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Abstract—Biological neuronal networks can be embodied in
closed-loop robotic systems, with electromechanical hardware
providing the neurons with the ability to interact with a real
environment. Due to the difficulties of maintaining biological
networks, it is useful to have a simulation environment in which
pilot experiments can be run and new software can be tested. A
simulator for cultured mouse neurons is described, and used to
simulate neurons in a closed-loop robotic system. The results are
compared to results from a similar experiment using biological
neurons.

I. INTRODUCTION

Cultured neurons allow researchers to perform experiments
that operate directly on the neurons, without the complications
that may be caused by the interacting systems of a living
organism. However, cultured neurons are both labor intensive
to grow and prone to infection [1], [2]. In order to perform
some basic experiments without using biological networks,
a simulator was developed to mimic the process of creating
biological neuronal networks [3]. A software infrastructure for
using these simulated networks interchangeably with biolog-
ical networks was also developed [3]. The software includes
a control program that allows the networks to control a robot
arm and receive input from sensors on the arm.

By comparing the behavior of the biological networks and
artificial networks in the same experimental configurations, the
models used in the simulation can be validated. This paper
describes an experiment to test the effect of stimulation on
divided networks embodied in a closed-loop robotic system.
The system is intended to use a video signal to track a target.
Simulated and biological networks display similar distribution
of ability to perform the task. Biological networks in control
of the arm often display a directional bias in the motion of
the arm under their control. It was theorized that distribution
of neurons over the sensed area are was responsible for this
bias. Simulated networks which were created to test whether
uneven growth of the culture could contribute to the observed
biases in the motion of the robot.

II. CULTURE GROWTH IN VITRO

For the purposes of this work, the neurons under discussion
are a network of disassociated mouse neurons grown in a dish
called a Multi-Electrode Array (MEA). The MEA consists of
a glass plate with an array of electrodes, as shown in Figure
1. Each electrode has a conductive trace that leads to a pad
on the edge of the dish, which in turn connects to a very
sensitive amplifier. When a neuron sends a signal, its electrical
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Fig. 1. A. The glass base plate. B. Contacts for connection to amplifier. C.
Culture media retaining ring. D. Grid of electrodes to detect neuronal signals.
Note that this image is not to scale. The grid of electrodes, in particular, is
magnified, as it would not otherwise be visible. The connections between B
and D are not shown for clarity.

potential changes, and this change in potential is detected by
the amplifier and relayed to the computer. The size of each
electrode is close to the size of a single neuron, so neuron
firing can be localized to a single neuron or small group of
neurons by determining from which pad the signal came.

Fetal mice are used as the cell source because their neurons
are still developing and forming connections. The cells are
collected and prepared to create a suspension of cells in a
media that supports their growth [4]. When the cells are
initially added to the culture dish, they are not connected to
each other. For most of the first month in culture, the cells
build new connections. Starting at around 7 days in vitro
(DIV) and continuing to around 30 DIV, the connections are
not complete, and signaling is dominated by constant, high-
amplitude spiking [5].

After the initial period of constant activity, the cells enter
a “mature” phase, characterized by sparse bursts of spikes
separated by quiet periods. The active bursts may be localized
to one region, spread across the network, or propagate from
region to region. Cultures used in the control system are in
the mature phase of their development.

After 2-3 months of mature activity, the network eventually
becomes senescent, and only reacts to stimuli in simple,
stereotyped ways [5]. The cells can continue to live for months
or even years, assuming that equipment failure or bacterial
infection does not kill them [1].

III. SIMULATION OF CULTURE GROWTH

In order to simulate a full MEA, our software models the
dispersal of cells over the surface of the MEA, the networking
of those cells, and their activity. The first part of the simulation



is deciding the distribution of the cells over an area according
to the density of the desired network and the surface area of
the MEA plate. The process of determining the cell locations
is called “plating.” After the plating simulation has placed the
cells, a growth simulation uses the locations of the cells to
determine how the individual neurons are connected to form
a network. In order to decide which neurons are connected,
mathematical models based on the observed networking be-
havior of real neurons are used. The plating and growth
simulation are performed by a body of code called Cultured
Neuron Simulator (CNS), which bases its calculations on the
same parameters as are available in the plating of biological
neurons [3].

The output of the growth simulation is a list of which
neurons are connected to each other and what type of neurons
they are, excitatory or inhibitory. These are saved as separate
files so that the parameters of the resulting network can be
modified. For example, specific neurons can be removed to
determine their effect on the network, or the network can be
divided in half by removing all the connections that cross the
center line. Because all of this information is saved in files,
it is possible to also keep the original version of a network
that has been modified, which is impossible with a biological
network.

During execution of the simulation, data is recorded from
the neurons located on or near the conductive pads for a
specified MEA layout. In order to arrive at a value for the
voltage at a specific pad, the voltage at each neuron is reduced
according to its distance from the pad, and the sum of the
reduced voltage is reported as the voltage at the pad.

IV. ROBOT CONTROL

For the experiments described in this paper, the cultured
neurons or the simulated network were placed in control of a
robot arm. The arm is a Manus Assistive Robotic Manipulator
(ARM), which is a cable-driven 7-DOF arm that was originally
designed to be mounted on a wheelchair. To provide input
to the neurons from the environment, a video camera was
mounted on the end effector of the arm, so that it moves when
the arm moves. The activity of the neurons is converted into
control signals for the arm by a component of our software
infrastructure.

The algorithm used to convert from the voltage recorded
at each pad of the MEA to motion commands for the arm is
a simplified version of the control scheme from DeMarse et
al. [6]. DeMarse’s algorithim deals with the spiking activity of
the neurons, so it works with both real neurons and any model
of neurons that produces physiologically-accurate electrical
outputs. Activity in the dish over a short period of time is
represented as a 60-item vector, with one activity value for
each electrode in the array. The 60-item vector is called the
“activation vector”. To calculate the activation vector, the dish
is sampled at 1000Hz. For each channel, if a spike is detected
on that channel, the activation A at that site is incremented
and decayed by:
An(ti) = An(ti−1)e

−β(ti−ti−1) + 1

Activation decays exponentially over time with the decay
constant β = 1s−1. The activations over the sensed area of the
MEA are collected in the activation vector V, and normalized
to the range 0.0 - 1.0 by applying
Vn(ti) = tanh(δAn(ti)) with δ = 0.1.

Without normalization, recording sites with very high spike
rates can dominate the output, even if the variation of the site
in response to stimulation is minimal. The resulting vector of
60 floating-point values is the normalized activation vector for
the dish at a specific time, and is updated with every sample
from the dish. Every 0.2 seconds the normalized activation
vector of the network is compared to a pair of pre-selected
activation vectors. The pre-selected vectors are a “right” and
“left” vector, with the “left” vector having maximum activation
at all pads on the left side of the dish and zero elsewhere, while
the “right” vector has maximum activation at all pads on the
right side of the dish and zero elsewhere.

The comparison is a simple calculation of Euclidean dis-
tance between the left and right vectors and the current
activity vector of the network. If the distance from the current
activation vector to the left vector is less than the distance to
the right vector, the arm will be commanded to move left.
Similarly, if the current vector is closer to the right than
the left vector, the arm will be commanded to move right.
In either case, the difference between the distances must be
large enough to overcome a dead band, or the arm is not
instructed to move at all. Because it uses two constant vectors
for comparison, this system only permits motion left or right,
along a single axis. By expanding the selection of vectors
used for the comparison, additional degrees of freedom could
be controlled.

The images from the video camera mounted on the arm are
converted into stimulation signals for the dish. The image is
sliced into five strips vertically, and sum of the number of
red pixels in the leftmost three and rightmost three strips is
calculated. The overlap of one strip in the middle of the image
assists with creating a dead band where the system will not
move while the target is centered. Overlapping sensing fields
have been documented to occur in biological systems, such as
the field detection sense of weakly electric fish [7]. If the left
side of the image has more pixels than the right side, and the
difference is over a fixed threshold, a stimulation signal is sent
to the left side of the dish, and vice versa. If the difference
between the sides is not large enough, no stimulation is sent.
The stimulation is a one-second recording of spiking activity
from a biological network [8]. This recording is played back
into the network using the analog outputs of the DAQ card in
the computer that records the neurons.

V. METHODS

A. Tracking in Biological Cultures

Eighteen biological networks were prepared. The activity of
the mature networks is uneven, with some recording sites be-
ing more active than others. Different factors could contribute
to unbalanced activity in a network. The simplest is that the
neurons could have attached to the plate in an uneven pattern,
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Fig. 2. Images used to control the distribution of cells over the plate,
converted to grayscale for print reproduction.

with some areas having no neurons and others having many
neurons. It is expected of a biological network that the neurons
will not be perfectly evenly distributed over the bottom of the
culture dish. If there were more neurons on e.g. the left side
of the dish, the left side would be expected to be more active.

To assess whether the networks were balanced or unbal-
anced, the networks were recorded using Raptor, a software
tool developed by the UML Center for Cellular Neurobiology
and Neurodegeneration. Raptor generates an 8 x 8 grid of
graphs of the voltage at each recording site over the time
that the recording was made. These graphs were examined
to determine if the voltages at each recording site indicated
activity at that site, and if the number of active sites were
well-balanced between the left and right sides of the dish.
Cultures that were selected based on their balanced activity
were mechanically divided and used in the control system.

Each network was placed in control of the arm without
stimulation, and then with stimulation. The source of visual
input to the system was a tracking target on a pole which
was moved manually to attempt to “lead” the arm. The target
would be placed as close to the center of the arm’s visual field
as possible, and then moved to one side or the other. If the
arm moved in a way that would bring the tracking target back
into the center of the visual field, the arm was said to track
the target. If the arm did not move or moved in a way that
would move the tracking target away from the center of the
visual field, the arm was said to not track the target.

B. Tracking in Simulated Cultures

In order to determine if the observed bias in the motion of
the arm was actually caused by differing levels of neuronal
density, a set of simulated networks was created with con-
trolled degrees of unbalance. The simulator accepts as input
an image and uses the red channel of that image to set the
cell adhesion probability for each possible cell location in the
simulated dish. In order to create unbalanced networks, images
with a gradient from left to right or right to left were used.
To create slightly less unbalanced networks, the gradient was
extended from the lower left or right corner of the dish, to
the opposite upper corner. This gradient results in lower cell
adhesion probabilities in the upper left or right quadrant of
each dish, but the “tilt” of the gradient makes the difference
between the two sides less severe. The balanced networks were
created by using a fully saturated red image.

For each of these five conditions (left, right, lower left,
lower right, and balanced), five simulated networks were
generated. Each simulated network was divided by removing
any connections that went from the left to the right side of

the dish, and vice versa, to mimic the mechanical separation
of the biological networks used to control the robot [9].

As with the biological networks, the simulated networks
have two stimulation inputs. Detection of the target on the
right side of the image triggers stimulation of the right side of
the network (and vice versa), which should cause the arm to
move towards the stimulated side, bringing the target towards
the center of the image. As a result, the system is expected to
track the target.

Each of the simulated networks was used to control the
robot arm in a simulated world. Instead of the usual camera
and arm, a software module accepts messages meant for the
arm and uses them to predict the motion of the tracking target
that would be detected by the camera, if the arm had actually
moved. The software then generates an image to reflect the
new position of the target. The simulated view of the world is
treated by the other parts of the software as if it was a normal
camera image from the video camera. The motion commands
to the arm, signals from the simulated dish, and images of the
simulated world are all recorded for later analysis.

In order to determine the degree of influence of stimulation
on the simulated networks, as well as to determine if the
spontaneous behavior of the system as a whole is influenced
by asymmetry in the plating of the networks, the simulated
networks were run for ten minutes each, both with and without
stimulation. If stimulation has a significant influence on the
behavior of the network, and so on the actions of the system
as a whole, the motions produced while the network is being
stimulated will be different from the unstimulated motions
of the arm. If stimulation does not produce sufficient change
in the behavior of the network, the motion of the arm when
stimulus is present and when it is absent will be very similar
or the same.

If plating asymmetry produces networks with an uneven
balance of activity, then the motion of the arm under the
control of simulated networks with more neurons on the left
will be towards the left, and towards the right for networks
with more neurons on the right. In other words, the overall
motion of the arm will be predictive of the imbalance of the
neuron plating density. If plating asymmetry does not influence
the balance of activity in the networks, then the unbalanced
networks and balanced networks will have similar activity.

VI. RESULTS

A. Biological Cultures

Of the networks examined, all of the networks had sufficient
activity to cause the arm to move. Four out of 18 networks
tracked the target. Out of 57 trials, 5 trials resulted in tracking.

In the biological networks, unstimulated motion of the arm
under the control of the network predicts its motion under
stimulation, as shown in Table I. If the unstimulated motion
of the network displays a strong preference for one direction
of motion, then it is likely that the network will display the
same bias when it is stimulated. If the network only has a
weak bias towards one direction, shown by mostly moving in
one direction, but sometimes moving the other direction as



Culture ID Stimulated Unstimulated
1 Left Left
3 Right Left
5 Left Left
8 Left Centered
10 Tracked Centered
11 Left Left
13 X X
14 Right Centered
15 Centered Centered
16 Right Right
17 Right Right
18 Tracked Left
19 X Centered
20 Right Right
22 Left Left
23 Left Left
25 Left Left
33 Tracked Left

TABLE I
MOTION OF BIOLOGICAL NETWORKS UNDER STIMULATION AND

UNSTIMULATED. X INDICATES AN ERROR THAT RESULTED IN NO MOTION
BEING RECORDED. BECAUSE THE UNDERLYING BALANCE OF THE

BIOLOGICAL NETWORKS IS NOT KNOWN, IT IS NOT LISTED AS IN TABLE
II.

well, then it may move in the other direction or track when
stimulated. Biological networks which did not track appeared
to have a stronger bias, as expressed by the direction of travel
of the robot arm.

Of the networks that did not exhibit tracking behavior,
13 out of 37 runs with stimulation (35.1%) did appear to
have some response to the stimulation. Cultures with a strong
bias towards one side (as defined above) would be delayed
from exhibiting that bias. The motion of the arm would not
overcome the existing bias, but it would “hesitate” or make a
move opposing the bias if properly stimulated. Another 56.8%
of the networks that failed to track moved in a direction
that was not immediately attributable to the location of the
stimulus, either opposing the stimulus or not moving.

Based on the variety of responses to stimulation, it appears
that networks as prepared for this experiment have a gradient
of ability. At one end are the few networks that track well,
then a larger set of networks that half-track and half-obey their
internal bias, and then a larger set of networks with internal
biases sufficient to overwhelm the influence of the stimulus.

This spread of relative abilities of the networks to track the
target may indicate that some networks are more responsive
to stimulation than others. Varying sensitivity to stimulation
could be caused by sparsity of sampling points, as the stim-
ulation is only delivered in one location on each side of the
dish. If that location is sparsely populated with neurons or
sparsely connected, it may not contribute much to spreading
the stimulation to the rest of the dish.

B. Simulated Cultures

As with the biological networks, graphs similar to those
produced by Raptor were prepared showing the activity of the
networks over a 30 second sampling period. Users experienced
in the use of Raptor were asked to sort the networks into

Culture ID Stimulated Unstimulated Actual
18:13:45 Left Left Bottom Left
18:31:4 Right Right Bottom Left
18:45:14 Centered Left Bottom Left
19:0:47 Left Left Bottom Left
19:17:12 Left Left Bottom Left
19:35:0 Centered Right Bottom Right
19:49:41 Left Left Bottom Right
20:5:22 Right Right Bottom Right
20:21:20 Right Right Bottom Right
20:37:11 Centered Left Bottom Right
20:54:50 Centered Centered Left
21:10:25 Centered Centered Left
21:27:27 Left Left Left
21:42:15 Right Right Left
21:59:42 Right Right Left
22:14:27 Centered Right Right
22:32:30 Right Right Right
22:49:34 Right Right Right
23:23:48 Centered Left Right
23:6:13 Right Right Right
23:38:58 Right Centered Balanced
23:57:1 Centered Right Balanced
0:18:45 Centered Right Balanced
0:24:40 Right Right Balanced
0:42:40 Centered Right Balanced

TABLE II
FOR THE SIMULATED NETWORKS, THE MOTION LISTED IN THE

STIMULATED AND UNSTIMULATED CONDITIONS DESCRIBES THE
BEHAVIOR OF THE NETWORK WHEN IT WAS CONNECTED TO THE ARM

WITH AND WITHOUT FEEDBACK FROM THE CAMERA. THE ACTUAL
DISTRIBUTION OF THE NETWORK IS LISTED IN THE LAST COLUMN.

left, right, and balanced groups. Out of the 25 networks,
20 are either left or right biased, with 5 each of left, right,
lower left, and lower right distributions. The remaining 5 are
balanced. The experienced users were able to correctly classify
16 out of 25 (64%) of the networks as left or right biased.
The severely unbalanced networks were easier to classify,
with 9 out of 10 (90%) identified correctly. Balanced and
slightly unbalanced networks were easily confused. Out of
the 10 slightly unbalanced networks, 5 (50%) were identified
correctly, and the other 5 were misidentified as balanced
networks. This indicates that the simulated networks did have
the desired balance or lack of balance, as their activity as
classified by experienced users matched the expected activity
based on the input images.

The unstimulated motion of the network does usually match
the direction that the network will move the arm when
stimulated, but does not appear to accurately predict the
imbalance imposed on the network during its development.
In 16 (64%) of the 25 simulated networks, as listed in Table
II, the motion of the arm while unstimulated matched the
motion of the arm under stimulation. In 13 (52%) of the
simulated networks, the motion while unstimulated matched
the underlying distribution of the network. The others did not
match, and so the unstimulated motion only had approximately
a 50% chance of predicting the bias the network was expected
to have due to uneven seeding. Similarly, in 12 (48%) of the
simulated networks, the motion under stimulation matched the
underlying bias of the network. Again, this gives the stimulated



motion only a half-chance of predicting the actual bias.
Without stimulation, eight networks displayed a left bias

when unstimulated. Five of them were left or left-bottom
unbalanced, so 62.5% of the left-moving networks had a
leftward bias in their plating, and only 37.5% had any other
bias. If the biases were exhibited randomly, 80% of the
networks that moved left would be expected to be in non-left-
biased configurations, as 80% of the network configurations
are not left-biased. It is more likely that a left-biased network
will display a leftward bias in its unstimulated motion.

Fourteen networks moved right in the unstimulated con-
dition. Of those, seven (50%) were right or right-bottom
unbalanced, as opposed to the 20% that would be expected
if the biases were displayed randomly. It also accounts for
70% of the right and right-bottom biased networks, so again,
the unstimulated bias does appear to predict the underlying
bias of the network.

Five of the networks that moved right were created as
balanced networks. The remaining three networks remained
centered, but only one of these networks was a balanced
network, the other two were left-biased. Because the sensed
area of the MEA is relatively small compared to the total dish
area, it is possible that while the overall distribution of the cells
in the simulated MEA was as defined by the input image, the
actual bias over the sensed area was different, due to stocahstic
elements of the simulated plating process. This would result
in ostensibly “balanced” networks that nonetheless display a
slight bias in the absence of any stimulus to counter it.

When stimulation was applied, five networks moved left, of
which four (80%) were in one of the left-biased configurations.
The remaining network was in the bottom-right configuration,
but had displayed a leftward bias when unstimulated as well.
It is possible that the configurations that biased the cell
distribution towards the left or right bottom corner were close
enough to evenly balanced over the sensed area that the
intended bias was not strongly expressed.

Of the 10 networks that moved right when stimulated, 5
were in one of the right-biased configurations. Because there
are two different left- and right-biased configurations for the
networks, but only one balanced configuration, the chance of
a randomly selected network being left-biased is 40%, as is
the chance of it being right-biased, while the chance of it
being balanced is 20%. Getting a 50% match of motion in a
particular direction and underlying bias is therefore better than
chance.

The 10 networks that tracked under stimulation were in
several different configurations. One was bottom-left biased,
two were bottom-right biased, two were left biased, two
were right biased, and three were balanced. In all but two
cases, the networks had exhibited unbalanced behavior while
unstimulated, so the tracking was a change in response to
the stimulation. This shows that the stimulation both affects
the behavior of simulated networks, and can overcome a
previously exhibited bias.

As with the biological networks, some simulated networks
are more amenable to stimulation than others. Plots of the

motion of the arm after the stimulated and unstimulated runs
indicate that some of the networks had a much larger change
in behavior than others in response to stimulation. In general,
these are the networks that had a preferred direction of motion
while unstimulated, but became centered when stimulation was
applied. Of the 9 networks that became centered under stim-
ulation, 3 of them were balanced networks, constituting 60%
of the balanced networks, with the remaining 6 representing
30% of the unbalanced networks. This indicates that while
balanced networks are more likely to track under stimulation,
some unbalanced networks may also be able to track a target.

The responsive networks had large differences in their
motion between the stimulated and unstimulated conditions.
Unresponsive networks, on the other hand, had very small
degrees of difference between their actions when stimulated
and their actions when unstimulated. Overall, 8 of the 25
networks (32%) changed their direction of movement between
the stimulated and unstimulated runs. Of these networks,
3 were balanced, 3 were weakly unbalanced, and 2 were
strongly unbalanced. There are only 5 balanced networks,
so the balanced networks were more likely to change their
direction of movement under stimulation than the weakly or
strongly unbalanced networks. A balanced network would be
expected to have balanced activity, and so the stimulation
would not have to overcome a pre-existing bias in the activity
of the network.

VII. COMPARISON

The mechanism for creating unbalanced simulated networks
results in a change in the electrical activity such that experi-
enced users could correctly classify 16 out of 25 (64%) of the
networks as left or right biased by examining the recorded
voltage of the networks over a short period. The voltage
records were presented in the same format that is used to
determine if the activity of biological networks is balanced.
From this, we can conclude that the methods used to create
unbalanced simulated networks do result in similar activity
similar to that of biological networks.

The pre-existing unbalanced activity of artificial networks
does not predict the behavior of the full system when stimula-
tion is absent. Only 25% of the networks displayed the same
bias in their motion as was imposed on the distribution of
neurons within the network. The effects of a gradient of neuron
density over the entire culture area may be overwhelmed by
local variation between contact points, because only a small
number of the neurons located near the center of the dish are
sampled by each contact point. As a result, a network that
is overall biased with higher neuron density on the left may
actually display more activity on the right side of the sampled
area and vice versa.

Stimulation does have an effect on the signaling of both
artificial and biological networks, and is reflected in the motion
of the arm. Only 32% of the simulated networks changed
their direction of movement under stimulation, but this closely
matches the 37% of the biological networks that changed their
direction of movement under stimulation. From this result, it



appears that the percentage of networks that are amenable
to stimulation in this system is roughly the same between
biological and simulated networks.

A pre-existing unbalanced activity in unstimulated net-
works, whether biological or artificial, does predict their
behavior under stimulus. For 16 of the 25 simulated networks
(65%) the motion of the network under stimulation matched
the direction of motion of the network without stimulation.
Due to technical difficulties and culture mortality, the data for
biological networks in Table I is somewhat more sparse than
the data for simulated networks. Of the 16 runs where useful
data was recorded, 10 (62%) resulted in the motion of the
arm under stimulation matching the motion of the arm without
stimulation. The percent rate at which the prediction holds is
very similar to that exhibited by the simulated networks, which
indicates another point of similarity between the simulation
and biological networks.

VIII. DISCUSSION

These points of similarity between the simulated and real
neurons did not require exceptional tuning of the simulator
to produce. The values used to configure the simulator are
set to the same values used to create the biological networks,
in terms of cell density, neuron types, etc. These similarity
between biological networks and simulated networks in terms
of predictability of behavior under stimulation and amenity to
stimulation indicate that it is possible to simulate the activity
of certain configurations of networks at a phenomenologi-
cal level. The simulated networks are thus simulations of a
broad class or type of biological network. However, a more
interesting problem would be developing a simulation of a
specific individual network. As previously mentioned, the
neuron types and connectivity of each cell in the simulated
network are recorded in a file and can be edited. By varying the
connections and connection strengths of a simulated network,
it could be modified to bring its activity in line with the
observed activity of a particular biological network. A number
of metrics exist for assessing the similarity of two networks,
such as inter-recording-site correlations or Center of Activity
Trajectory (CAT) [10]. Culture metrics could be used as a
way to assess the results of tuning a simulated network in
comparison to a biological network. As a result, machine
learning approaches could be used to automate the process of
developing a simulation of an individual biological network.

Unfortunately, the simulated networks developed by such
an algorithm would not likely be an identical match for the
connectivity and neuron placement of the original biological
network. If multiple permutations of connections between
neurons can give rise to similar signaling patterns, then the
simulated network can display similar signaling to the biolog-
ical network without having the same connectivity. Because
the real and simulated networks’ connectivities would likely
differ, a local perturbation, such as the division of the network
used in the experiments described in this paper, would affect
the two networks differently.

Even without the ability to simulate specific networks,
simulating a class of networks has some promise for accel-
erating work with biological networks. Because the simulated
networks are not susceptible to disease and require little time
to prepare, vast numbers of them can be prepared and the
data from them can be automatically analyzed. As neuronal
network simulators improve, their output can be used to guide
the selection of parameters for biological networks into inter-
esting areas of the configuration space. This guiding would
save time, money, and effort in the creation of populations
of networks for research. In turn, the results from biological
networks would be used to inform the development of the
simulator.
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