation does not attempt to make these
distinctions. Instead, it assumes that illegal changes are always
mistakes, which are left to the robot’s operator to correct.

V. MANIPULATION

The robot would begin its turn by using Raven Checker’s
alpha-beta search to calculate its next move, which it expressed
as a goal game board model. The disparity between the current
game board model and the goal was then used to derive a
series of ordered steps for the robot to follow called a plan. For
example, a “jump” consisted of two steps: first moving one of
the robot’s pieces from its starting location to its destination
on the opposite side of the opponent’s checker, followed by
a step to remove the opponent’s checker from the board.

A. Arm Movement
Once the plan had been generated, the Action State would

be used to execute each step of the plan. Each step represented
an action to perform such as movePiece, removePiece, or
stackPiece. These actions were defined as specialized varia-
tions of a “pick and place” task. For each step, the arm would
first be moved coarsely (i.e. using only encoder values for
feedback) to an alignment location above a target object. It
would then be carefully lowered down to grasp the object using
visual servoing before being raised up again. This would be
followed by a second coarse motion re-positioning the arm
above a target object or location. Finally, the arm would be
carefully re-lowered and the object released at the destination.

Because objects might be shifted at any point in time,
determining the physical locations the arm needed to move to
during coarse alignment was delayed until just before the step
was executed. Alignment positions used a static orientation
which kept the grippers pointed normal to the board at a fixed
height, while the horizontal coordinates used depended on
whether or not a checker object was occupying the destination
space. Empty squares would return their center coordinates
while occupied squares would return the center of the checker
object, allowing the alignment to react robustly to checkers
that were not placed precisely in the center of squares. The
actions removePiece and stackPiece both involved checkers not
located on the game board, with the exact off board location
being unimportant. In those cases, the locations and colors of
the off board checkers were analyzed to either find an empty
place to put a checker down or a correct color checker to pick
up. In the case of multiple-jump scenarios, additional positions



were added to emulate the way a human player makes multiple
jumps in a single move (usually by moving their piece in a
pattern over their opponents pieces to demonstrate the path
they took, often tapping the board between captured pieces).
We elected to have the robot simply trace the path while
briefly pausing over squares as opposed to “tapping” to speed
up the turn and decrease the risk of bumping other pieces
on the board. Once the physical destination or destinations
were known, the coarse motions were planned using pre-solved
solutions provided by an inverse kinematics solver.

B. Visual Servoing
As with any robotic system, small amounts of error accu-

mulation were present throughout, spanning everything from
the camera sensor to arm encoders. Using 3cm wide squares
and 2.5cm diameter checkers, the robot could only be allowed
a centimeter of position estimation error to successful perform
the pick and place actions involved in the game. In order to
achieve the level of accuracy necessary to accomplish this we
performed the delicate action of lowering the gripper over an
object using visual servoing.

Motion control was transferred to servoing when the arm
arrived into an alignment position several centimeters directly
above our best estimate of the target object’s location. As the
gripper descended, the arm’s horizontal position was adjusted
to keep the colored blob representing the checker centered
in the arm’s camera. The arm would continue lowering until
the arm was at gripping height (determined during prior
calibration) or resistance was encountered at which point the
arm would either grasp or release the checker. Successful
capture of the checker could be confirmed by whether or not
the checker blob moved in the image as the arm was raised.
Occasionally, the grasping would fail (usually due to the arm
being blocked from completely lowering). This resulted in the
arm resetting to the initial alignment position and reattempting
to grab the checker.

Although the grippers had been repositioned to be closer to
the center of the camera view (see Section II-B), the location of
the checker in the camera images suffered from a perspective
effect which would cause the checker to appear to move away
from the center of the image as the arm descended that resulted
in an alignment error proportional to the distance from the
camera to the checker. This was corrected for using the IR
sensor to estimate the distance to the board and adjust the
expected position of the blob accordingly.

VI. SYSTEM EVALUATION

To test our system we performed a study in which 12
people played checkers against the robot. Five of the partici-
pants were able to complete the game against the system. The
remaining 7 either asked for a draw sometime after an hour
of playing or were cut off after 90 minutes in a stalemate. An
experimenter was present to oversee the games, intervening
only to make corrections to the board that would otherwise
have prevented the game from progressing.

During the 12 games played, the robot took a combined
537 turns in which it successfully completed 89.1% (637/715)
of its actions. The robot successfully perceived the board
after 95.7% (1022/1068) of all turns taken by both players.
The robot operator need to fix the board a total of 124 times

during game play, 46 times for perception errors and 78 times
for motion errors (during 68 unique turns). Of the 78 motion
errors, 39 were unsuccessfully grasped pawns, 13 were
unsuccessfully grasped kings, 6 were unsuccessful regular
placements, and 20 were unsuccessful crowning placements.
There were only three instances of a checker being placed in
the wrong location. The robot’s turns lasted 95s on average,
which includes time for manipulation and perceiving the
board at the beginning and end of each turn.

VII. CONCLUSION AND FUTURE WORK

We have presented a system that has shown itself to
be capable of playing a game of checkers against a human
opponent using a commercially available game. The game
needed only very minimal modifications for use by the robot
(stickers on the game pieces) and required no augmentations
to the environment such as special positioning of the board or
storage of game pieces. To our knowledge, it is the first system
capable of detecting, creating, and moving stacks of checkers
as kings. The robot was also able to track the progress of the
game and detect the occurrence of illegal moves.

We believe our system is a suitable testbed for further
investigating methods of evaluating and handling illegal board
configurations. Our next goal is to implement strategies for
having the robot be capable of fixing the board after detecting
it has blundered its move. Methods of conveying to the human
player what aspect of the board needs to be changed such
as gesturing or displaying highlighted images on a screen
are another area of our work. Finally, we are interested
in distinguishing between mistakes and cheating, which we
believe can be differentiated by analyzing the potential costs
and benefits of each disparity for each player.

ACKNOWLEDGMENT

This research has been supported in part by the National
Science Foundation (IIS-1111125 and IIS-0905228) and the
Army Research Office (W911NF-13-1-0299).

REFERENCES

[1] B. Marsh, C. Brown, T. LeBlanc, M. Scott, T. Becker, C. Quiroz, P. Das,
and J. Karlsson, “The rochester checkers player: multimodel parallel
programming for animate vision,” Computer, vol. 25, no. 2, 1992.

[2] D. Lewis and D. Bailey, “A checkers playing robot,” Institute of Infor-
mation Sciences and Technology Massey University, 2004.

[3] T. Bem, “Robot playing checkers,” Praca magisterska, WEiTI, 2009.
[4] J. Huizinga, Homo ludens. Taylor & Francis, 1949, vol. 3.
[5] C. Matuszek, B. Mayton, R. Aimi, M. P. Deisenroth, L. Bo, R. Chu,

M. Kung, L. LeGrand, J. R. Smith, and D. Fox, “Gambit: An autonomous
chess-playing robotic system,” in ICRA’11, 2011.

[6] Rethink Robotics, “Baxter Research Robot,” Webpage, May 9 2014,
http://www.rethinkrobotics.com/products/baxter/. Accessed May 2014.

[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[8] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation, 2011.

[9] J. Elfring, S. Van Den Dries, M. Van De Molengraft, and M. Stein-
buch, “Semantic world modeling using probabilistic multiple hypothesis
anchoring,” Robotics and Autonomous Systems, vol. 61, no. 2, 2013.


