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Abstract— Human-robot interaction involving the failure of
autonomous robots is not yet well understood. We conducted
two online surveys with a total of 1200 participants in which
people assessed situations where an autonomous robot experi-
enced different kinds of failure. This information was used to
construct a measurement scale of people’s reaction to failure
where positive values correspond with increasingly positive
reactions and negative values with negative reactions. We then
used this scale to compare different kinds of failure situations,
including the severity of the failures, the context risk involved,
and the effectiveness of different kinds of recovery strategies.
We found evidence that the effectiveness of recovery strategies
depends on the task, context, and severity of failure.

I. INTRODUCTION

Fully autonomous robots are progressively becoming capa-
ble of operating in the unstructured environments of everyday
life. To date, very few fully autonomous robots have been
deployed outside of the industrial sector, where people’s
access to such robots is usually restricted during operation to
prevent injuries. In contrast, robots such as Rethink Robotics’
Baxter, Aethon’s TUG, and Google’s self driving cars are
designed to operate in the presence of people and interact
with them. The expanding presence of such systems will
dramatically increase the occurrences of non-expert human-
robot interactions as self-driving cars, delivery drones, robot
vacuums, and more become integrated into society.

The impending proliferation of autonomous robots raises
questions about what happens when they malfunction. Our
ability to build dependable systems is constantly improving
thanks to research in sensor technology, artificial intelligence,
error detection, fault tolerant software architectures, and
fault prevention [1], [2]. However, even the most reliable
of these systems will not be immune to occasional failures,
and the manner in which they fail can seriously effect
users’ perception of those systems and the services they
provide. Despite this, relatively little work has focused on
investigating human-robot interactions involving failure. For
example, it is still unknown whether people can reliably tell
if a robot is operating properly or failing, how they will react
or behave after encountering a failing robot, or what can
be done to mitigate feelings of frustration, anxiety, anger,
disgust, or resentment that might result. What we do know
is studies indicate that failure by a robotic service make the
robot seem less capable, lowers users’ trust, and can make
people reluctant to use the service again [3], [4], [5].
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This raises questions about what can be done to mitigate
the consequences after a failure occurs, referred to as re-
covery strategies. Providing users with advanced warnings
of potential problems has been shown to improve users’
evaluation of a system after a failure, and activities such
as offering an apology can sometimes make the robot seem
more competent [5]. Analysis of real-time user trust with
an autonomous robot found that the robot could provide the
operator with confidence feedback on its current performance
to encourage better control allocation without altering the
user’s level of trust in the system [4]. Researchers have
explored having robots seek out nearby people to ask for
help [6]. Work on generating failure-specific natural language
requests for help based on the robot’s task indicated that
users had a more enjoyable experience compared to more
generic methods of requesting help [7].

Unfortunately, not all recovery strategies work the way
they are intended. If people are not made aware of why a
robot is behaving in a particular way it can lead to confusion.
In one such case, workers at a hospital were documented
blaming each other for having “messed up” an autonomous
delivery robot after observing inexplicable behavior [8].
However, providing users with information about the cause
of a failure could also make the situation worse. Experiments
have shown that users respond very negatively when a robot
blames them for causing a failure, compared to when blame
was collectively assigned to both the user and robot as a
team (e.g. using “we” statements), even in cases where the
human was likely aware that they were the primary source
of the problem [9]. That said, having the robot blame anyone
(even itself) for a failure has been shown to cause users to
lose trust in the system [10].

Taxonomies have been described by [11] and [12] which
categorize faults and provide insight into the many complex
ways a system could fail. Attributes of a “dependable”
system have been described by [1] as availability, reliability,
safety, confidentiality, integrity, and maintainability. Con-
cepts taken from consumer market research have been shown
to have analogous effects in robotic services [5]. However,
to the best of our knowledge there is no theoretical model
that characterizes failures of autonomous robots in order to
predict people’s reaction to various situations.

In this paper, we demonstrate a method for comparing
the detrimental impact of various failures and how effective
different types of recovery strategies are at mitigating
the resulting negative effects, as perceived by users. We
performed a survey experiment looking at different types of
failures occurring in various situations. This information was



used to construct a measurement scale of people’s reaction to
failure, which was then used to compare how the severity of
the failures, the context risk involved, and the effectiveness
of recovery strategies impact people’s reactions. For the
purposes of this experiment, we grouped recovery strategies
into two categories, fask support and human support.

One of the consequences of a failure occurring in a fully
autonomous robot system is a deterioration in the task per-
formance, possibly to the point that the task can no longer be
performed. However, an autonomous robot may still be able
to take actions that can assist in furthering the task towards
completion even in conditions where a failure has rendered
the system incapable of carrying it out on its own. We call re-
covery strategies using proactive behaviors taken by a failed
robot that continue to support the completion of the task for
which the human operator is responsible fask support.

A robot operator’s situation awareness (SA) is their ability
to perceive information related to the state of the system
and its surroundings, comprehend that knowledge within the
robot’s current context, and project or anticipate future events
[13]. As autonomy increases, the time the system can run
while being ignored by the operator (known as neglect-time)
also increases [14]. This decreases the amount of attention
the operator pays to the system at any given moment until
ultimately the system is considered unsupervised. When a
problem occurs in such a system, the person or people
responsible for the robot’s operation find themselves lacking
sufficient SA to either understand the current problem or
identify the appropriate actions that need to be taken - a
phenomenon known as the out-of-the-loop problem [15].
When an autonomous system has been designed to provide
information to people that supports or improves their SA
with respect to the failure and the status of the task being
performed, we say the system is providing human support.

II. EXPERIMENT

A previous investigation of failure mitigation strategies
looked at using recovery strategies from the context of
consumer research to improve users’ satisfaction after a
robot fails [5]. This included giving users advanced warning
that the robot might fail due to the difficulty of a task,
having the robot apologize, offering compensation (such as a
refund), and offering alternative options. Their success with
these techniques may be related to attribution theory - that
consumers try to infer the cause of a failure, and their conclu-
sions drive their expectations for how a situation should be
handled [16]. This can lead to further dissatisfaction if the
way a situation is handled does not match the consumer’s
expectations [17], and suggests that satisfaction with how a
situation is handled can be controlled by ensuring that people
have good situation awareness about the cause of failure.

Hypothesis 1: Providing human support will help mitigate
the negative effects caused by failure.

When using a fully autonomous robot, an operator entrusts
a task or responsibility to the system which they expect to
be carried out. The relationship between the operator and
the system can be thought of as a form of delegation since

many tasks require the use of some level of discretion while
being carried out. Thus, behaviors that work towards the
completion of the task should be viewed favorably, especially
if the robot is otherwise unable to complete the task itself.

Hypothesis 2: Providing task support will help mitigate
the negative effects caused by failure.

Human and task support could have unintended conse-
quences. Human support implemented using speech could
result in unrealistic expectations that the robot is also capable
of some form of task support [3]. Moreover, performing task
support without providing sufficient human support could
cause confusion. Combining the two techniques should min-
imize these kinds of problems without negative side effects.

Hypothesis 3: A combination of both human and task sup-
port will help mitigate the negative effects caused by failure.

As the negative effects of a failure are reduced, positive
sentiments towards the robotic service should increase.

Hypothesis 4: Recovery strategies which reduce the neg-
ative effects of a failure will also increase the likelihood of
users wanting to use the system again.

A. Survey Design

We conducted two between-subjects survey studies, ap-
proved by the Institutional Review Board at the University
of Massachusetts Lowell, to test our hypotheses. Our studies
were modeled on the technique used in [5]. Participants
were presented with a short two part story about a fictional
character “Chris” who in one survey used a vacuum cleaner
robot and in the other a self-driving taxi. The first part gave
a brief background of Chris and included a short history of
Chris’ previous experience with the robot (reported in a pos-
itive manner). The second part described Chris’ most recent
encounter with the robot and the results of that interaction.

B. Independent Variables

Four independent variables were manipulated in this study:
context risk, failure severity, task support, and human sup-
port. Context risk (risk) referred to how undesirable a failure
by the robot would be in a particular context or setting,
and was either “high” or “low.” Failure severity (severity)
referred to the type of failure the robot experienced and
the extent to which it would be an inconvenience. It was
either “none” (no failure occurs), “low,” or “high.” The robot
either had rask support and/or human support capabilities,
or it did not. Combinations that did not involve failure but
included task support were not tested, as we were unable to
conceptualize any scenarios in which this combination made
sense. These variables were combined into twenty survey
conditions for each robot scenario.

The variables were represented in the story text in different
forms in order to make the scenarios realistic. In the vacuum
scenario, Chris was simply experimenting with new settings
on the robot to expand the area it would clean for “low”
context risk. For “high” risk, Chris was portrayed as a “neat-
freak” relying on the robot to clean the house before having
guests arrive, despite having never previously attempting this.
When the failure severity was “None,” the vacuum worked as
Chris intended it to. “Low” failure severity was manifested



by the robot not having enough battery to complete the job
and Chris returning home to find the floors only partially
cleaned. Finally, “High” failure severity depicted the robot
creating an additional mess by knocking over a house plant.
In scenarios where the robot did not have enough battery to
complete cleaning, task support allowed the robot to return
to its charger and later (some time after Chris had returned
home) resume cleaning from where it left off. The robot
without task support would simply clean as long as possible
until it ran out of batteries and died in the middle of the
floor. In scenarios where the robot knocked over the house
plant, the robot with task support would continue cleaning
but avoid the area immediately around the accident so as not
to make matters worse. In contrast, the robot without task
support would attempt to drive through the area resulting in
further damage to the plant (tearing off leaves) and spreading
mud around the carpet. Human support was implemented by
allowing the robot to send status updates about its progress
to Chris. The method by which the robot communicated was
intentionally omitted and left to the reader’s imagination,
with the exception of the robot being depicted as able to
remotely notify Chris at work.

For the taxi scenario, Chris was going to the grocery
store for “low” risk and to the airport to catch a flight for
“high” risk. When the failure severity was “none,” the vehicle
worked exactly as Chris anticipated. During the “low” sever-
ity condition, the vehicle attempts to pass a slowly moving
vehicle ahead of it while on the highway and misses the exit
it was supposed to take. In the “high” severity condition,
severe weather interrupts the vehicle’s ability to drive and
it pulls over on the side of the road. Task support during
“low” severity conditions has the vehicle reroute along the
next fastest available route to the destination. Without task
support the vehicle reroutes itself to turn around and go back
to location it originally got off route at, despite a faster route
being available. In the “high” severity condition, the vehicle
with task support automatically calls for a human-driven
vehicle to come to the location the vehicle is stopped to take
the passenger to their destination. Without task support, Chris
has to summon a new ride. When the vehicle has human sup-
port, a map with route information and the vehicle’s location
is displayed, an estimated arrival time is shown and updates
are provided (after the failure occurs), and information about
recovery actions being taken are reported. Additionally, in the
“high” severity condition human support provides a warning
message stating that the vehicle is unable to operate in severe
weather, and (if not combined with task support) informs the
passengers that they need to find another ride.

C. Dependent Variables

We measured 9 dependent variables using a series of
7 point Likert scale questions regarding how participants
believed the character (Chris) felt about the robot following
the second half of the story. Participants were asked how
satisfied, pleased, and disappointed Chris was with the ser-
vice. They were asked how reliable, dependable, competent,
responsible, and trustworthy Chris believed the robot to be.

TABLE 1

VACUUM SCENARIO QUESTIONS

How much more or less ...

...satisfied is Chris with the robot’s performance now compared to previous experi-
ences?

...pleased is Chris with the robot’s most recent results compared to previous
experiences?

...does Chris trust the robot now compared to prior use?

...trust does Chris now have in the robot, compared to previous experiences?
...will Chris rely on the robot to clean the floors in the future?

...dependable does Chris believe the robot to be compared to before?

...competent does Chris believe the robot to be compared to before?

...certain is Chris that the robot will be able to clean the whole house in the future,
given this latest experience?

...responsible does Chris believe the robot to be compared to before?

Possible Responses: Much Less, Less, Somewhat Less, About the Same, Somewhat
More, More, and Much More

Finally, they were asked how risky it would be for Chris to
use the robot in the future (see Table I). Anticipating that
any kind of failure might overpower the effects of the other
independent variables, participants were asked to compare
Chris’ latest experience relative to previous experience with
the robot using the scale Much Less, Less, Somewhat Less,
About the Same, Somewhat More, More, and Much More for
each dependent variable. Each variable was measured twice
using two differently worded questions. The wording of the
questions was kept consistent between scenarios, with the
exception of context relevant words.

Participants were also asked two questions related to how
they personally felt about the robot. These included whether
they would want to use the robot described in the story, and
if they would recommend the robot in the story to a friend.

D. Manipulation and Attention Checks

Four “attention check” questions where included to check
that participants were paying careful attention to the survey.
After reading each of the two parts of the story, participants
were asked a multiple choice question the answer to which
would be obvious to anyone that had read the story - such
as “What was the name of the character in the story?” In
addition, two attention check questions were included in the
bank of Likert questions to ensure people were carefully
reading the questions. The answers to these questions were
included in the question itself, such as “How much more
or less does Chris take pictures? Please answer ‘less’ to
this question.” Failure to answer any of the attention check
questions resulted in disqualification of the data for analysis.

Participants were also asked to answer six true or false
style questions about things mentioned during the story,
called manipulation check questions. The questions asked
about details in the story related to the four independent
variables. Participant’s needed to answer all six of these
questions correctly in order to demonstrate they had correctly
perceived the various important aspects of the story, and have
their data included for analysis.

ITII. RESULTS

Data was gathered using Amazon’s Mechanical Turk, with
each participant being paid $0.90 for their work. Participants
consisted of self-selected MTurk workers who lived in the
United States and had previously performed at least 1000 Hu-
man Intelligence Tasks (HITs) with at least a 95% approval



rating. We collected 30 participants worth of complete data
for each condition in each scenario, totaling 600 participants
for each type of robot and a combined total of 1200
participants. We were able to facilitate a between-subjects
study due to MTurk workers being required to register
their tax information with their account, MTurk providing
unique workers for each HIT, and disallowing individual IP
addresses from completing each scenario more then once.
While 68 of the 1200 people involved (5.6%) participated
in both the taxi and vacuum scenarios, each scenario was
analyzed independently. See Table II for demographic details.

A. Measuring reaction to failure

Each of the dependent variables reflected different aspects
of participants’ overall perception of the character’s (Chris’)
reaction to the robot’s latest performance. We performed a
exploratory factor analysis of the Likert scale questions for
each scenario. A Scree test concluded that in both cases there
was a single latent variable. The factor analysis accounted
for 77% of the variance in the vacuum data and 66% of the
variance in the taxi data. Variables in the taxi scenario had a
Chronbach’s o = 0.97 and variables in the vacuum scenario
had a Chronbach’s o = 0.98. All variables loaded the single
factor, which we call REACTION, in both cases. Responses
to questions with negative wordings were inverted prior to
analysis; however, the negative attributes “disappointed” and
“risky” were not inverted and subsequently received negative
loadings. Thus, positive scores represent positive reactions to
the robot’s behavior while negative scores represent negative
reactions. REACTION scores are shown in Figure 1.

A two-way ANOVA was performed to compare the in-
fluence of failure severity and context risk on REACTION.
There was a significant main effect of failure severity

on REACTION in both the taxi [F(2) = 287.1284,p <
0.001,17§ = 0.491] and vacuum [F(2) = 410.4056,p <
0.001,n,; = 0.58] surveys. A significant main effect of

context risk on REACTION was found in the taxi survey
[F(1) = 13.6936,p < 0.001,72 = 0.039], but not in the
vacuum survey [F(1) = 0. 9546 ,p = 0.33,72 = 0.0007].
There was a significant interaction between context risk
and failure severity in taxi survey[F(2) = 7.6941,p <
0.001,77 = 0.025], but not in the vacuum survey [F(2) =
0.8814,p = 0.415,773 = 0.0029].

Most participants who experienced the robot failing with-
out any support had a negative REACTION (taxi: 92%,
n=120; vacuum: 90%, n=120), while nearly everyone who
experienced the robot without any failure (both with and
without support) had a positive REACTION (faxi: 99%,
n=120; vacuum: 96%, n=120).

B. Effect of support on reaction

A one-way ANOVA was performed to compare the in-
fluence of support type on people’s reactions for each risk-
failure combination. There was a significant effect of support
type on REACTION in all conditions in both robot scenarios
at a significance level of @ = 0.05. In the taxi scenario,
a significant main effect was found in the low-risk, low-
failure condition [F(3,116) = 12.61,p < 0.001,7? =
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Fig. 1. Participants’ REACTION scores grouped by risk, failure, and support
type. hs: HUMAN, ts: TASK, hsts: COMBINED. n = 30 for each bar. Results
from post-hoc Tukey’s HSD tests: xp < 0.05, xxp < 0.01, x%*xp < 0.001.

0.246], the low-risk, high-failure condition [F'(3,116) =
15.27,p < 0.001,7?> = 0.283], the high-risk, low-failure
condition [F(3,116) = 3.805,p < 0.05,n? = 0.089], and
the high-risk, high-failure condition [F(3,116) = 12.19,p <
0.001,7? = 0.239]. In the vacuum scenario, a significant
main effect was found in the low-risk, low-failure condition
[F(3,116) = 13.16,p < 0.001,n? = 0.254], the low-risk,
high-failure condition [F(3,116) = 17.27,p < 0.001,7? =
0.309], the high-risk, low-failure condition [F'(3,116) =
38.06, p < 0.001,7? = 0.496], and the high-risk, high-failure
condition [F(3,116) = 21.42,p < 0.001,7n? = 0.356]. For
each of these conditions, a post-hoc Tukey’s HSD test was
used to determine significant differences between human
support (HUMAN), task support (TASK), combined human
and task support (COMBINED) and no support (NONE). The
results of the post-hoc tests are shown in Figure 1.

C. Effect of support on wanting to use the robot

A one-way ANOVA was performed to compare the in-
fluences of support on people’s responses to wanting to
use the robot described in the scenario they read. There
was a significant main effect of support on wanting to
use the robot in all conditions. In the vacuum scenario,
there was a significant main effect [F'(3,116) = 4.53,p <
0.01,772 = 0.105] in the low-risk, low-failure condition. A
post-hoc test showed significant differences between TASK
and NONE (p < 0.05), and COMBINED and NONE (p <
0.01). There was a significant main effect [F'(3,116) =
4.25p < 0.01,7> = 0.099] in the high-risk, low-failure
condition. A post-hoc test showed significant differences
between TASK and NONE (p < 0.05), and COMBINED
and NONE (p < 0.05). There was a significant main effect
[F(3,116) = 3.876,p = 0.01,n? = 0.091] in the low-risk,
high-failure condition. A post-hoc test showed significant



TABLE 11
DEMOGRAPHICS
Education
Age :
Y o, Vacuum Taxi
acuum Taxi Gender <HS — 4 3
18-21 15 13 -
2934 247 281 Vacuum Taxi HS 70 49
35-44 150 148 Male 294 289| | Vocational 19 26
) Female 304 306||In College 148 130
45-54 103 98
Other 2 5/|2 Yr Deg 74 63
55-64 65 49
65-over 20 11 4 Yr Deg 211 238
Grad Deg 74 91

differences between TASK and HUMAN (p = 0.05), and
COMBINED and HUMAN (p = 0.01). There was a significant
main effect [F(3,116) = 4.905,p < 0.01,7> = 0.112] in
the high-risk, high-failure condition. A post-hoc test showed
significant differences between COMBINED and NONE (p <
0.01), and COMBINED and HUMAN (p < 0.05).

In the taxi scenario, there was a significant main effect
[F(3,116) = 3.339,p = 0.02,7> = 0.079] in the low-
risk, low-failure condition. A post-hoc test showed significant
differences between TASK and NONE (p = 0.02). There was
a significant main effect [F(3,116) = 4.695,p < 0.01,7? =
0.108] in the high-risk, low-failure condition. A post-hoc
test showed significant differences between TASK and NONE
(p < 0.05), COMBINED and NONE (p < 0.05), TASK and
HUMAN (p < 0.05), and COMBINED and HUMAN (p < 0.05).
There was a significant main effect [F(3,116) = 5.139,p <
0.01,7%> = 0.117] in the low-risk, high-failure condition. A
post-hoc test showed significant differences between HUMAN
and NONE (p < 0.01), and COMBINED and NONE (p =
0.01). There was a significant main effect [F'(3,116) =
7.016,p < 0.001,1? = 0.153] in the high-risk, high-failure
condition. A post-hoc test showed significant differences
between HUMAN and NONE (p < 0.01), COMBINED and
NONE (p < 0.001), and COMBINED and TASK (p < 0.05).

The REACTION score of each participant was compared
to their response for “I would want to use this robot/vehicle.”
95% (251/264) of participants in the vacuum survey and
77% (200/258) of participants in the taxi survey who had
a positive REACTION score responded with some level of
agreement. Of participants who had a negative REACTION,
only 58% (194/336) of participants in the vacuum survey and
42% (144/342) of participants in the taxi survey responded
with some level of agreement.

IV. ANALYSIS OF RESULTS

Participants’ REACTION was significantly influenced
by failure severity in both the taxi and vacuum surveys,
and by context risk in the taxi survey. The REACTION
scale correctly divided people who experienced the robot
operating successfully from people who experienced the
robot failing (with no support) by whether or not their score
was positive or negative with 94% accuracy (n = 480).
The magnitude of people’s REACTION was significantly
influenced by the severity level of the failure in both surveys.

The REACTION scale also highlights the variability by
which recovery strategies can alter a person’s response to a
failure, ranging from having no measurable effect to being
indistinguishable from not having failed. Further, it indicates

that the effectiveness of recovery strategies (which in general
improved people’s REACTION to failure) seems to be influ-
enced by the task, context risk, and severity or type of failure.

Hypothesis 1: Providing human support will help mitigate
the negative effects caused by failure.

Human support significantly (p < 0.01) improved people’s
REACTION in several scenarios. The amount it influenced
people’s REACTION varied by the task, severity of failure,
and context risk. However, the significance of human support
seems to be better correlated to whether the information
conveyed could be used by the person to effect the outcome
of the situation. In the high severity condition of the taxi
scenario, the car informed the passenger they needed to
call for another ride which significantly improved people’s
REACTION. When the taxi missed a turn in the low severity
condition, the support information allowed the user to predict
but not effect the outcome, and had almost no effect. There
were no conditions in the vacuum scenario in which the
human support was used to alter the outcome of the situation.
However, it still significantly improved people’s reactions in
the low-risk, low-failure scenario. This could be interpreted
as Chris knowing that he would need to clean the floor him-
self when he got home - something he would have the chance
to do in the low risk scenario but not the high risk scenario.

Hypothesis 2: Providing task support will help mitigate
the negative effects caused by failure.

Using task support significantly improved people’s
REACTION (p < 0.05) in all but one scenario (vacuum,
low-risk, high-failure severity, p = 0.06). One particularly
interesting data point is the extremely positive REACTION
to task support in the high-risk, low-failure condition of the
vacuum scenario. The robot’s behavior in this case was to
return to its charger before the battery ran out, and resume
cleaning where it left off when it had recharged - thus
eventually completing the task. While the completed task
certainly contributed to the high REACTION, the response
to the same behavior in the corresponding low-risk condition
had a much higher variance. One possible explanation is that
the difference in variance may be the result of people being
less certain about the significance of the failure in the low-
risk condition compared to the high-risk condition. However,
this would suggest there should also be higher variances
in the low-risk, high-failure condition, which was not the
case. Another possible explanation is that the difference
in risk changed the way people imagined Chris perceiving
the way the task was completed. In the low-risk condition
Chris was portrayed as experimenting with the robot’s
capabilities which may have prompted a more critical view
of the results, while in the high-risk condition Chris was
hoping for a particular result despite the lack of a precedent,
making the robot’s performance a pleasant surprise.

Hypothesis 3: A combination of both human and task sup-
port will help mitigate the negative effects caused by failure.

Combined support significantly (p < 0.001) improved
people’s REACTION in all but one scenario (taxi, high-risk,
low-failure severity, p = 0.16). In one case (vacuum,
high-risk, high-failure), combined support was significantly



better (p < 0.01) than using task support, which was itself
significantly better (p < 0.001) than no support. However, a
non-significant trend can be seen in which combined support
performed better than task support in high severity situations,
but worse in low severity situations. One possible explanation
for this is that in certain situations the additional information
is regarded as too verbose or possibly annoying, while in
others the information is welcomed. Unfortunately, this logic
would be better supported if the trend corresponded with
differences in context risk rather than the failure severity.

Hypothesis 4: Recovery strategies which reduce the neg-
ative effects of a failure will also increase the likelihood of
users wanting to use the system again.

The percentage of people who wanted to use the robot was
much higher among people who had a positive REACTION
score than among those who had negative scores. Both
human and task support effected how much people wanted
to use the robot, although neither had a ubiquitous effect.

V. LIMITATIONS

Survey experiments have some inherent flaws [18]. The
self-selection of participants may have introduced non-
response error into the data, and the extensive use of rat-
ing scales in our survey may have caused some people
to mark multiple questions with the same answer (non-
differentiation). Responses could be biased for various rea-
sons such as acquiescence response bias (tendency to agree
regardless of the question) or question wording incidentally
cueing a particular response. Our survey was only available
to people residing in the US, and may not reflect the way
people in other parts of the world would behave in similar
situations. Furthermore, prior work has shown the MTurk
population does not perfectly match the US population (it
was also not extremely different) [19]. Thus, the experiment
could benefit from being repeated with other populations.

Finally, the third person perspective of both the story
and questions was chosen over a first person perspective to
allow participants to distance themselves from the situation,
reducing the effects of subconsciously biased responses such
as from people trying to portray themselves in a particular
manner [20]. However, reading about a hypothetical situation
someone else is experiencing is not the same as experiencing
the same situation for one’s self in real life. Thus, a labo-
ratory experiment in which participants experience failures
in-person is needed to verify these results.

VI. CONCLUSION AND FUTURE WORK

The REACTION scale captures the main characteristics of
failure by autonomous robots, while also highlighting the
nuanced complexity of the situation. We have demonstrated
its use by comparing successful and failed operation of
robots with various recovery strategies. In doing so we found
evidence that while human support and task support can both
be used to mitigate failures, the type/severity of failure and
context risk influence their effectiveness.

In this study, we only compared results of the REACTION
scale within individual robots due to the use of separate ex-
ploratory factor analysis for each study. Similarities observed

between factor loadings of the two analysis suggest we
should be able to refine the REACTION scale into a generic
question bank that will be task and platform independent,
potentially allowing it to be used as a comparison between
robots. Other future work includes determining if additional
variables need to be controlled and adapting the scale for use
by interaction roles [21] other than the operator.
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