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Abstract 
In June 2015, the Defense Advanced Research Projects Agency (DARPA) Robotics Challenge (DRC) 
Finals were held in Pomona, California. The DRC Finals served as the third phase of the program 
designed to test the capabilities of semi-autonomous, remote humanoid robots to perform disaster 
response tasks with degraded communications. All competition teams were responsible for developing 
their own interaction method to control their robot. Of the 23 teams in the competition, 20 consented to 
participate in this study of human-robot interaction (HRI). The evaluation team observed the consented 
teams during task execution in their control rooms (with the operators), and all 23 teams were observed 
on the field during the public event (with the robot). A variety of data were collected both before the 
competition and on-site. Each participating team’s interaction methods were distilled into a set of 
characteristics pertaining to the robot, operator strategies, control methods, and sensor fusion. Each task 
was decomposed into subtasks that were classified according to the complexity of the mobility and/or 
manipulation actions being performed. Performance metrics were calculated regarding the number of 
task attempts, performance time, and critical incidents, which were then correlated to each team’s 
interaction methods. The results of this analysis suggest that a combination of HRI characteristics, 
including balancing capabilities of the operator with those of the robot and multiple sensor fusion 
instances with variable reference frames, positively impacted task performance. A set of guidelines for 
designing HRI with remote, semi-autonomous humanoid robots is proposed based on these results.   

1. Introduction 
In 2000, urban search and rescue (USAR) was suggested as a grand challenge for robotics, given the 
many complex challenges associated with performing tasks in obstacle-ridden, unknown, and dynamic 
environments in which humans may not be able to safely or efficiently venture, and in which time may 
be of the essence [Kitano, 2000]. In 2001, several roboticists working with search and rescue teams 
operated small, unmanned vehicles in the rubble after the World Trade Center disaster in New York; the 
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results of this real-world usage further emphasized the deficiencies and pervasive challenges presented 
by such complex and dangerous task conditions [Micire, 2002]. Shortly after the Fukushima Daiichi 
disaster in March 2011, additional robots were sent in to navigate inside the reactors. This type of 
scenario is, at least theoretically, ideal for the use of robotics as robots can operate in such hazardous 
conditions, and ideally can operate semi-autonomously with supervisory control provided from a human 
operator in a safe location. In June 2011, additional robots were used at Fukushima Daiichi with the 
goals of venturing into areas that were unsafe for humans and performing needed tasks. However, the 
state of robotics technologies at that time was far from sufficient to support effective teleoperation to 
complete such tasks [Nagatani et al., 2013].  
 
In response to these events, the Defense Advanced Research Projects Agency (DARPA) launched a 
research and development initiative in the form of a challenge in which roboticists from academia, 
industry, and research institutions would compete to develop human-supervised robots, mostly 
humanoids, capable of executing a variety of tasks relevant to disaster response and USAR. The 
DARPA Robotics Challenge (DRC) consisted of three events: a Virtual Robotics Challenge (VRC), the 
DRC Trials, and the DRC Finals.  
 
This paper presents the findings of a study of human-robot interaction (HRI) conducted at the DRC 
Finals in June 2015. Given the competition format, the tasks and the conditions under which they are 
performed is the same across all teams. Teams were responsible for developing their own interaction 
methods to perform these tasks, of which varied from one another, but many of the same core HRI 
techniques were implemented. This analysis uses each team’s performance at the DRC Finals to 
determine which of these HRI techniques were most effective.  
 
During the competition, our evaluation team observed operators in the control room and robots on the 
field, recording performance on a minute-by-minute basis by visual means. After the competition, each 
pair of observations was combined and validated by watching recorded video. The DRC Finals tasks 
were broken down into subtasks by the evaluation team and assigned a category based on the robotic 
mobility and manipulation activities needed to complete them (subtask functions). Each team’s 
interaction method was distilled into categories of HRI characteristics they exhibited based on the type 
of data displays, input techniques, and operator roles utilized. The performance of each team when 
attempting actions of each subtask function (including critical incidents and completion time) was then 
correlated to the HRI techniques exhibited during competition performance. Comparisons of resulting 
performance between differing HRI techniques were calculated to determine those that were most 
effective. The findings suggest that factors like control methods, sensor fusion, and operator layout 
strategies had significant impact on the competition. Lessons learned and guidelines for designing HRI 
with remote humanoid robots, as informed by this study, are presented at the end of this article. 

2. Background and Related Work 
In addition to supporting the development of enabling technologies that will allow future robots to help 
humans respond to natural and man-made disasters, the DRC sought to advance the state of the science 
in robotics and artificial intelligence (AI) in two ways: by increasing the functionality of supervised 
autonomy, and by increasing the capability of hardware/software platforms to adapt to task and 
environmental variations. Such advances in robotics would enable those responding to such events to be 
better prepared and more successful than in past events. During the DRC Trials and Finals, DARPA 
simulated environmental variations in order to challenge functional characteristics of autonomy, 
including periods of low bandwidth, high latency, and intermittent communication. Robots with higher 
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levels of autonomy could continue to perform effectively at times during which command and control 
from a human operator were functionally reduced due to degraded communications.  
 
A secondary outcome of the DRC was to further the design of human-robot interaction (HRI) by 
emphasizing supervisory control methodologies, which were deliberately designed by many teams 
during the DRC Trials (e.g., [DeDonato et al., 2015; Fallon et al., 2015; Johnson et al., 2015; 
Kohlbrecher et al., 2015; Radford et al., 2015; Stentz et al., 2015; Zucker et al., 2015]). These 
methodologies are designed to leverage the strengths of the human decision-maker by seamlessly 
integrating human and machine capabilities to complete tasks that, owing to conditions characteristic of 
disaster environments, could not be directly performed by a human. Such progressions in the field of 
HRI have the potential to not only further the capabilities of interface design, but they have the potential 
to both better identify requirements for the robot systems to be controlled, and render a better 
understanding of the contexts in which such interaction technologies are utilized. Ultimately, such 
contributions have inherent implications for both operator training and field operating procedures.  
 
One of the most critical issues encountered in task-oriented HRI is achieving the right balance of human 
control/supervision and robot autonomy. Effective interaction methodologies must be centered on 
optimizing this balance by tasking the robot in ways that leverage its strengths while utilizing the skills, 
affordances, and capabilities that are superior in humans such as decision-making, strategic thinking, 
perceptual capabilities, and overall task awareness [Settimi et al., 2014]. For example, current semi-
autonomous control paradigms dictate that the robot focuses on low-level tasks such as terrain 
transversal while the human maintains high-level control and supervision such as designating the 
direction of motion or an end point to be reached. A critical aspect of this control architecture is the 
interface design. Specifically, Settimi et al. [2014] assert that an effective semi-autonomous framework 
for humanoid robot control in disaster scenarios must enable the operator to 1) issue symbolic 
commands to the robot, 2) select the level of autonomy with which the robot performs each task, and 3) 
receive visual and status feedback from the robot. They also specify that the interface must be designed 
to be modular and reconfigurable in order to support interaction with multiple types of robots and to 
account for variations in tasks and environmental conditions.    
 
An initial study of HRI was conducted at the DRC Trials [Yanco et al., 2015]. A total of 16 teams 
participated in the DRC Trials in December 2013; 8 of the competing teams participated in the study. 
Teams that agreed to participate in the HRI study were interviewed and observed during the DRC Trials, 
and their performance was correlated to their interaction techniques with the goal of identifying areas for 
improvement that would lead to better HRI design and overall robot performance in the DRC Finals. 
Participating teams’ robots were observed from the field as well as in their control rooms (with the 
operators), with observers noting a variety of performance metrics based on critical incidents and 
utterances. These data were used to categorize the various interaction methods according to number of 
operators, control methods, and amount of interaction. Detailed HRI data were collected at the Trials, 
the results of which were culled, analyzed, and used to identify guidelines for improving HRI within the 
context of the task conditions presented by the DRC Trials and Finals events. The resulting guidelines 
included 1) increase sensor fusion, 2) decrease number of operators, 3) decrease the amount of operator 
input needed to control the robot, 4) don’t separate the robot into legs and arms, 5) plan for low 
bandwidth, and 6) design for the intended users.  
 
Other studies of robotic competitions have used combinations of directly observable measures of task 
performance for more holistic systems evaluation [Pellenz et al., 2014] and subsystem evaluation using 
an automated process made possible with access to team software and code [Amigoni et al., 2015]. 
However, many of these methodologies focus on ranking, as did the DRC Finals, where the best run per 
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team was used for scoring. The analysis presented in this article focuses on metrics including task 
completion, duration, and errors, to investigate the impact of HRI on performance. Similar studies of 
HRI have been performed on robotic competitions such as at the AAAI/RoboCup Robot Rescue 
Competition [Yanco and Drury, 2007] and of real world disaster response events [Murphy and Burke, 
2005].  

3. DARPA Robotics Challenge Finals 
The DRC Finals were executed similarly to the Trials in terms of robot operation, except all 8 tasks were 
to be executed in one combined run. Additionally, in the Finals, all robots were required to operate with 
no tethers or cables, as opposed to the Trials where the robots could be tethered to power sources, fall 
arrestors, and wired communication cords. The tasks to complete, in the order in which they appeared 
within the test course, were Vehicle, Egress, Door, Valve, Wall, Surprise (Lever or Plug), Rubble 
(Debris or Terrain), and Stairs (see Figure 1). The competition also featured degraded communications 
to influence the use of autonomy. More information regarding the rules and structure of the competition 
are available in [DARPA, 2015]. 
 

 
Figure 1. The DARPA Robotics Challenge Finals tasks, in the order they were encountered in the test course.  

Left to right, top to bottom: Vehicle, Egress, Door, Valve, Wall, Surprise (Lever, Plug), Rubble (Terrain, Debris), Stairs. 

3.1. Task Details 
The Vehicle task required the robot to drive the Polaris vehicle forward on a track, avoiding two barriers 
on the course. A point was scored once the entire vehicle was parked within the designated area. If the 
vehicle became uncontrollable and was E-stopped or hit a barrier along or at the end of the course, no 
point was awarded. This task focused mainly on manipulation of the vehicle controls (throttle and 
steering), using the robot’s arms and/or legs depending on teach team’s solution. Teams were allowed to 
outfit the Vehicle with passive modifications to enable the robot to drive properly, such as extensions 
that allow the robot to drive from the passenger seat. 
 
The Egress task required the robot to first complete the Vehicle task. Once successfully completed, the 
robot was required to exit the car and then traverse to a designated task completion area. This task 
required the robot to use manipulation and mobility to exit the vehicle and move to the designated area. 
Teams were allowed to bypass this task via a 10 minute reset, wherein their field team could extract the 
robot from the car and place it in front of the Door task. 
 
If a team chose to not perform the Vehicle task (and subsequently the Egress task), then they were 
required to walk downrange over the Vehicle course, or Bypass Vehicle by Walking. The terrain was 
mostly compacted dirt/sand, which was the only compressible ground present through the competition 
course. Teams would score no points for walking downrange into the end zone, but they could continue 
performing other tasks starting with the Door. 
 
The Door task consisted of a single door that had to be opened fully (away from the robot) and then the 
robot had to be moved through the door, in order for the task to be completed. The door had a lever-style 
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handle that could be actuated in either direction to open the door. The door was not weighted; however, 
wind could cause resistance in either direction. Manipulation was used to actuate the lever and push the 
door open. Once the door was fully opened, it was held in place by a magnet to prevent it from swinging 
back and damaging the robot. Mobility was used to move through the door frame. Some robots were too 
wide to walk through the door normally and as a result had to sidestep through the door. 
 
The Valve task consisted of a single wheel valve with four spokes that needed to be rotated 360° counter 
clockwise. The focus of this task was manipulation, but mobility was used to walk to position the robot 
in front of the valve. The majority of teams used a single gripper to rotate the valve, but the robots used 
different methods for performing the actual rotation.  
 
The Wall task consisted of a circular wall segment that had to be cut and removed. The robot had to first 
traverse to where two shelves were mounted on a wall. One shelf, 0.8m above the ground, held one of 
each type of drill. The other shelf, 1.1m above the ground, also held one of each type of drill. One drill 
was a standard perpendicular drill with a side handle; the other drill was a rotary cut tool. The 
perpendicular drill required the robot to depress the button for the entire time it was used to cut, whereas 
the rotary cut out tool was activated by depressing an on switch once (after 5 minutes the drill shut off 
and had to be retriggered). This task focused on manipulation, but required mobility to position the robot 
in front of the shelves and wall. 
 
The Surprise task consisted of three possible tasks: pull a lever down, remove a plug from a socket and 
plug it into another socket, or open a box and push a button. On the first day of the competition, the 
Surprise task was the lever (Surprise-Lever) and on the second day it was the plug and socket 
(Surprise-Plug). Each of the surprise tasks focused on manipulation and only required mobility to 
position the robot in front of the task. 
 
The Rubble task consisted of either a debris field (Rubble-Debris) or a terrain field (Rubble-Terrain); 
each required the robot to successfully traverse the field in order to score a point. The debris field was 
focused mainly on mobility, but could include manipulation if the robot were to actively remove debris 
(many robots that chose debris just drove right through, pushing the debris out of the way). The terrain 
field was made up of cinder blocks at varying orientations to induce pitch/roll challenges for planning 
footfalls, thus was entirely focused on mobility. 
 
The Stairs task consisted of a staircase with four steps and a railing only on the left side. The robot was 
required to ascend the stairs to the top platform in order to receive a point. This task was focused on 
mobility, but there was an opportunity to use manipulation to grasp the railing as the robot ascended.  

3.2. Communications 
Two communication settings were implemented during the competition: one for outdoor tasks (Vehicle, 
Egress, Door, Stairs) and another for indoor tasks (Valve, Wall, Surprise, Rubble). Teams had a high 
and low bandwidth line to communicate from their control room to the robot. The high bandwidth line 
was limited to ≤300 Mbit/sec (which included data to the robot and data from the robot) whereas the low 
bandwidth line was limited to a data rate of 9600 bit/sec. The teams had the option to send data on either 
line at their discretion. When executing outdoor tasks, both communication lines were fully available for 
teams to use, but during indoor tasks the high bandwidth line was degraded. It experienced blackout 
periods spanning from 1 to 30 seconds, which became progressively shorter as the run time increased. 
The limitation in communications was used as a method to reward teams with effective autonomous 
processes while also reflecting realism of a disaster response scenario. The low bandwidth line was 
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constant, and allowed for smaller pieces of data (such as joint encoder values) to be transmitted 
independent of location/time on the course.  

3.3. Scoring 
Teams performed two runs, one per competition day, which were scored individually. For each 
completed task, teams received one point, with the exception of Bypass by Walking for which no point 
was awarded upon completion. The highest scoring run, based on total points scored, was used for the 
final ranking. Teams with equivalent scores were ranked by shortest task completion time over longer 
times. Task time was cumulative and was recorded until the last point that was scored for a run. For 
example, if a team completed the first three tasks in 9 minutes and spent 51 minutes trying 
unsuccessfully to complete the remaining tasks, then their score was 3 and task time was 9 minutes. If a 
reset was called, the team was required to take a minimum time penalty of 10 minutes. Teams had 60 
minutes to complete a run. 

4. Methodology 
The methodology used is very similar to that of our study of the DRC Trials [Yanco et al., 2015]. 
Additions and changes to the methodology for the DRC Finals were pre-competition team visits (for 
those teams who opted to participate in them), more in-depth and targeted interviews on-site at the DRC 
Finals, and fewer teams performing simultaneously allowed for a more detailed analysis of the Finals. 
For example, the schedule of the DRC Finals allowed our team to observe all of the public robot runs on 
the field, and all runs were observed from the control room for teams who consented. This study was 
approved by the Institutional Review Board (IRB) at the University of Massachusetts Lowell. For 
anonymization purposes, no teams who consented to participate in this study are referenced by name 
throughout this paper.  
 
It should be noted that this study was of a competition and not a controlled experiment. While the 
evaluation team had access to many of the DRC Finals competing teams, our data streams are limited to  
in-person interviews, observable actions on the field and in the control room, and reviewing video 
footage. The metrics considered in this analysis are primarily those that can be directly observed. Our 
goal was to not interfere with task execution by the teams who consented to participate in the study. As 
such, some metrics for HRI with respect to autonomous operations or shared autonomy [Steinfeld et al., 
2006; Murphy and Schreckenghost, 2013] are not applicable as explicit measures, given the limitation of 
collecting data in a competition setting. The same limitations would hold for a real field deployment 
(see, for example, [Burke, 2004]). 

4.1. Team Interviews 
Approximately two months prior to the competition, the DRC Finals teams were invited to participate in 
this study via email and offered either a pre-competition visit to their home site for a more 
comprehensive interview and/or an on-site interview at the competition venue. Both interview types 
allowed for better insight into how each team’s interaction method functioned, and improved the 
accuracy of control room observations during the competition.  
 
Seven teams consented to pre-competition visits, each lasting 3-6 hours. The aim of these visits was to 
understand the team’s strategy for performing in the competition and to get a preview of the state of 
their robot’s performance and interaction methods. Each team was observed practicing task execution 
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while members of the evaluation team recorded photos, videos, and notes on many aspects of their HRI, 
such as: 

• Robot: type, modifications from base platform, additional cameras/sensors, balancing, gripper 
types, preventative behaviors (e.g., falls, overheating)  

• Operators: number, roles, coordination, task-specific operators, preparation 
• Interface: control methods, output modalities, use of simulation, autonomy levels, sensor fusion 

displays, support of simultaneous operators, task-specific configurations 
• Communications: outdoor vs. indoor bandwidth techniques, compensatory autonomy 
• Tasks: most and least confident to perform, strategies for each, Surprise/Rubble preferences 
• Progress: implementation of HRI, practice time, operator training and procedures 

 
Additional recruiting was performed over e-mail and on-site at the competition venue, resulting in a total 
of 20 of the 23 competing teams electing to participate in our study. Similar interviews were performed 
on-site, albeit in a compressed time period, for newly recruited teams and to update the previously 
interviewed teams. All of this information was used to generate a set of documents outlining each team’s 
interaction method. These documents were studied by the evaluation team before observing each run on 
the field or in the control room, enabling a better understanding of what the teams were doing while 
operating their robots. Observers in the control room also had an opportunity to question team members 
just after their run was over to provide additional context or explanation for any actions observed. 

4.2. Data Collection 
Data collection sheets to be used for recording handwritten field and control room observations were 
designed and given to all observers. During each run, the field observer recorded robot movements, 
critical incidents, and points scored during task execution on a minute-by-minute basis. The same was 
done by the observer in the control room, but was focused on control methods used by each operator 
during task execution, input devices, data displays visible, and task-relevant dialog between operators.  
 
Four different teams ran simultaneously during the DRC Finals. The evaluation team consisted of nine 
observers operating in pairs between the field and control room, with one additional observer for control 
rooms that used more complex interaction methods. Three members of the evaluation team were 
dedicated to observing control rooms and six alternated between field and control room observations. 
 
The evaluation team exercised the recording of data during the team rehearsal and practice runs 
conducted prior to the competition days. During this exercise, multiple observers recorded the actions in 
one team’s control room while another set of observers did the same for that team’s robot on the field. 
Afterwards, the observations were compared to ensure each observer was taking notes in a similar level 
of detail and to calibrate how to properly classify critical incidents (see section 5.4) and describe the 
HRI techniques exhibited. During the competition, a total of 49 runs (2 runs per team, plus 3 re-runs) 
were observed from the field, and 43 from the control room.  

5. Analysis Methods 
The analysis of performance metrics relied primarily on the data collected by the field and control room 
observers and the team interaction method outline documents. Additionally, video recordings of the field 
(all teams) and control rooms (consented teams only), made available by DARPA, were used to verify 
team HRI characteristics, task success/failure, and critical incidents.  
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A single person combined the field and control room data sheets, then used the video to review any 
conflicting observations. A second person was used to verify that all of our team members conducting 
field observations coded according to the definitions, using Cohen’s Kappa for inter-coder reliability, as 
described in section 5.6. The interaction method characteristics and their categories outlined in section 
5.5 were determined based on the pre-competition team interviews and observations from the control 
rooms. The characteristics were then used to classify each interaction between the operator and robot 
when performing tasks.  

5.1. Task and Subtask Breakdown 
The point structure for the DRC Finals was simplified compared to the Trials, in that only 1 point could 
be earned for completing each task, rather than awarding points for completing subtasks. The robot had 
to perform a series of mobility and manipulation actions to complete each task; many of the tasks 
required similar motions to that of other tasks. It was also observed that performing teams were using 
similar interaction techniques across multiple tasks. To better determine effective HRI methods across 
more broad robotic actions performed to accomplish tasks, we increased the granularity of observable 
robot performance: each task was broken down into subtasks, which are completion milestones that 
needed to be performed to achieve their parent task (e.g., Task: Door; Subtasks: Traverse to door, Open 
door, Traverse through doorway) and subtask actions, which are individual robot motions performed to 
complete some subtasks (e.g., Subtask: Open door; Actions: Align with door, Grasp/unlatch handle, 
Push door open). All possible actions needed to complete a subtask were defined even though some 
teams did not perform them (e.g., some teams did not have to push the door open if it swung open on its 
own due to wind). If a team did perform a particular subtask action on a task, but another team did not, 
the former team simply provided an additional observable data point to be evaluated (e.g., the more 
actions performed to complete a task, the more opportunities for failure). 
 
The Finals tasks were divided into 11 tasks, 25 subtasks, and 37 subtask actions. Note that some 
subtasks did not have defined subtask actions if there were not directly observable and discernable steps 
taken to complete them (mostly for subtasks that involved traversing from one task to another). See 
Table 1 for the full task breakdown. 
 
Each task, subtask, and subtask action was then categorized by the type of manipulation and mobility 
activities that it required to be completed, referring to the type of robot motion (i.e., mobility for 
locomoting the entire body of the robot through the task space, or manipulation for maneuvering the 
robot’s arms and grippers to interact with the task apparatus) required to perform it with respect to the 
robots surroundings (e.g., obstructions to be avoided) and objects being manipulated (e.g., tool 
operations). Similar breakdowns/taxonomies have been developed for bipedal locomotion [Torricelli et 
al., 2015] and hand-centric manipulation [Bullock, Ma, and Dollar, 2013], but are primarily focused on 
primitive motions only. The breakdown used in this study does not consider elements or types of robot 
perception needed to complete each of the tasks, as this level of information was not available for all 
competing teams, particularly during task execution. Many of the tasks in the DRC overlap with respect 
to the type of robot capability required to complete them in this regard. By categorizing each action, it 
allows for a richer set of data points to be drawn from the competition performance, and enables this 
analysis method to be used for robot manipulation or mobility in other venues/activities.  
 
Six subtask functions were defined: 

• Unobstructed Traverse (UT): Mobility over flat, open ground (e.g., walking from the Valve to 
the Wall) 
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• Obstructed Traverse - Foot (OTF): Mobility over ground with obstructions that pose challenges 
to the robot's lower extremities (e.g., walking over the blocks in Rubble-Terrain) 

• Obstructed Traverse - Robot (OTR): Mobility over ground with obstructions that pose challenges 
to the robot's entire body (e.g., walking through the Door) 

• First Order Manipulation (FOM): Fine or coarse manipulation and use of the end effector (e.g., 
rotating the Valve wheel) 

• Second Order Manipulation (SOM): Interacting with a non-affixed object, guiding the end 
effector of the object (e.g., moving the drill to cut the Wall) 

• Third Order Manipulator (TOM): Manipulating a system with its own control loop (e.g., driving 
the Vehicle) 

 
By coding each as one or more of these functions, broader conclusions about HRI when performing 
certain types of activities with humanoid robots (rather than just specific tasks) can be determined by 
using performance metrics that correspond to subtasks of each function. Of the 25 subtasks, there are 16 
mobility subtasks (9 UT, 4 OTF, and 5 OTR) and 9 manipulation subtasks (7 FOM, 2 SOM, and 1 
TOM). The full subtask breakdown can be found in Table 1. 

5.2. Attempts 
Each task/subtask could be attempted multiple times during a run, as needed. One metric for attempts is 
the ultimate success or failure of attempts. If a task or subtask was marked as failed, then it was either 
consciously abandoned by the team, left incomplete due to time expiration, or a fall and/or reset caused 
it to be unable to be completed. A second or third attempt at the task/subtask could be performed if it 
was consciously abandoned or left incomplete due to a fall and/or reset. Success is defined as 
completion that allows for another task/subtask to be attempted, outside of time constraints. This metric 
differs from the DRC's official ruling for completing tasks towards scoring points. For example, the 
criteria for scoring a point on Rubble-Terrain is that the entire body of the robot must be beyond a line 
on the ground after the terrain pile. If the robot were to fall over the line, it could earn the point, but 
most instances like this were followed by a reset, whereby members of the field team intervened and 
stood the robot back up. For our analysis, a situation like this would be considered a failed attempt, 
regardless of whether or not a point was scored. 
 
A more detailed metric for attempts is the percentage of failed attempts, or the amount of failure/errors 
that occurred while performing the task/subtask, regardless of whether or not it was ultimately 
successful or not. This metric is calculated as follows: 

• Subtasks: Total failed attempts for all child subtask actions / total attempts for all child subtask 
actions (if a subtask does not have child subtask actions, then the ultimate success/failure metric 
is used) 

• Tasks: Total failed attempts for all child subtasks / total attempts for all child subtasks without 
child subtask actions and those for all grandchild subtask actions 

 
This metric best represents each team's particular control method and strategy for performing each 
task/subtask. For example, a team that uses multiple actions to perform a subtask (e.g., grasp the Valve 
wheel, rotate 90 degrees, release, repeat three more times) has more attempts that have the possibility of 
failing versus a team that uses one action to perform a subtask (e.g., grasp the Valve wheel, rotate 360 
degrees, release) has fewer attempts that can fail. It should be noted that this metric weighs all subtasks 
and subtask actions equally.  
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T/S/A Task/Subtask Name 

UT OTF OTR FOM SOM TOM  T/S/A Task/Subtask Name UT OTF OTR FOM SOM TOM 

T Vehicle      ✔ T Surprise-Lever ✔   ✔   

S Drive through course      ✔ S Traverse to Lever ✔      

A Steer vehicle to avoid barriers      ✔ S Pull lever down completely    ✔   

A Depress and release pedal      ✔ A Contact/grasp lever    ✔   

T Bypass Vehicle by Walking   ✔    A Pull lever down    ✔   

S Traverse beyond finish line 
avoiding Jersey barriers   ✔    A Release grasp on switch    ✔   

T Egress   ✔ ✔   T Surprise-Plug ✔   ✔ ✔  

S Prepare robot for egress    ✔   S Traverse to Plug ✔      

S Extract robot entirely from 
vehicle   ✔    S Remove plug from left 

receptacle    ✔   

S Transit to the 'reset box'   ✔    A Contact/grasp plug in left 
receptacle    ✔   

T Door ✔ ✔ ✔ ✔   A Pull plug out of left 
receptacle    ✔   

S Traverse to Door ✔      S Insert plug in right 
receptacle    ✔ ✔  

S Open door    ✔   A Insert plug in right 
receptacle     ✔  

A Align with door ✔      A Release grasp on plug    ✔   

A Grasp/unlatch handle    ✔   T Rubble-Debris ✔ ✔ ✔    

A Push Door Open    ✔   S Traverse to Rubble Pile ✔      

S Traverse through doorway  ✔ ✔    
S Bull rush through  ✔ ✔    

A Align with passageway ✔      

T Valve ✔   ✔   A Move debris out of way  ✔  ✔   

S Traverse to valve ✔      T Rubble-Terrain ✔ ✔     

S Complete valve rotation    ✔   S Traverse to Terrain Pile ✔      

A Align with valve ✔      S Traverse over terrain pile  ✔     

A Grasp/Contact valve    ✔   A Ascend first tier  ✔     

A Rotate valve    ✔   A Ascend second tier  ✔     

A Release valve    ✔   A Ascend third tier  ✔     

T Wall ✔   ✔ ✔  A Descend to fourth tier  ✔     

S Traverse to shelf ✔      A Descend to fifth tier  ✔     

S Grasp and activate drill    ✔   A Descend to ground  ✔     

A Grasp drill    ✔   T Stairs ✔ ✔     

A Power drill on    ✔   S Traverse to Stair Entrance ✔      

S Traverse to wall (with drill in 
hand) ✔      S Ascend stairs  ✔     

S Cut opening in wall     ✔  A Align with stairs ✔      

A Align with wall ✔      A Ascend first stair  ✔     

A Position arm    ✔   A Ascend second stair  ✔     

A Cut profile     ✔  A Ascend third stair  ✔     

A Remove wall piece    ✔   A Ascend fourth stair  ✔     

A Extract arm and drill    ✔   A Ascend fifth stair (top of 
platform)  ✔     

Table 1. Breakdown of each task (T) into subtasks (S) and subtask actions (A) and their corresponding functions.  
Note: all tasks are assigned functions based on their subtasks’ functions. 
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5.3. Duration 
Each subtask was marked with a start and end time, which was derived from the data collection sheets 
used at the competition. The end time of one subtask was used as the start time for the next subtask that 
was attempted. If a subtask started and ended within the same minute, it was given a value of 30 
seconds. The duration for a task was the sum of its subtask durations. Subtask actions were not given 
durations as each action could have occurred multiple times.  
 
For analysis purposes, the duration for a specific task/subtask to be completed is expressed as a 
percentage of the average duration for that task/subtask to be completed across all runs for all teams, 
referred to as relative duration. For example, the average aggregate duration for the Surprise-Plug task is 
11.42 minutes. If a team’s actual duration to complete that task is 7 minutes, then the relative duration is 
expressed as 7 / 11.42 = 61.3%. Any values below 100% are faster than the aggregate and any above 
100% are slower. The same is done for subtasks. 

5.4. Critical Incidents 
A total of 9 possible critical incidents were identified as possible occurrences during task execution that 
are indications of potential failures and/or a lack of situation awareness. They are defined as: 

• Tip (T): The robot begins to lean noticeably to one side unintentionally. 
• Hit (H): Part of the robot makes contact with the environment unintentionally. 
• Trip (Tr): The robot's foot/leg snags part of the environment causing it to tip or fall to one side. 
• Miss (M): The robot attempts to grasp something or place a footfall and misses. 
• Stuck (St): Part of the robot is stuck on or in the environment, potentially causing a trip or fall. 
• Slip (S): The robot's limb slips off of part of the environment.  
• Drop (D): An object the robot was carrying is dropped unintentionally. 
• Fall (F): The robot falls over and makes contact with the environment, which may be followed 

by a reset. 
• Reset (R): A team calls for a reset to intervene and fix something about the robot. 

 
The occurrence of a critical incident was noted if it was visually observed being performed by the robot, 
according to the definitions above, on the field and/or by observations of the operators in the control 
room. All critical incidents noted during the competition were confirmed using video footage 
afterwards. 
 
A total of 87 critical incidents were observed, of which 31 were falls, 14 were resets not prompted by 
falls, and the remaining 42 were other critical incidents. Every task or subtask attempt presents another 
opportunity for a critical incident to occur; as such, multiple critical incidents can occur within the same 
attempt. For analysis purposes, critical incidents are expressed as an average number of critical incidents 
per attempt. This allows for comparisons of critical incidents (or lack thereof) between teams on the 
same task, subtask, and/or subtask function. Values below 100% mean that at least 1 other attempt was 
successful at that task/subtask, but any values greater than or equal to 100% means that every attempt 
resulted in at least one critical incident. Table 2 outlines all observed critical incidents.   
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 Vehicle 
Bypass 

Vehicle by 
Walking 

Egress Door Valve Wall Surprise- 
Lever 

Surprise- 
Plug 

Rubble- 
Debris 

Rubble- 
Terrain Stairs 

Number of teams 
to attempt 19 4 9 22 17 12 10 11 6 6 8 

Percentage of all 
teams to attempt 82.6% 17.4% 39.1% 95.7% 73.9% 52.2% 43.5% 47.8% 26.1% 26.1% 34.8% 

Total falls 0 4 3 12 2 3 1 1 1 3 1 
Total resets (not 
caused by falls) 4 3 2 2 1 2 0 0 0 0 0 

Total other 
critical incidents 

1 2 1 9 0 15 3 8 2 1 0 
Hit: 1 Stuck: 2 Stuck: 1 Miss: 5 

Stuck: 4 
n/a Tip: 1  Hit: 7 

Miss: 6  Drop: 1 
Miss: 2 
Stuck: 1 

Hit: 2  Miss: 4 
Drop: 2 

Trip: 1 
Stuck: 1 

Tip: 1 n/a 

Table 2. Number of teams (out of 23) that attempted each task and the total critical incidents on each task 

Critical incidents have the potential to provide insight into relative task difficulty (discussed further in 
section 6.1) and can highlight issues that would be the most detrimental in a real world disaster scenario. 
Using the failure taxonomy developed by Carlson and Murphy [2005], critical incidents can be 
classified as “terminal failures” (those that result in termination of a mission or run) or “non-terminal 
failures” (those that may reduce the capability of the robot, but do not terminate the mission). All of the 
observed falls but one, and all other critical incidents resulting in a reset, would be classified as terminal 
failures. All other critical incidents can be classified as non-terminal failures. All critical incidents 
appeared to be due to a loss of awareness of robot state, often resulting from communication limitation 
issues; in one case, a fall occurred due to a low battery. For example, one fall was due to a loss of 
communication with the robot’s left knee, causing the robot to collapse.  
 
Critical incidents resulting in a reset were always detrimental to team performance due to the imposed 
minimum 10 minute time penalty; in many cases, resets required more than 10 minutes. Hits, misses, 
slips, and drops have the potential to cause significant time delays as well, particularly in cases in which 
a task has to be started again from the beginning or if the incident requires the task to be completed in a 
different way than planned (e.g., dropping the drill). Falls and incidents leading to falls (i.e., tip, trip, or 
stuck) have the potential to be extremely detrimental as the fall itself may cause damage to the robot, 
requiring additional time for repairs or rendering the robot unable to continue. 

5.5. Team Interaction Method Characteristics 
All teams were responsible for creating their own interaction method to compete in the DRC Finals. The 
interaction methods of each of the 20 teams participating in this study were distilled into a series of 
characteristics to determine trends between similar approaches, including the number of display screens, 
types and number of input devices, sensor display instances, sensor fusion, active operators, and control 
methods to perform tasks.  
 
Some characteristics were tracked per subtask, some by tasks, and others as overall qualities. Most 
characteristics are expressed in terms of an average amount of usage (e.g., average number of input 
devices used per tasks attempted) and some are categorized into higher level groups (e.g., type of sensor 
fusion display used). Many of the analyses presented in section 6 are an evaluation of team 
performances across both competition days, using both runs as separate data points. While many of the 
same techniques were used from one day to the next, it was not always the case. The discussion in this 
section primarily addresses the interaction characteristics exhibited by the teams in general and does not 
differentiate between the two competition days.  
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5.5.1. Input Devices, Operators, and Data Displays 
Each team’s interaction method consisted of a series of stations (a combination of display screens, input 
devices, and at least one active or passive operator). All stations used at least one display screen, 
keyboard, and mouse; some included other input devices such as game controllers (handheld device with 
joysticks, directional pads, and buttons), switch boards (tabletop device with buttons, knobs, and dials), 
and steering wheels with gas pedals (used only for the Vehicle task). Input devices other than keyboards 
and mice were only used for certain tasks; for instance, one team used the game controller only during 
the Wall and Surprise tasks.  
 
An active operator is defined as someone using an input device for robot control or actively 
manipulating sensor data to aid other active operators. Many teams used one or more operators who 
were consistently at a control station during task execution (a fixed operator layout). Some teams 
changed the number of these operators, as well as the individuals acting as operators, to perform certain 
tasks, some changing only once during a run (most commonly using a specific operator to perform only 
the Vehicle task; for analysis purposes, still considered a fixed operator layout) and some changed 
between many of the tasks (a rotating operator layout). A passive operator is someone in the control 
room that was watching over the shoulders of active operators, offering strategic advice. 
 
Data displays in each interface take the form of output streams from sensors and input elements that are 
used within the output streams. These include camera views, point clouds (generated from LIDAR), 3D 
robot avatars (generated from joint encoder values), object models or templates (3D rendering of an 
object or 2D shape, representing many points in space), and interaction markers (a single waypoint or 
end goal for the robot’s limb or body positioning). Some data displays were used by each team only for 
certain tasks, such as one team using six additional camera views fused with the robot avatar only during 
the Vehicle and Egress tasks. Additional strategies were observed using these data displays, such as 
simulating a robot movement with the 3D robot avatar before executing it (providing a preview of the 
intended action to the operator [Johnson et al., 2015], dubbed “simulation before execution” for this 
study).  
 
See Table 3 and Table 4 for a summation of these characteristics across all teams. 
 

 

Input Devices Operator Characteristics 

Keyboard 
and 

mouse 

Game 
controller 

Steering 
wheel 

Gas 
pedal 

Switch 
board 

Active 
operators 

Changes in 
number or 

uniqueness of 
active operators 

Passive 
operators 

Fixed 
operator 

layout 

Rotating 
operator 

layout 

Number and percentage of 
teams observed in the control 
room with this characteristic 

20 
100% 

6 
30% 

4 
20% 

2 
10% 

3 
15% 

20 
100% 

12 
60% 

20 
100% 

14 
70% 

6 
30% 

Average amount per team 2.2 0.6 0.2 0.3 0.7 1.6 0.3 2.8 
n/a Stdev amount per team 0.9 0.4 0.1 0.2 0.5 0.7 0.3 1.3 

Range across teams 1 – 4 0 – 2 0 – 1 0 – 1 0 – 1 1 – 4 0 – 14 1 – 5 
Table 3. Input devices and operator interaction method characteristics across all teams observed in the control room. 

Averages and standard deviations calculated per tasks attempted with that characteristic. 
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Display 
screens 

Data Display Instances 
Simulation before 

execution Camera 
views 

Point 
cloud 

3D robot 
avatar 

Object models 
or templates 

Interaction 
markers Total 

Number and percentage of teams 
observed in the control room with 

this characteristic 

20 
100% 

20 
100% 

19 
95% 

18 
90% 

15 
75% 

18 
90% n/a 10 

Average amount per team 5.1 6.2 2.5 2.7 3.2 2.9 15.9 
n/a Stdev amount per team 3.2 4.9 1.3 1.4 1.7 1.7 9.5 

Range across teams 2 – 12 2 – 23 0 – 6 0 – 8 0 – 8 0 – 8 2 – 36 
Table 4. Data display and simulation before execution technique interaction method characteristics across all teams observed 

in the control room. Averages and standard deviations calculated per tasks attempted with that characteristic. 

5.5.2. Sensor Fusion 

All but one team in this study used some type of sensor fusion to combine multiple data displays to 
share a reference frame. This was done in two ways: using the point cloud as the reference frame for a 
variable perspective that could be dynamically adjusted (Type 1) or using the camera view as the 
reference frame for a fixed perspective (Type 2). When using Type 1 sensor fusion, the operator is free 
to adjust the viewpoint perspective within a virtual representation of the robot and its environment, 
allowing for many exocentric views of a scenario. Type 2 sensor fusion primarily uses a video feed from 
a camera and therefore prevents the operator from adjusting perspective within the frame, aside from 
physically moving the camera (e.g., tilting the robot’s head). See Figure 2 for an example of each type. 
 

 
Figure 2. Left and middle: Two examples of Type 1 sensor fusion using a variable perspective for an exocentric view of the 
robot model and point cloud of the environment. Right: Example of Type 2 sensor fusion using a fixed perspective from a 

camera angle on the robot’s head. Image from [Kohlbrecher et al., 2015], used with permission. (Note that the image is from 
a published paper discussing the DRC Trials and a team’s interface.)  

Of the 19 (of 20) teams that exhibited sensor fusion, 6 (32%) only used Type 1 and 13 (68%) used both 
Type 1 and Type 2. The total number of data displays combined to make each unique instance of sensor 
fusion was also calculated to determine the amount of sensor fusion: low = 3-5 combined feeds in a 
single reference frame, medium = 6-7 combined feeds across two reference frames, high = 8-10 
combined feeds across two reference frames. All teams that used only Type 1 sensor fusion were 
classified as using low amounts of sensor fusion, and those that used Type 1 and Type 2 were classified 
as using medium or high amounts of sensor fusion. Note that this analysis is with respect to unique 
combinations (i.e., from a specific reference frame) of sensor fusion and is not related to the number of 
display screens (e.g., for teams with many operators, some instances of sensor fusion were duplicated 
for them to see, but do not constitute a higher number of fused feeds). A summary of sensor fusion 
characteristics across all teams can be found in Table 5. 
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5.5.3. Control Methods Levels of Effort 
Each team’s interaction method was used to convey commands from the operator(s) to the robot to 
perform tasks. Control methods for each type of task vary based on the type of information that must be 
conveyed to the robot from the operator, each of which results in the robot moving its arm and hand 
(manipulation) or legs, feet, and body (mobility). Some control methods use higher level commands 
(e.g., waypoint navigation) while others use lower level commands (e.g., individual joint angles), each 
which requires a certain amount of manual performance from the operator (e.g., more mouse clicks or 
keystrokes) as compared to the work by the robot to assist in performance autonomously (i.e., less 
interaction produces more action towards task progression, and vice versa). From this, a set of “levels of 
effort” for each control method has been distilled to allow for comparison between the core of each 
team’s interaction methods, rather than merely qualitatively comparing each team’s implementation of 
what could otherwise be categorized as the same technique. Many of these control methods are enabled 
by using tools as part of the Robot Operating System [ROS, 2016], such as “MoveIt!” and “GraspIt!”. 
 
“Level of effort” is most closely related to the metric of interaction effort [Goodrich and Olsen, 2003], 
although the interaction between the robot and operators at the DRC was much more fluid in terms of 
autonomous operations, making measures of robot attention demand, neglect time, and free time 
difficult to track. It also is similar to HRI metrics for time comparison of manual to autonomous 
operations [Schreckenghost and Milam, 2010], in that an amount of work by both agents towards task 
execution is evaluated, but still difficult to explicitly measure in this case. Rather, the level of effort 
categories primarily rely on the control methods used (as they were directly observable), and is used to 
group together similar methods together for comparison purposes. While an explicit level or amount of 
autonomy is difficult to discern, the amount of automation needed by the robot/interface to assist the 
operator in performing a task increases with lower levels of effort due to the control method(s) used. 
 
Every observable command from the control room to the robot was marked for each run as one of these 
levels of effort per each subtask performed.  
 
For manipulation, the levels of effort are defined as: 

• Manipulation Level of Effort 1: Pre-defined action or script based on contextual information, 
such as the use of an object model or template, that generates manipulator trajectories; usually a 
single click or button press per action, sometimes the entire execution of a task is performed with 
a single action (e.g., turning the valve with a single wrist rotation). 

• Manipulation Level of Effort 2: Maneuvering an end effector (or interaction marker) using a 
keyboard, mouse, or game controller (generally visualized through an avatar of the robot using a 
Cartesian transform tool) which uses inverse kinematics and generates manipulator trajectories; 
if an object model or template is used it may provide contextual information (e.g., where to place 
fingers when grasping an object).  

• Manipulation Level of Effort 3: Sending individual joint angles using a keyboard, mouse, or 
game controller (sometimes using a Cartesian transform tool); does not use any contextual 
information.  

 
For mobility, the levels of effort are defined as: 

• Mobility Level of Effort 1: Placing a waypoint or “ghost” avatar for the robot to walk to and the 
footsteps are automatically generated.  

• Mobility Level of Effort 2: Pre-defined action or script to step in a specified direction a number 
of steps; two-dimensional directional control for traversing in a direction either continuously or 
incrementally (similar to that of wheeled robot teleoperation).  
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• Mobility Level of Effort 3: Manual placement and adjustment of individual footsteps; generally 
only used for tasks that involve changing elevations, such as Rubble-Terrain or Stairs. 

 
Another common technique was the placement of object models or templates into a camera view or 
point cloud display. These models and templates were used to add context to an autonomous action, 
such as guiding the robot toward exactly where the drill is or what shape to cut out for the Wall task. 
This technique has been used by teams at previous DRC events, sometimes referred to as 
“manipulables” [Johnson et al., 2014], “fixtures” [Stentz et al., 2015], or “affordances” [Fallon et al., 
2015]. 
 
Unlike the manipulation and mobility levels of effort, some teams did not use this technique at all. The 
levels of effort for model or template placement are defined as: 

• Model/Template Placement Level of Effort 1: Clicking a camera view or point cloud display to 
place the model or template; can be a few clicks, drawing a box, “scribbling,” etc.; includes 
defining an area for the robot to scan such that it can automatically place it. 

• Model/Template Placement Level of Effort 2: Manual placement and adjustment of a model or 
template using a keyboard, mouse, or game controller; sometimes using a Cartesian transform 
tool. 

 
In theory, better performance using a lower level of effort implies properly implemented and executed 
automation and supervisory control as part of that team’s HRI, while worse performance implies either 
poorly implemented autonomy, poor feedback techniques conveyed to the operator, or both. Conversely, 
better performance using a higher level of effort implies a very cognizant, well-trained operator or set of 
operators, capable of maintaining larger cognitive workloads, while worse performance could imply an 
overburdened or undertrained operator. A similar evaluation technique was performed in the HRI 
analysis of the DRC Trials [Yanco et al., 2015], referred to then as “Amount of Interaction”.  
 
All consented teams in this study except one were observed using at least two different levels of effort 
for manipulation and mobility (the bottom team in Table 14 did not make it far enough through the test 
course to attempt any manipulation tasks). For this reason, all metrics in later sections regarding the 
performance of a specific control method level of effort are correlated only to the subtask performance 
where they were exhibited. See Table 6 for the number of teams that used each level of effort. 
 

 
Type 1 Sensor Fusion 
(Variable Perspective) 

Type 2 Sensor Fusion 
(Fixed Perspective) 

Total amount of sensor fusion 
High Medium Low 

Number of teams 19 13 9 4 6 
Percentage of teams observed in the 
control room with this characteristic 95% 65% 45% 20% 30% 

Average amount of combined data 
displays per team 4.3 3.9 9.1 6.5 3.8 

Stdev amount per team 0.8 1.1 0.9 0.6 0.8 
Range across teams 3 – 5  2 – 5  8 – 10 6 – 7  3 – 5 

Table 5. Sensor fusion interaction method characteristics across all teams observed in the control room, noting the number of 
combined data displays that comprise each sensor fusion type. Averages and standard deviations calculated per tasks 

attempted with those data displays active. 
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 Manipulation  
Levels of Effort 

Mobility  
Levels of Effort 

Model/Template Placement 
Levels of Effort 

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 None Level 1 Level 2 
Number of teams 13 16 7 17 13 9 5 10 11 

Percentage of teams observed 
in the control room with this 

characteristic 
65% 80% 35% 85% 65% 45% 25% 50% 55% 

Table 6. Control methods levels of effort across all teams observed in the control room. 

5.6. Data Aggregation 
To measure the validity of our field coding system for tasks and critical incidents, a Cohen’s Kappa 
coefficient was calculated by having a single observer code one field run from each of the evaluation 
team members who coded field runs. The single observer coded observations from the field videos. This 
validity test was performed to measure the reliability and consistency between multiple observers when 
categorizing robot actions in the field during the competition, also taking chance into account. A Kappa 
value between 0.61 and 0.80 indicates that the coders were in “substantial agreement” [Landis and 
Koch, 1977]; Fleiss [1981] also suggests that a Kappa value above 0.75 indicates “strong agreement” 
above chance between coders. For each of the pairwise comparisons of the single observer and the field 
observation teams, Cohen’s Kappa for task coding was κ=0.81 excluding chance (κ=0.84 if chance was 
not factored in), κ=0.79 (κ=0.83), κ=0.82 (κ=0.86), κ=0.71 (κ=0.75), and κ=0.69 (κ=0.78). For critical 
incidents coding, κ=0.83 excluding chance (κ=0.90 if chance was not factored in), κ=0.83 (κ=0.90), 
κ=0.67 (κ=0.75), κ=0.47 (κ=0.88), and κ=0.81 (κ=0.88). For each of the field observations, many more 
task codings were made (average: 33.5, stdev: 16.2) compared to critical incident codings (average: 6.1, 
stdev: 2.7). The control room observations did not involve coding of interaction methods by many 
observers; this was performed later by a single team member, coding exhibited levels of effort, number 
of operators, and number of operator changes for each recorded observation note, all of which was 
verified through video of the control rooms provided by DARPA. 
 
To pull all of these data streams together, each pair of field and control room observations were merged 
into a singular form such that each set of observations could provide context for the other. For example, 
if the robot was observed dropping the drill during the Wall task from the field and it was marked as a 
“Drop” critical incident, but the observations in the control room show that the operators commanded 
the robot to do so, then it would not be a critical incident. Critical incidents and task attempts were also 
verified by reviewing video of each run. The merged observations were then used to generate a 
datasheet for each run that contained definitive task performance measures and HRI characteristics 
exhibited during task execution. An example datasheet can be seen in Table 7.  
 
From these datasheets, comparisons of performance between groups of teams that share similar 
characteristics (e.g., teams that used sensor fusion type 1 vs. those that used type 1 and type 2) or that of 
individual task/subtask performance using similar HRI characteristics (e.g., all task attempts using 
manipulation level of effort 1 vs. 2 vs. 3) have been performed, and are discussed in section 6. To retain 
anonymity, the teams that fall into each group are not given.  
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T/S/A 
Task/Subtask 

Name 
Start 
Time 

End 
Time Duration 

# of 
Successful 
Attempts 

# of 
Failed 

Attempts 

Total # 
of 

Attempts 

% of 
Failed 

Attempts 
Critical 

Incidents 

Manipulation 
Level of Effort 

Mobility 
Level of Effort 

# of 
Active 

Operators 

Changes in 
Active 

Operators 1 2 3 1 2 3 
T Valve 5:12 5:15 3 1 0 1 0 ✔ ✔ ✔ 2 

S Traverse to valve 5:12 5:14 2 1 0 1 0 ✔ 2 

S Complete valve 
rotation 5:14 5:15 1 1 0 1 0 ✔ ✔ 2 

A Align with valve 

n/a 

1 0 1 0 ✔ 2 

A Grasp/Contact 
valve 1 0 1 0 ✔ 2 

A Rotate valve 1 0 1 0 ✔ 2 

A Release valve 1 0 1 0 ✔ 2 

T Wall 5:16 n/a n/a 0 1 1 14% Drop ✔ ✔ 2 2 

S Traverse to shelf 5:16 5:18 2 1 0 1 0 ✔ 2 

S Grasp and 
activate drill 5:18 5:22 4 1 0 1 0 ✔ 2 

A Grasp drill 
n/a 

1 0 1 0 ✔ 2 

A Power drill on 1 0 1 0 ✔ 2 

S 
Traverse to wall 
(with drill in 
hand) 

5:22 5:25 3 1 0 1 0 ✔ 2 

S Cut opening in 
wall 5:25 n/a n/a 0 1 1 33% Drop ✔ 2 1 

A Align with wall 
n/a 

2 0 2 0 ✔ 2 

A Position arm 0 1 1 1 Drop ✔ 2 

Table 7. Example datasheet for a run, showing only the Valve and Wall task. Note that for size constraints some data streams 
are not depicted. In this example, the team used levels of effort 1 and 2 for manipulation, and only level 1 for mobility. When 

performing the Valve task there were 2 active operators, and there were also 2 when performing the Wall task, but not the 
same 2. There was a single operator change when cutting the opening in the wall. 

5.7. Performance Predictions 
After the assessment of the DRC Trials was completed in 2014, the evaluation team determined that it 
might be possible to estimate the scores of competing DRC Finals based on their HRI design. A simple 
prediction of the team ranks would not appropriately reflect the level of investigation into the HRI 
developed for the event, so the prediction was made in the form of an expected number of points scored 
in the competition. The prediction comprised of two main parts that were generated independently of 
one another: a model-based HRI evaluation (representing potential performance) and an additional team 
strategy component (representing deviations from that potential). Figure 3 depicts the method used to 
generate the predictions. A detailed discussion on the results of this prediction is presented in section 
6.4. 
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Figure 3. A flowchart of the prediction development method. 

5.7.1. Strategic Components 

The strategy component was based on an evaluation of several aspects of each team’s capabilities 
generated from data gathered during interviews prior to the competition. These aspects were identified 
during the DRC Trials evaluation as having an apparent significant impact on performance outside of 
HRI. The components are: 

• Training: The amount of practice the teams had with their robots and, more specifically, 
completing individual tasks, the transition between the tasks, and doing so end-to-end prior to the 
competition. 

• Robot Stability: Shown to have a large impact on performance during the Trials, the Finals teams 
were more differentiated in this category, with some bipedal robot teams developing techniques 
to prevent falling in the first place and even to get up after falling. Additionally, several teams 
employed robots that were inherently stable (e.g., quadruped, ability to leverage additional 
balancing features, etc.). 

• Task Strategy: Novel approaches to specific tasks that would improve the likelihood of success 
over other teams. An example of this is the “plow” technique some teams used to get through the 
Rubble-Debris task (i.e., do not manipulate any debris pieces out of the way, just drive through 
and push them out of the way). 

• Bandwidth Adaptability: During the Trials, there was a fairly large impact on performance for 
teams that did not address the low-bandwidth condition. Therefore, teams that had exceptional 
methods for addressing this (e.g., able to perform throughout high and low bandwidth comms 
periods) and teams that relied purely on high bandwidth communications were noted as such. 

 



 20 

Metrics were generated for each of these components (see Table 8). The value of these metrics were 
developed to be comparable to points gained or lost, again based on an estimate from the DRC Trials 
evaluation. However, it is important to state that the values attributed to these metrics are a rough 
estimate of their intrinsic effect on performance and not as a method to compare the relative impacts on 
performance. Additionally, Robot Stability, Task Strategy, and Bandwidth Adaptability were combined 
into a single metric for the team overall strategy, termed “Technique.” A high or low category was 
generated for these and was compared to the high or low categories assigned to the teams’ interaction 
techniques when evaluating the predicted impact on performance. 
 

Metric Range Description 

Training 
High Mixed task and mission practice greater than 1 month 
Low Less than 1 month of practice, limited practice or negligible practice 

Technique 

Robot Stability 
High Dynamically stable robots or strategy to achieve dynamic stability 
Low Dynamically unstable robots 

Task Strategy 
High Exceptional strategy for specific task(s) (e.g. drive thru debris) 
Low Common strategy across teams 

Bandwidth Adaptability 
High Operation in high or low bandwidth 
Low Operation in high-bandwidth only 

Table 8. Metrics, value ranges, and their corresponding descriptions used for the predictions analysis. 

5.7.2. HRI Model Components 
The second part of the prediction was the HRI model, which was generated exclusively from the results 
of the DRC Trials evaluation, considering correlations between the varying interaction techniques and 
performance. Team data collected prior to the Finals event allowed us to characterize each team in terms 
of what had been learned at the DRC Trials. The interaction techniques were generalized to interaction 
augmentation, interaction automation, and operator interaction for the different subtasks, key 
characteristics identified during the Trials evaluations. The teams were characterized by the level of 
effectiveness in these areas per the Trials evaluations (see Table 9). 
 
Effectiveness/ 
Confidence Level Interaction Automation Operator Interaction Interaction Augmentation 

High Trajectory planning based on desired end-point - 
essentially closed-loop automated path planning # Active Operators < 3 Lidar, camera, and simulated 

robot and object fusion 

Medium Pre-made scripts for actions and tasks - 
essentially open-looped control 3 <= # Active Operators < 6 Multiple feedback modalities 

for visual and/or range data 

Low Manual input into coordinated joint control for 
2-axis motion # Active Operators >=6 Simple, unfused camera(s) 

Table 9: Critical interaction techniques per Trial evaluations 

Team Subtask Function Interaction 
Automation 

Operator 
Interaction 

Interaction 
Augmentation 

X 

Obstructed Traverse 1 3 2 
Unobstructed Traverse 1 3 2 

First Order Manipulation 2 3 2 
Second Order Manipulation 2 3 2 

Table 10: Example HRI prediction model team characterization 

The connection between the Trials and the Finals was through the subtask function analysis; effective 
interaction techniques were identified during the Trials per these subtask functions, which were then 
compared to the subtask functions identified in the Finals task breakdown (see Table 1). Confidence 
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levels were generated for each team and each subtask based upon how their HRI techniques matched up 
with those identified from the Trials analysis. If a team had all the required effective interaction 
techniques for a given task (consisting of one or more subtasks), then the prediction included a point for 
that team and task.  
 
These were then built into a comprehensive model of the tasks for each team, combining the subtask 
functions required for each task (and their predicted performance on those subtasks) to come up with an 
expected confidence level for completion of the tasks as a whole. The fact that some tasks are more 
heavily weighted towards a subset of subtask functions (e.g., the bypass was almost entirely 
unobstructed traverse) was included in this analysis. 
 
Table 11 describes the components of the HRI model. Note that because this model was based on results 
from the Trials analysis, there were not always situations where the inclusion or lack of an interaction 
technique would result in a respective high and low confidence in completion of the task. For example, 
there was a strong correlation between low amounts of interaction for manipulation control methods and 
a high success rate, but a very weak correlation between the inverse. Therefore, in these situations only 
the strong correlations were considered. Refer to the analysis of HRI at the DRC Trials [Yanco et al., 
2015] for more details on the definitions of the techniques shown here. 

  

Subtask Function Range Approach Required 
First Order Manipulation (FOM) High Confidence Low levels of effort for manipulation 

Second Order Manipulation (SOM) High Confidence High levels of sensor fusion, use of object models or templates, or 
low amounts of effort for manipulation 

Unobstructed Traverse (UT) 
High Confidence High levels of sensor fusion, use of object models or templates, and 

control methods with low levels of effort 
Low Confidence Low levels of sensor fusion and high levels of effort for mobility 

Obstructed Traverse (OT) 
High Confidence High levels of sensor fusion and use of object models or templates, 

and control methods with low levels of effort 

Low Confidence Control methods with high levels of effort, or low levels of sensor 
fusion and high levels of effort for mobility 

Table 11. Components of the HRI model using subtask functions from the DRC Trials analysis. 

6. Results and Discussion 
Trends between many of the metrics for performance and interaction method characteristics have been 
found, with some statistically significant findings. Given the amount of data collected, there are many 
possible ways to evaluate team performance. Only the most pertinent findings are presented and 
discussed in the following analyses. In many of the tables in this section, the group with better 
performance is noted in the “Comparisons” columns. In these columns, statistical significance from 
performing unpaired t-tests are indicated by * (p < 0.05) or ** (p < 0.01). The tables are shaded to assist 
with visual data analysis and interpretation. Cells representing the best values in a column are white, 
with the cells progressively shaded darker as the values get worse for that metric. 

6.1. Task Difficulty 
Using all data points gathered from all runs on the field by all teams, aggregate performance metrics 
indicate general trends in performance for each task and subtask function. These measures are used to 
determine which subtask types (Table 12) and overall tasks (Table 13) were the most difficult.  
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In terms of mobility, unobstructed traverse (UT) exhibited the least amount of difficulty across all 
metrics. In contrast, obstructed traverse – foot (OTF) and obstructed traverse – robot (OTR) subtasks 
exhibited very high amounts of errors and the most falls. Second order manipulation (SOM) was by far 
the most difficult subtask function to perform in terms of manipulation, but also compared to all other 
subtask functions. The performance of SOM subtasks exhibited the highest number of errors, had the 
lowest number of completed subtasks, took the longest to complete, prompted the most resets (not 
caused by falls), and had the most other critical incidents. These findings follow the inherent increase in 
complexity between UT to OTR/OTF subtasks, or from FOM to SOM subtasks.  
 

Subtask 
Function 

Percentage of 
Failed Attempts 

Percentage of 
Successful 
Subtasks 

Duration to 
Complete 
Subtasks 
(Minutes) 

Falls Per 
Attempt 

Resets (Not 
Prompted by 

Falls) Per 
Attempt 

Other Critical 
Incidents Per 

Attempt 

avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev 
UT 4.5% 20.8% 95.5% 20.8% 2.1 2.5 1.5% 12.2% 0.0% 0.0% 0.0% 0.0% 

OTF 16.3% 33.5% 80.5% 38.5% 2.9 3.5 16.7% 36.6% 0.8% 6.2% 4.6% 21.1% 
OTR 23.1% 41.1% 78.0% 40.7% 3.3 4.4 14.7% 34.4% 2.8% 13.6% 4.2% 19.3% 

All Mobility 11.4% 30.6% 87.8% 32.2% 2.6 3.2 7.5% 25.6% 1.0% 8.2% 1.9% 13.3% 
FOM 17.7% 27.4% 88.9% 30.9% 3.7 2.7 6.0% 23.8% 0.4% 4.6% 25.2% 58.6% 
SOM 37.0% 34.6% 56.3% 49.6% 5.0 3.2 8.3% 28.2% 6.3% 22.4% 41.7% 65.4% 
TOM 3.9% 10.4% 94.9% 19.2% 3.8 4.2 0.00% 0.0% 6.4% 20.5% 2.6% 16.0% 

All Manipulation 15.2% 25.4% 86.8% 32.8% 3.8 3.1 4.7% 21.2% 2.6% 13.6% 19.0% 50.9% 
Table 12. Aggregate performance across all runs per subtask function.  

Task 

Percentage of 
Failed 

Attempts 

Percentage of 
Successful 
Subtasks 

Duration to 
Complete 

Tasks 
(Minutes) 

Falls Per 
Attempt 

Resets (Not 
Prompted by 

Falls) Per 
Attempt 

Other Critical 
Incidents Per 

Attempt 

Percentage of 
Runs Where 
That Task 

Was Skipped 
avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg 

Vehicle 3.9% 10.4% 94.9% 19.2% 3.8 4.2 0.0% 0.0% 6.4% 20.5% 2.6% 16.0% 17.0% 
Bypass Vehicle 

by Walking 81.3% 37.2% 20.8% 39.6% 20.0 2.8 25.0% 37.8% 25.0% 37.8% 12.5% 35.4% n/a 

Egress 19.4% 38.9% 89.5% 31.1% 6.5 3.0 16.7% 38.3% 5.6% 23.6% 1.3% 8.1% 57.1% 
Door 21.6% 26.8% 84.9% 35.0% 5.9 3.7 24.4% 42.0% 2.4% 10.9% 9.3% 32.5% n/a 

Valve 7.4% 21.1% 95.4% 20.1% 4.9 3.4 6.9% 25.8% 3.5% 18.6% 0.0% 0.0% 3.3% 
Wall 25.0% 23.6% 83.1% 37.3% 14.3 5.6 16.7% 38.3% 8.3% 25.7% 18.6% 58.8% 30.8% 

Surprise-Lever 22.6% 31.1% 90.5% 30.1% 5.6 2.4 9.1% 30.2% 0.0% 0.0% 14.3% 35.9% 0.0% 
Surprise-Plug 34.1% 24.8% 85.2% 36.2% 11.4 4.6 10.0% 31.6% 0.0% 0.0% 29.6% 60.9% 23.1% 

Rubble-Debris 11.0% 23.3% 95.0% 22.4% 4.8 7.4 10.0% 31.6% 0.0% 0.0% 10.0% 30.8% 50.0% 
Rubble-Terrain 7.8% 12.3% 84.4% 35.2% 7.7 3.5 31.3% 45.8% 0.0% 0.0% 6.3% 25.0% 57.9% 

Stairs 4.9% 11.5% 92.3% 27.2% 4.8 1.8 8.3% 28.9% 0.0% 0.0% 0.0% 0.0% n/a 
Table 13. Aggregate performance across all runs per task. 

The most difficult task appears to be the only one not worth any points: Bypass Vehicle by Walking. It 
should be noted, however, that only 4 of 23 teams attempted this task. Aside from walking downrange, 
the Wall task was the most difficult in terms of failures for those that attempted it, followed by the 
Surprise-Plug and Rubble-Terrain tasks. Performance of the Wall and the Surprise-Plug tasks was 
largely dependent on SOM subtasks, whose difficulty is further evidenced here as both of these tasks 
have the two highest percentages for critical incidents and relative duration (apart from Bypassing the 
Vehicle). However, the Egress task was skipped the most by teams, which may be indicative of the 
task’s difficulty. Teams were given a choice between the Rubble tasks, and of the two, Debris was 
selected by more teams than Terrain. Terrain also saw less success than Debris, implying that it was 
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more difficult. The least difficult tasks were the Valve and the Surprise-Lever, both in terms of failures 
and the tasks being skipped (Lever was never skipped by teams who made it far enough to attempt it).  
 
Many of the teams interviewed on-site at the Finals indicated strategies for performing the Rubble tasks, 
but did not get the chance to execute these strategies, ending their runs before reaching that point within 
the course (either due to damage from falls or time expiration). Similar to the Trials, Rubble-Terrain task 
was the most difficult mobility task. This finding implies that little progress has been made in terms of 
semi-autonomous humanoids performing such tasks, but this is most likely skewed by low number of 
teams (5) that were able to attempt it during the Finals. The alternative Rubble-Debris task functioned 
very differently than it did in the Trials where it focused on manipulation. For the Finals, it was treated 
as a mobility task, with the debris pieces were light enough such that robots with wheeled, statically 
stable modes could drive through and push them out of the way.  
 
In general, the higher complexity subtask functions (OTF, OTR, and SOM) appeared to be more 
difficult than their less complex counterparts (UT and FOM, respectively). This is similar to the 
performance exhibited in the Trials [DARPA, 2014]. However, the structure of the Finals competition 
did not allow for a more equal distribution of data points like the Trials. 

6.2. Interaction Method Techniques 
Many of the characteristics outlined in section 5.5 played a major role in teams’ performance. Table 14 
culls together many of the team interaction method characteristics correlated with subtask performance 
across all tasks. By this ordering, most of the top 10 performing teams (of the 20 in this study) used level 
1 effort for manipulation (90%), mobility (90%), and model/template placement (70%), in addition to 
other control methods. Most also used both types of sensor fusion (90%), some used simulation before 
execution (60%) and the choice of operator layout strategy was evenly split (50% rotating, 50% fixed). 
The remainder of this section uses specific sets of performance for more detailed comparisons. When 
comparing the performance metrics in this paper to the official DRC Finals competition scoring, the top 
10 performing teams in our study using the metric for percentage of successful subtasks (see Table 14) 
ranked higher in the competition than the bottom 10 performing teams by that metric. However, the 
ordering between the official competition results and our findings are different due to two factors: 1) our 
analysis uses the performance from runs on both days while the official competition scoring only 
considered each team’s best run; 2) not all competing teams consented to participate in this study.  
 
Many teams used similar lower levels of effort for all manipulation and mobility performance: of the 20 
teams, 14 (70.0%) used level 1 for both, 13 (65.0%) used level 2 for both, while only 6 (30.0%) used 
level 3 for both. 
 
To evaluate control methods levels of effort, each metric comparison uses individual subtask 
performance, as every subtask attempted was marked as having used one or more levels of effort. For 
this reason, the analyses in sections 6.2.1, 6.2.2, and 6.2.3 are comparisons of groups of attempts, not 
strictly groups of disparate teams. Due to subtask attempts commonly using more than one level of 
effort, many comparisons share data points. All other analyses use groups of team performance.  

6.2.1. Manipulation 

Manipulation control methods were only used for manipulation subtasks (FOM and SOM) and 
manipulation-heavy tasks (Door, Valve, Wall, and Surprise tasks). Only a single instance of using one of 
the manipulation control methods outlined in section 5.5.3 was observed on the Vehicle, which was used 
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to grasp and rotate a passive modification on the car (a TOM subtask). It is not considered in the 
analyses in Table 15.  
 
FOM subtasks performed using manipulation level 1 effort generally resulted in fewer errors than levels 
2 and 3 (significantly less compared to level 3), but fared almost identically to level 2 in terms of being 
used to successfully complete subtasks. Both levels 1 and 2 required some autonomy from the 
robot/interface, which was ultimately successful in accomplishing the tasks. The same relationship is 
mostly true for SOM subtasks, although level 3 performance should not be heavily evaluated as it was 
only exhibited twice. It should be noted that many more FOM subtasks were performed than SOM 
subtasks, due to many teams either skipping tasks like the Wall or Surprise-Plug (see Table 13) or not 
making it far enough through the test course to attempt them.  
 

Subtask Performance on 
All Tasks 

Manipulation 
Levels of Effort 

Mobility 
Levels of Effort 

Model/Template Placement 
Levels of Effort Sensor 

Fusion 
Type 

Simulation 
Before 

Execution 

Operator 
Layout % of Successful 

Subtasks 
% of Failed 

Attempts 1 2 3 1 2 3 1 2 

97.2% 4.5% ✔ ✔  ✔ ✔  ✔  Type 1+2 ✔ Rotating 
95.8% 4.6%  ✔ ✔ ✔ ✔ ✔  ✔ Type 1+2 ✔ Fixed 
94.6% 3.7% ✔ ✔  ✔  ✔ ✔  Type 1+2  Rotating 
94.3% 10.2% ✔ ✔  ✔ ✔ ✔ ✔  Type 1+2 ✔ Fixed 
92.9% 7.5% ✔  ✔ ✔ ✔  ✔  Type 1+2  Fixed 
92.9% 11.5% ✔ ✔  ✔  ✔ ✔ ✔ Type 1+2 ✔ Rotating 
91.2% 11.8% ✔ ✔ ✔  ✔    Type 1+2  Fixed 
86.7% 14.4% ✔   ✔  ✔ ✔ ✔ Type 1+2 ✔ Rotating 
84.4% 15.6% ✔ ✔  ✔ ✔ ✔  ✔ Type 1+2  Fixed 
83.3% 14.8% ✔ ✔  ✔ ✔ ✔ ✔ ✔ Type 1 ✔ Rotating 
83.3% 31.7%  ✔ ✔ ✔ ✔    Type 1 ✔ Fixed 
78.6% 37.7% ✔ ✔  ✔  ✔ ✔ ✔ Type 1 ✔ Fixed 
75.0% 27.0%  ✔  ✔ ✔   ✔ Type 1+2 ✔ Fixed 
70.0% 27.1% ✔   ✔   ✔ ✔ Type 1+2 ✔ Rotating 
69.4% 25.0%  ✔ ✔ ✔     Type 1+2  Fixed 
62.5% 18.3%  ✔ ✔  ✔   ✔ Type 1+2  Fixed 
50.0% 20.0% ✔ ✔  ✔ ✔  ✔ ✔ Type 1  Fixed 
50.0% 60.0% ✔ ✔  ✔  ✔  ✔ Type 1  Fixed 
22.2% 83.3%  ✔ ✔ ✔ ✔    Type 1  Fixed 
0.0% 100.0% n/a  ✔  n/a n/a  Fixed 

Table 14. All exhibited team characteristics and aggregate performance per team. Each row corresponds to a team in the 
competition. The data is sorted based on percentage of successful subtasks across all tasks. 

Metric Subtask 
Function 

Manipulation  
Level of Effort 1 

Manipulation  
Level of Effort 2 

Manipulation  
Level of Effort 3 Comparisons 

avg stdev n avg stdev n avg stdev n 1 vs. 2 2 vs. 3 1 vs. 3 
Percentage of Failed 

Attempts 
FOM 10.7% 23.3% 45 20.6% 28.2% 61 24.8% 30.0% 16 1 2 1 
SOM 29.9% 31.4% 11 39.7% 38.0% 10 41.7% 11.8% 2 1 2 1 

Percentage of 
Successful Subtasks 

FOM 86.7% 34.4% 45 86.9% 32.8% 61 9.4% 27.2% 16 2 2 1 
SOM 45.5% 52.2% 11 60.0% 51.6% 10 100.0% 0.0% 2 2 3 3 

Other Critical 
Incidents Per Attempt 

FOM 11.1% 31.8% 45 32.8% 70.1% 61 56.3% 103.1% 16 1 2 1* 
SOM 27.3% 46.7% 11 50.0% 70.7% 10 0.0% 0.0% 2 1 3 3 

Table 15. Comparison of performance exhibited with each manipulation level of effort on first and second order manipulation 
subtasks (FOM and SOM, respectively).  

Performing SOM subtasks with level of effort 2 was on average more successful than level 1, but also 
more error prone. Successfully completing the Wall and Surprise-Plug tasks meant being able to 
complete SOM subtasks, which required additional degrees of freedom: fingers. This additional 
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complexity introduced more failed attempts and critical incidents observed when using level 2, but did 
not appear to ultimately affect task success. This is an important distinction because the Wall and 
Surprise-Plug tasks involved objects that if dropped could greatly hinder task progress. Only a single 
team was observed using manipulation level of effort 1 without any others to successfully complete the 
Surprise-Plug task; all others used a combination of levels. 
 
One of the top teams in the competition did not use manipulation level of effort 1 at all; they used 
mostly level 2 in combination with manually placed object models or templates (also level 2). This is an 
example of both agents working together to balance the workload needed to complete the task; e.g., the 
operator manually places a 3D model of the drill and the robot/interface uses contextual information of 
the 3D model to aid in proper inverse kinematic control to grasp the drill when the operator maneuvers 
an end effector on the robot avatar towards the model. 
 
Many of the manipulation control methods that make up each level of effort (see section 5.5.3) involve 
the operator maneuvering the robot avatar’s arms and hands to plan and send commands/trajectories to 
the robot. Even though there were degraded communications between the robot and the operator during 
indoor tasks, many teams noted during their pre-competition interviews that the low bandwidth line 
provided enough data for the robot avatar on the interface to remain up to date in real time using joint 
encoder values (even in “blackout” periods), but generally not enough for higher resolution real time 
camera images or point clouds. Using the levels of situation awareness (SA) defined by Endsley [1995], 
the low bandwidth line enabled level 1 SA in terms of robot status to be maintained through the robot 
avatar. The same type of understanding of the environment, also with respect to task progress for level 2 
and 3 SA, was not necessarily maintained in real time. A true blackout with absolutely no 
communication between the robot and operator (such as in a real world disaster scenario) would not 
allow for such techniques.  

6.2.2. Mobility 

The mobility control methods levels of effort were used for mobility subtasks (UT, OTF, and OTR) and 
mobility-heavy tasks (Bypass Vehicle By Walking, Door, Rubble, Stairs). This analysis is shown in 
Table 16. 
 

Metric Subtask 
Function 

Mobility  
Level of Effort 1 

Mobility  
Level of Effort 2 

Mobility  
Level of Effort 3 Comparisons 

avg stdev n avg stdev n avg stdev n 1 vs. 2 2 vs. 3 1 vs. 3 

Percentage of 
Failed 

Attempts 

UT 2.4% 15.3% 85 5.0% 22.4% 20 n/a n/a 0 1 n/a n/a 
OTF 9.6% 26.6% 35 21.4% 40.5% 21 13.1% 19.5% 13 1 3 1 
OTR 16.3% 35.9% 44 19.6% 39.3% 28 0.0% 0.0% 3 1 3 3 

Percentage of 
Successful 
Subtasks 

UT 97.7% 15.3% 85 95.0% 22.4% 20 n/a n/a 0 1 n/a n/a 
OTF 86.7% 33.5% 35 78.6% 40.5% 21 34.6% 47.4% 13 1 2 1 
OTR 84.1% 35.6% 44 80.4% 39.3% 28 0.0% 0.0% 3 1 2 1 

Falls Per 
Attempt 

UT 1.2% 10.9% 85 5.0% 22.4% 20 n/a n/a 0 1 n/a n/a 
OTF 12.4% 32.4% 35 19.1% 40.2% 21 26.9% 43.9% 13 1 2 1 
OTR 13.3% 32.7% 44 17.9% 39.0% 28 0.0% 0.0% 3 1 3 3 

Table 16. Comparison of performance exhibited with each mobility level of effort on unobstructed traverse (UT), obstructed 
traverse - foot (OTF), and obstructed traverse - robot subtasks (OTR). 

Performance on UT subtasks did not vary much between when mobility levels of effort 1 or 2 were 
used, and level 3 was never exhibited performing these subtasks as it was used to manually place 
footsteps at varying elevations (i.e., not UT subtasks). All UT subtasks were performed on flat ground 
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with no obstructions, so the difference in HRI between levels 1 and 2 on UT is largely about the number 
of actions required by the operator to command the robot, and much less about balance or center of 
gravity (at least compared to the other mobility subtask functions).  
 
OTF did involve varying elevations and obstructions to the path; attempts on these subtasks using levels 
1 or 3 resulted in fewer errors than those using level 2. Attempts using level 1 were also more successful 
and resulted in fewer falls than level 3. The difference between levels 1 and 3 on OTF and OTR is not 
only with respect to the number of actions required by the operator to command the robot, but also the 
need for the robot to autonomously maintain balance and center of gravity (more so than any UT 
subtasks). Thus, in general, the automation required by the robot/interface for level of effort 1 control 
methods was more effective at planning footfalls (e.g., placing a waypoint on the other end of the 
Rubble-Terrain blocks, generating a stepping plan) than putting the responsibility on the operator to do 
so manually (e.g., plan each individual step).  
 
Half of the teams in this study used both levels of effort 1 and 2 to perform mobility subtasks, with large 
variances in their performance (see Table 14). 9 teams (45%) used level 3, with 7 in the top half of 
performing teams, and 2 in the bottom half. Two teams in this study used only level 1 when performing 
the Stairs and/or Rubble-Terrain tasks, meaning they did not adjust footsteps manually (level 3) at all, 
and completed the tasks. One of those teams was a top performer in the competition. 
 
Seven teams used robots with statically stable modes; for much of their mobility performance, they 
would not be as concerned with falling as other teams. Of the teams in the top five official competition 
rankings that used robots with wheeled, statically stable modes and consented to be in this study, all 
used both mobility levels of effort 1 and 2 for UT and OTR. When their robots are in statically stable 
modes they essentially functioned like wheeled ground robots, where using control methods like 
waypoints (level 1) and directional teleoperated control (level 2) has already proven to be effective. 
Their performance in this regard does not aid in evaluating the effectiveness of a control method for 
humanoid walking. 

6.2.3. Model/Template Placement 
The use of object models or templates to interact with the environment was observed on many of the 
tasks in different forms; Door (frame, door, handle), Valve (wheel), Wall (drills, wall, shape to cut), 
Surprise (switch box, plug, cable), Rubble-Terrain (cinder blocks), and Stairs (each step). An analysis of 
the subtask functions where models/templates were used is presented in Table 17 (FOM, SOM, and all 
manipulation subtasks) and Table 18 (OTF, OTR, and all mobility subtasks).  
 
For model/template placement level 1 to be effective, the system must be able to match the proposed 
model/template placement with the robot’s sensor data (i.e., camera and point cloud), based on the 
operator’s ability to place it using only a few gestures (e.g., a mouse click). For level 2 to be effective, 
the operator is responsible for placing the model/template to aid with task. For all FOM subtasks, level 1 
resulted in fewer errors and more successful subtasks than level 2, and the inverse is true for SOM 
subtasks (level 2 was significantly more successful than level 1). These findings suggest that the 
robot/interface automation required to fit models/templates using sensor data was most effective for 
teams when performing FOM subtasks (e.g., pushing the door handle down), but that more complex 
SOM tasks (e.g., using the drill to cut the wall; those that require fingers) benefit from finer-tuned 
placement of models by the operator.  
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Metric Subtask 
Function 

Model/Template Placement  
Level of Effort 1 

Model/Template Placement  
Level of Effort 2 

Model/Template Placement  
None Comparisons 

avg stdev n avg stdev n avg stdev n 1 vs. 2 2 vs. 
None 

1 vs. 
None 

Percentage of 
Failed 

Attempts 

FOM 15.0% 25.7% 47 19.4% 28.9% 36 21.5% 29.2% 32 1 2 1 
SOM 42.8% 35.4% 10 0.0% 0.0% 3 45.3% 37.2% 5 2 2 1 

All Manipulation 18.4% 27.5% 56 18.4% 28.5% 38 11.9% 23.0% 68 n/a None None 

Percentage of 
Successful 
Subtasks 

FOM 87.2% 33.7% 47 79.2% 40.3% 36 10.9% 30.4% 32 1 2 1 
SOM 30.0% 48.3% 10 100.0% 0.0% 3 20.0% 44.7% 5 2* 2 1 

All Manipulation 78.6% 41.4% 56 80.3% 39.5% 38 8.1% 25.4% 68 2 2 1* 

Other Critical 
Incidents Per 

Attempt 

FOM 21.3% 50.8% 47 25.0% 64.9% 36 25.0% 62.2% 32 1 n/a 1 
SOM 40.0% 69.9% 10 33.3% 57.7% 3 40.0% 54.8% 5 2 2 n/a 

All Manipulation 21.4% 49.4% 56 23.7% 63.4% 38 11.8% 44.2% 68 1 None None 
Table 17. Comparison of performance using each model/template placement level of effort across all first and second order 

manipulation (FOM and SOM) subtasks. 

When comparing all manipulation subtasks as a whole, not using models/templates appears to be the 
least error prone, evidence by fewer failed attempts and critical incidents. However, successfully 
completing subtasks was higher for levels 1 (significantly) or 2. This suggests that using 
models/templates at all was more effective than not for completing manipulation tasks.  
 
For mobility subtasks, use of model/template placement level of effort 2 generally resulted in fewer 
errors, more successful subtasks, and less falls than level 1. As such, manual placement by the operator 
(level 2) may have increased success by making up for the robot/interface’s lack of properly 
implemented automation. Also, not using models/templates at all resulted in less falls than levels 1 and 2 
when comparing OTR subtasks and all mobility subtasks. This may imply that the use of 
models/templates was not precise enough in some cases, either due to the robot/interface’s automation 
or the operator’s improper placement. Some teams’ HRI did not have to rely on the use of 
models/templates (5 of 20 teams, 25%); however, most of those teams (4) were in the bottom 10 
performance rankings (see Table 14). 
 

Metric Subtask 
Function 

Model/Template Placement  
Level of Effort 1 

Model/Template Placement  
Level of Effort 2 

Model/Template Placement  
None Comparisons 

avg stdev n avg stdev n avg stdev n 1 vs. 2 2 vs. 
None 

1 vs. 
None 

Percentage of 
Failed 

Attempts 

OTF 17.0% 33.4% 10 14.3% 36.3% 14 15.4% 32.6% 40 2 2 None 
OTR 25.0% 50.0% 4 20.0% 42.2% 10 22.2% 40.4% 57 2 2 None 

All Mobility 7.4% 23.0% 23 8.0% 27.7% 25 12.0% 31.3% 164 1 2 1 

Percentage of 
Successful 
Subtasks 

OTF 70.0% 48.3% 10 85.7% 36.3% 14 19.2% 37.5% 40 2 2 1 
OTR 75.0% 50.0% 4 80.0% 42.2% 10 21.9% 40.2% 57 2 2 1 

All Mobility 87.0% 34.4% 23 92.0% 27.7% 25 12.8% 32.6% 164 2 2 1 

Falls Per 
Attempt 

OTF 20.0% 42.2% 10 14.3% 36.3% 14 14.6% 34.0% 40 2 2 None 
OTR 25.0% 50.0% 4 20.0% 42.2% 10 13.7% 33.5% 57 2 None None 

All Mobility 8.7% 28.8% 23 8.0% 27.7% 25 7.5% 25.6% 164 2 None None 
Table 18. Comparison of performance using each model/template placement level of effort across all obstructed traverse - 

foot and robot (OTF and OTR, respectively).  
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6.2.4. Sensor Fusion 
Using the data in section 5.5.2, each team was classified as using either Type 1 sensor fusion (variable 
perspective) or both Type 1 and 2 sensor fusion (variable perspective and fixed perspective). Table 19 
shows a comparison of these two groups across all mobility and all manipulation subtasks. 
 
Overall, teams that used Type 1 and Type 2 sensor fusion (“Type 1+2 teams”) generally performed 
better than teams that used only Type 1 sensor fusion (“Type 1 teams”). More specifically, Type 1+2 
teams made significantly fewer errors, completed more subtasks, and fell less when comparing all 
mobility subtasks than Type 1 teams. When comparing all manipulation subtasks, Type 1+2 teams 
performed significantly faster than Type 1 teams.  
 
 

Metric Subtasks 
Type 1 Sensor Fusion Type 1+2 Sensor Fusion Comparison 
avg stdev n avg stdev n 1 vs. 1+2 

Percentage of Failed 
Attempts 

All Mobility 35.9% 47.3% 27 6.3% 22.8% 168 1+2** 
All Manipulation 21.1% 28.3% 26 14.0% 25.3% 118 1+2 

Percentage of 
Successful Subtasks 

All Mobility 61.7% 48.7% 27 92.5% 25.7% 168 1+2** 
All Manipulation 80.8% 37.6% 26 87.3% 32.8% 118 1+2 

Relative Duration to 
Complete Subtasks 

All Mobility 111.7% 68.8% 18 98.4% 80.1% 159 1+2 
All Manipulation 154.3% 94.5% 22 92.7% 74.7% 105 1+2** 

Falls Per Attempt 
All Mobility 31.5% 46.3% 27 4.1% 19.1% 168 1+2** 

All Manipulation 7.7% 27.2% 26 5.1% 22.1% 118 1+2 
Table 19. Comparison of performance between teams that used Type 1 (variable perspective) sensor fusion and those that 

used Type 1 and Type 2 (fixed perspective) sensor fusion across all mobility (UT, OTF, OTR) and all manipulation (FOM, 
SOM) subtasks.  

Interestingly, teams that employed both types of sensor fusion were using redundant sensor streams and 
presenting them using two different reference frames: Type 1 is 3D with an adjustable perspective using 
the point cloud as the reference frame, and Type 2 is 2D with a fixed perspective using the camera view 
as the reference frame. Nielsen, Goodrich, and Ricks [2007] concluded that sensor fusion displays with 
an adjustable perspective and common 3D reference frame were more effective than that of 2D fixed 
displays. Additionally, Okura et al. [2013] suggest that a display using a variable perspective with 
combined 3D robot avatar resulted in better surroundings recognition by the operator than that of a fixed 
perspective. The use of just Type 1 sensor fusion meant that the operator was provided with a very 
exocentric view of task progression, whereas Type 2 sensor fusion gave a much more first-person point 
of view. There were no teams that used only Type 2 sensor fusion, the findings from this analysis could 
suggest that if two separate displays are used, with two different reference frames (not necessarily a 
variable and a fixed perspective; could be two variable perspectives) of the same data streams may 
actually aid an operator rather than increase his/her workload in these types of scenarios, possibly to 
reduce the amount of perspective adjustment needed if only one display is used. 

6.2.5. Operators 
A comparison of performance between teams using fixed and rotating operator layouts can be found in 
Table 20. Many teams used a specific operator who only was active for the Vehicle task and then was no 
longer present at a station. For analysis purposes, if a team exhibited this behavior and did not swap out 
operators after completing the Vehicle task, they were classified as using a fixed operator layout (see 
section 5.5.1).  
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Teams with rotating operator layouts made significantly fewer errors, completed significantly more 
subtasks, and fell less than those with fixed operator layouts when comparing all mobility subtasks and 
when comparing across all tasks. Teams with fixed operator completed more manipulation subtasks and 
fell less across all mobility subtasks than teams with rotating layouts, but only by 1 or 2 percent.   
 
All of these findings are evidence of the complexity required to control the humanoid robots used by 
each team. Each of the operators used to perform each task are specialists in terms of what they feel 
most comfortable doing with the robot when they are in control. It was observed for some teams that 
specific tasks prompted these changes, while some were more particular to specific actions (e.g., one 
team swapped to a different person every time the robot needed to traverse between tasks, and to a 
different person each time teleoperated manipulation was being performed). While all of these operators 
were acting independently of one another, they had to maintain a shared understanding of the robot 
status. Prior research in HRI for disaster response or urban search and rescue suggests that more than 
one operator make an effective human-robot team [Murphy and Burke, 2005], supporting this finding. 
 

 Metric Subtasks or 
Tasks  

Teams That Used Rotating 
Operator Layouts 

Teams That Used Fixed 
Operator Layouts Comparison 

avg stdev n avg stdev n Rotating vs. Fixed 

Percentage of 
Failed 

Attempts 

All Mobility 3.9% 18.9% 83 16.8% 35.7% 114 Rotating** 
All Manipulation 13.0% 24.2% 55 16.6% 27.0% 89 Rotating 

All Tasks 10.5% 22.9% 69 21.1% 30.4% 103 Rotating* 

Percentage of 
Successful 
Subtasks 

All Mobility 95.2% 21.6% 83 81.6% 37.9% 114 Rotating** 
All Manipulation 85.5% 35.6% 55 86.5% 32.7% 89 Fixed 

All Tasks 91.3% 28.3% 138 83.7% 35.7% 203 Rotating* 

Falls Per 
Attempt 

All Mobility 2.4% 15.4% 83 11.7% 31.3% 114 Rotating* 
All Manipulation 9.1% 29.0% 55 3.4% 18.2% 89 Fixed 

All Tasks 10.1% 30.4% 69 16.5% 36.0% 103 Rotating 

Other Critical 
Incidents Per 

Attempt 

All Mobility 1.2% 11.0% 83 0.0% 0.0% 114 Fixed 
All Manipulation 14.6% 40.5% 55 20.2% 56.8% 89 Rotating 

All Tasks 6.5% 27.6% 138 8.9% 38.8% 203 Rotating 
Table 20. Comparison of performance between teams that used rotating operator layouts vs. those that used fixed operator 

layouts across all mobility (UT, OTF, OTR) and all manipulation (FOM, SOM) subtasks, and all task performance. 

6.3. Communications Strategy 
Teams’ communication links between their control station and the robot were limited when the robot 
was in the first 45 minutes of operation and was “inside” the simulated disaster scenario (marked 
between the frame of the Door task and the exit after the Rubble tasks). The amount of communication 
degradation (i.e., the number of discarded packets) was slowly decreased as the run approached the 45 
minute cutoff, enabling less capable teams to make increased progress over the course of a run. See 
Figure 4 for an example plot of the average data from the robot to the control station for one team’s run. 
 
Communications related to HRI at the DRC Finals can be evaluated in the context of information sent to 
the robot, or as information sent to the operator. These similar yet distinctly different quantities can 
loosely suggest different items: 1. Reduced information sent from the operator to the robot could imply 
the increasing amount of autonomy used by the robot (suggesting that there is minimal information 
required to be sent; potentially a simple “go” command); and 2. Reduced information sent from the 
robot to the operator could suggest increased decision making capability within the robot (thus 
presenting simpler, context rich, data/decisions to the operator; e.g., an indicator of where an object is 
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perceived to be instead of an entire frame of LIDAR data). Figure 5 shows the data sent from the team to 
the robot, and compares two example competitor runs; one effectively transmitting data as frequently as 
possible, and another opting to go full minutes without transmitting data at all. 
 
The communications data collected by DARPA provided a window into the teams’ strategies to enable 
effective operations in a degraded environment. The relationship between communications and 
autonomy of unmanned systems, and its corresponding link to HRI is well documented [Huang, 
Messina, and Albus, 2003]; however, direct metrics do not currently exist. To date, most HRI 
evaluations have examined the link between communications and the resulting impact on human 
performance [Steinfeld et al., 2006], but linking the reduction of data to the increased quantity or 
increased quality of autonomy has not occurred.  
 

  
Figure 4. Average data rate at different  

points in the comms structure.  
Figure 5. Example comparison of data transmissions between 

two teams and their respective robots. 

Investigation into the data sent to the operator in degraded communications from the robot is most easily 
compared for the Valve task because of the number of competitors completing the task. Figure 6 shows 
the total data transmitted to the operator from the robot (along the high bandwidth line) for the duration 
of the valve task. The highlighted red teams indicate team runs (averaged from both Finals runs if a team 
attempted Valve on both days) for the top three finishing teams in the study (i.e., the top three of the 
consented teams, which may not correspond to the top three teams in the competition). The figure 
clearly shows that there are two options for executing the tasks: a script/autonomous process heavy 
focused low bandwidth option, or a higher bandwidth path with reduced emphasis on autonomy. 
Additional support for the multiple option strategy comes from the frequency of data sent to the robot 
where competitors leveraged both high and low transmission quantities of corresponding to a range of 
performance outputs (see Figure 5).  
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Figure 6. Total data sent between the robot and the operator over the high bandwidth line when attempting the Valve task. 
Red lines indicate the top three overall finishing teams within the consented study group, which may not correspond to the 

top three teams in the competition. 

Given the limited data above, and the stated connection between autonomous processes and data 
transferal, it appears that autonomous processes might not be critical to the success of teams at the DRC 
Finals. In general, this discussion could suggest that there are other components within the HRI space 
that have increased impact on performance relative to autonomy.  

6.4. Predictions Accuracy 
The purpose of this pre-competition analysis was to evaluate the predictability of top level performance 
based upon HRI components and major additional influencing factors such as training and robot 
capability. The method used quantifiable data from the user interface, the robot capability, and self-
reported data from the teams in areas selected subjectively by the HRI evaluation team. To appropriately 
account for the coarseness of an overall 0 to 8 point scale relating such complex systems and tasks, the 
evaluation team identified assessment of plus or minus 1 point from actual competition score as an 
effective success criteria (noting that this provides a probability of 31% correctly predicted given a ±1 
window of a selection of 0 through 8 points). Table 21 shows the breakdown of teams in this study into 
the metric ranges generated from the DRC Trials analysis (see section 5.7 for a description of the 
analysis method used). 
 

Metric Range Number of Teams 

Training 
High 8 teams 
Low 9 teams 

Technique 

Robot Stability 
High 4 teams 
Low 16 teams 

Task Strategy 
High 5 teams 
Low 14 teams 

Bandwidth Adaptability 
High 18 teams 
Low 2 teams 

Table 21. Number of teams in this study that fell into the metric ranges from the predictions analysis. Note: the total number 
of teams for each metric does not necessarily equal the number of teams in this study (20) due to either a gap in the collection 

of data at the time of the prediction calculation or because the value was not determinable for other reasons. 
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Given that these methods leveraged quantifiable data, an update was made to the initial values during 
the event based on information that was not provided during pre-event interviews, and included changes 
in self-reported data or observed robot and team operation that conflicted with self-reported data. To 
more appropriately reflect the performance of the predictions, teams that were unable to complete the 
tasks due to extenuating circumstances (e.g. servo firmware issues) that drastically altered their 
performance within the rules of the event were removed. Ultimately, this analysis produced 71% correct 
predictions (see Table 22). 
 

Evaluation Number of 
Teams 

Number of Correct 
Predictions 

Percentage of Correct 
Predictions 

Random n/a n/a 31% 
Competitor Self-Predicted (Without Extenuating Circumstance Teams) 17 7 45% 

Updated Team Characteristics At Event 20 12 60% 
Model Without Extenuating Circumstance Teams 17 12 71% 

Table 22. The results of the prediction analysis at each level of evaluation. 

In future studies, the evaluation team will develop and update the model to address the teams that it 
inaccurately predicted (only 3 of the 20) and also to apply it beyond the DRC events.  

6.5. The Value of HRI 
The team measurement of “Technique” captures additional aspects of team strategies, including robot 
stability, task strategy, and bandwidth adaptation (as discussed in section 6.4). To determine statistical 
significance, the top vs. bottom teams in each category were compared using the same performance 
metrics in addition to an average of the successful task completions (akin to points scored in the 
competition). Table 23 shows the results of this statistical comparison, revealing a strong correlation 
between these two aspects of team strategy and performance.  
 

Performance Metric 
Technique 

High Low T-test Comparison 
Average Number of Successful Task Attempts 4.5 1.7 High** 

Average Speed to Complete Tasks 62% 40% High ** 
Average Percentage of Successful Task Attempts 83% 48% High ** 
Average Critical incidents per Subtask Attempts 8% 24% High * 

Table 23. Comparisons of non-HRI related aspects of performance.  

Additional higher-level groupings of the team interaction method characteristics in section 5.5 were 
determined, breaking down teams into two groups for the following HRI-related aspects of performance: 

• Average number of operators: fewer than 2 vs. 2 or more 
• Sensor fusion: high (“High” and “Medium” amounts) vs. low (“Low” amounts and “None”) 
• Simulation before execution: used this technique vs. did not 

This analysis is shown in Table 24. 
 
One could make the argument that “Training” is a good representation of additional HRI factors, 
considering the development of these robots and interactions for the DRC. The training in this situation 
effectively replaces interface factors such as intuitiveness and ease-of-use, though in the example of the 
DRC Finals it is also a good indication of overall team progress. Additionally, the “Bandwidth 
Adaptability” aspect of the teams’ “Technique” evaluation could also be considered to have some aspect 
of HRI included; some teams included methods for improving situation awareness during low-
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bandwidth operation as opposed to software and other tactics for reducing the need for bandwidth. 
However, this is a relatively small part of the “Technique” metric overall. 
 

Metric 
Training Sensor Fusion Simulation Before 

Execution 
Average Number of Active 

Operators 

High Low Comparison High Low Comparison Used Not 
Used Comparison Less 

Than 2 
2 or 

More Comparison 

Average Number of 
Successful Task Attempts 3.9 1.1 High** 3.0 0.6 High** 3.2 1.5 Used* 2.8 1.5 Less Than 2 

Average Speed to 
Complete Tasks 63% 37% High** 49% 43% High 49% 47% Used 52% 41% Less Than 2 

Average Percentage of 
Successful Attempts 67% 41% High* 62% 27% High** 59% 42% Used 59% 33% Less Than 2* 

Average Critical Incidents 
Per Subtask Attempts 14% 23% High 19% 29% High 19% 24% Used 21% 23% Less Than 2 

Table 24. Comparisons of HRI related aspects of performance.  

Finally, in an effort to explore causality between the specific interface techniques (sensor fusion, 
simulation before execution, and the number of operators), teams within the high “Training” and high 
“Technique” groups were evaluated (see Table 25). These groups were broken down into two more 
groups of teams – those who exhibited higher levels of sensor fusion, use of simulation before 
execution, and lower number of operators vs. those who did not. Across all of these comparisons, only 
correlations between those using simulation before execution and those that did not were statistically 
significant. Through this analysis, other comparisons were revealed including: 1. All teams within the 
high “Training” group also exhibited higher levels of sensor fusion, and 2. Only one team within the 
high “Technique” group did not have sensor fusion. 
 

Metric 
With High Level Training High Level Technique 

Used Sim Before 
Execution 

Did Not Use Sim 
Before Execution Comparison Used Sim Before 

Execution 
Did Not Use Sim 
Before Execution Comparison 

Team Count 8 9 n/a 6 6 n/a 
Average Critical 

Incidents Per Subtask 
Attempts 

0.1 0.1 n/a 0.1 0.0 
Did Not Use Sim 

Before 
Execution** 

Average Successful 
Number of Attempts 5.9 2.2 Used Sim Before 

Execution** 5.7 3.3 Used Sim Before 
Execution 

Table 25. Comparisons of high level of training and high level of technique with or without the use of simulation before 
execution.  

The key finding from these analyses comes from consideration of the number of successful task 
attempts. The high “Technique” group has a strong connection to increased performance – a difference 
of 2.8 successful attempts on average (see Table 23). The “Training” aspect also has an equally strong 
connection to performance – again a difference of 2.8 successful attempts on average (see Table 24). At 
the next level, consider teams that used simulation before execution. As shown in Table 25, for teams 
with the highest level of “Technique” there appears to be a correlation with success – a difference of 2.4 
successful attempts on average. An even stronger correlation shows a difference of 3.7 for teams with 
high levels of “Training.” Based on these observations and those in previous sections, it can be 
suggested that in order for a team to perform well against their competitors they needed high levels of 
“Technique” and “Training,” in addition to using simulation before execution and high sensor fusion. 
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7. Lessons Learned 
From this study, two sets of lessons learned can be gleaned: effective HRI characteristics exhibited by 
successful teams at the DRC and recommendations for conducting large-scale studies of robot 
competitions or field deployments similar to the DRC. 

7.1. Effective HRI at the DRC 
The DRC Finals added difficulty not present in the Trials by requiring tasks to be completed in 
succession during a run with harsher degraded communications, with the requirement that the robots be 
completely untethered throughout task performance, and with surprise tasks that changed between 
competition days. These updates to the structure of the competition were aimed at influencing teams to 
implement more autonomy in their systems and robust control methods. In general, both of these 
characteristics have been observed, albeit in different ways and with variable impacts on performance. 
The lessons learned presented in this section are summarized into HRI design guidelines in section 8. 
 
From the analysis and results presented in section 6, teams competing in the DRC Finals exhibited one 
or more of the following HRI characteristics to achieve success: 

1. More autonomy from the robot/interface to perform simpler manipulation tasks (e.g., FOM: 
Door, Valve, Surprise-Lever) (see Table 15). 

2. More interaction from the operator to perform complex manipulation tasks (e.g., SOM: Wall, 
Surprise-Plug) (see Table 15). 

3. Use of input and output methods that can operate in both degraded and full communications, 
evidenced by interaction methods relying on the robot avatar that remained up to date from joint 
encoder values sent over the low bandwidth line (see Table 4 and Table 6). 

4. More autonomy from the robot/interface to perform simple mobility tasks (e.g., UT; traversing 
over flat ground) (see Table 16). 

5. More interaction from the operator to augment robot/interface autonomy when performing 
mobility tasks that required changing elevations (e.g., OTF: Rubble-Terrain, Stairs) (see Table 
16). 

6. More interaction from the operator to manually place models/templates to assist the 
robot/interface autonomy in performing manipulation and mobility tasks (see Table 17 and Table 
18). 

7. Use two instances of sensor fusion with the same data streams, but from different reference 
frames (see Table 19). 

8. More than one operator, either simultaneously and/or rotating, to split responsibilities in task 
execution (see Table 20). 

9. Operators that are well trained and had ample practice ahead of the competition (see Table 24 
and Table 25). 

 
Table 26 shows how each of these HRI characteristics apply to each team in this study. Of the top 10 
performing teams, all but one exhibited 6 or more of the characteristics. Of the bottom 10 performing 
teams, all but one exhibited 5 or less of the characteristics. 
 
These characteristics can be representative of the current state of the art with respect to HRI for remote 
operation of a humanoid robot. Humanoid autonomy was observed to assist with manipulation tasks, but 
a human operator was still needed to aid in identifying parts of the tasks to the robot (evidenced by the 
use of models/templates). For instance, the Wall and Surprise-Plug tasks involved the robot 
manipulating a free-moving object and ultimately maneuvering the object’s end effector (i.e., the drill 
bit and the plug end) to a specified location and/or in a certain motion. Most operators were responsible 
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for guiding the objects properly with their control methods (e.g., by using manipulation level of effort 
2), remaining active in the execution of the task. Balancing and shifting center of gravity for performing 
simple mobility tasks on flat ground was observed to be largely handled by the robot. For tasks like the 
Rubble-Terrain and Stairs, some teams did use interface modalities to indicate the robot’s center of 
gravity or had audible indicators of the center of mass shifting to an unstable position. These are all 
good examples of operators avoiding the out-of-the-loop problem [Endsley, 1996] and splitting 
responsibilities between robot and operator, as suggested by many supervised autonomy design 
approaches, such as coactive design [Johnson et al., 2014]. 
 

Subtask Performance 
on All Tasks 

HRI Characteristics Suggesting Positive Impact on Performance (see list in section 7) 
1 2 3 4 5 6 7 8 9 

Total 
number 

exhibited 
% of 

Successful 
Subtasks 

% of 
Failed 

Attempts 

Manipulation 
 Level of Effort 

1 on FOM 
Subtasks 

Manipulation 
Level of Effort 
2 or 3 on SOM 

Subtasks 

Robot 
Avatar in 
Degraded 
Comms 

Mobility 
Level of Effort 
1 or 2 on UT 

Subtasks 

Mobility 
 Level of Effort 

3 on OTF 
Subtasks 

Model/ 
Template 
Placement 

Level 2 

Type 1+2 
Sensor 
Fusion 

Multiple 
Operators 

Reported 
High 

Training 
Time  

97.2% 4.5% ✔   ✔ ✔     ✔ ✔ ✔ 6 
95.8% 4.6%   ✔ ✔ ✔ ✔   ✔   ✔ 6 
94.6% 3.7% ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9 
94.3% 10.2% ✔ ✔ ✔ ✔     ✔ ✔ ✔ 7 
92.9% 7.5% ✔ ✔   ✔     ✔   ✔ 5 
92.9% 11.5% ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9 
91.2% 11.8%   ✔ ✔ ✔     ✔ ✔ ✔ 6 
86.7% 14.4% ✔   ✔ ✔   ✔ ✔ ✔   6 
84.4% 15.6% ✔   ✔ ✔ ✔ ✔ ✔     6 
83.3% 14.8% ✔   ✔ ✔ ✔ ✔   ✔   6 

Top 10 performing teams above this row; bottom 10 performing teams below this row. 
83.3% 31.7%     ✔ ✔       ✔   3 
78.6% 37.7%     ✔ ✔   ✔       3 
75.0% 27.0%     ✔ ✔   ✔ ✔ ✔   5 
70.0% 27.1% ✔   ✔ ✔   ✔ ✔ ✔   6 
69.4% 25.0%     ✔ ✔     ✔   ✔ 4 
62.5% 18.3%     ✔ ✔   ✔ ✔ ✔   5 
50.0% 20.0% ✔   ✔     ✔   ✔ ✔ 5 
50.0% 60.0% ✔   ✔ ✔   ✔   ✔   5 
22.2% 83.3%     ✔ ✔       ✔   3 
0.0% 100.0%       ✔         ✔ 2 

Table 26. Specific HRI characteristics exhibited by each team that are suggested to have positively impacted performance at 
the DRC Finals. Each row corresponds to a team in the competition. The data is sorted based on percentage of successful 

subtasks across all tasks. 

Given the complexity of both the robot and the interaction methods, it is no surprise that team members 
would specialize and increase the number of operators. It should be noted, though, that one of the top 
performing teams in the competition consisted of a single operator who performed all tasks. This 
operator spent significant time training with the robot (making them the exception to characteristic 8 in 
the list above), and that team’s interaction method used mostly level of effort 2 control. Conversely, 
another of the top performing teams in the competition used a rotating operator layout that changed very 
frequently, and mostly used level of effort 1 control methods. Both of these teams used type 1 and type 2 
sensor fusion, which is suggested to have increased team performance (see Table 19), and both noted 
they had significant training time. The causality analysis discussed previously (see Table 20) considers 
the aspect of training time as having a very large impact on team performance, in conjunction with their 
interaction method characteristics. The predictions analysis (see section 6.4) is further evidence of the 
correlation between these factors in both the DRC Trials and Finals.  
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Some of the findings in this article should be taken within the perspective of the DRC Finals tasks and 
the surrounding environment that impacted the mission space: development. Progress of the team 
development efforts likely had large impact on the amount of training executed. It should be noted that 
in most cases, the interfaces were designed by and for the developers of the system. This fact may have 
contributed to the need for specialization or, in the instances of a single operator, for large amounts of 
training. Therefore, time or development issues that impacted the quantity of training time showed an 
impact on performance. Generally, this corresponds to data regarding the importance of training at the 
DRC Finals (see section 6.5), where competitors with minimal training time would not have been able to 
develop the nuance and detail required to effectively control the complex robots. 

7.2. Conducting Large-Scale HRI Evaluations 
Robot competitions can be very rich displays of combinations of robotic capabilities and varying 
approaches, making them great venues for research and analysis. With experience performing HRI 
analyses of both the DRC Trials [Yanco et al., 2015] and the DRC Finals, important lessons learned with 
respect to conducting large-scale HRI evaluations are: 

• For events with high-risk consequences based on robot performance, limit interaction with 
participants to before or after the action being evaluated, not during. 

• Conduct pre-event interviews to gather all information needed to accurately observe 
performance, particularly in the control room. 

• Develop data collection techniques and planned analyses of collected data to operate within 
limitations of event structure. 

• For events with varying robots and interfaces to be observed, generate a taxonomy of HRI 
characteristics to compare performance using a common language. 

• Only correlate exhibited HRI characteristics with their resulting robot performance on the field, 
not overall characteristics with overall performance. 

 
There are limitations for any HRI study, whether occurring in a controlled lab setting or as part of a 
competition or field deployment. For the latter, not disturbing or obstructing the participant’s 
performance is paramount [Yanco and Drury, 2007], even more so if it could result in poor competition 
standing, the loss of funding, and/or real world disaster. Control room observers in this study only 
interacted with robot operators before and after competition runs, if warranted, although even that level 
of interaction was kept to a bare minimum. Even though teams consented to participate in the study, we 
did not want to introduce additional performance pressures. By conducting pre-competition interviews 
to generate documents outlining each team’s approach (see section 4.1), all evaluation team members 
were able to study the teams they were going to observe ahead of time. This method enabled each 
observer to have a proper understanding of teams’ control room actions for accurate data collection and 
limited post-run questioning to pertain only to resulting run performance.  
 
If the experiment and associated robot tasks are designed by the same team studying HRI, mechanisms 
can be put in place to allow for certain data collection methods, such as automated analysis of robot 
performance logs [Schreckenghost and Milam, 2010]. Techniques like this are made possible due to the 
standardization of experiment components, such as fixing the robot platform or specifying that robot 
commands be sent using a certain programming language, neither of which were enforced for the DRC. 
Also, this study was of a competition that we did not design, so much like a real world scenario our data 
collection methods adapted to the event restrictions. The point structure of the DRC Finals relied purely 
on actions that were directly observable by the human eye; so too were our data collection means. The 
task and subtask breakdown (see section 5.1) only addresses robot motions for this reason, limiting some 
possible avenues for analysis (e.g., no explicit and quantifiable method of determining the amount of 
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autonomy vs. teleoperation), but it also made the validation of data recorded in-situ very simple by 
reviewing video footage, which DARPA recorded extensively and informed us ahead of time that would 
be provided after the competition.  
 
For HRI studies involving a variety of robotic platforms and interfaces (like the DRC Finals), it is 
important to distill interaction characteristics into higher-level categories with a focus on the level of 
information provided to or from the operator. Doing so in this manner results in findings that can be 
more broadly applied to field of HRI, rather than the intricacies of a particular interaction method 
technique. Each technique and its associated features could be the subject of its own study entirely. 
Large-scale studies where an entire system is developed to accomplish a common set of tasks, like that 
of the DRC, need a common language to describe the HRI characteristics across many different 
approaches, like categories of sensor fusion (see section 5.5.2) and control methods (see section 5.5.3). 
In order to apply these categories properly while taking notes in the control room, a deeper 
understanding of each team’s interaction method was needed, further aided by conducting pre-
competition interviews. 
 
Given the many different tasks performed at the DRC, team interaction methods varied throughout the 
course of each run, particularly with respect to control method levels of effort. Due to this variation of 
control methods, correlating overall interface characteristics with overall performance would not be 
accurate, even more so for teams that planned to use certain techniques for tasks that they ultimately 
were not able to attempt. Rather, only HRI characteristics exhibited in the control room should be 
correlated with the robot actions that were performed on the field as a result of their usage. With only 
directly observable actions available for analysis, correlating observations from the control room and the 
field on a minute-by-minute basis is one option (see section 4.2). Our previous study of the DRC Trials 
[Yanco et al., 2015] was unable to track HRI techniques per minute action as most team information was 
gathered on-site at the competition and during task runs, resulting in less detailed findings.  

8. Design Guidelines 
Based upon the analyses presented in this paper, the following set of design guidelines for HRI with 
remote, semi-autonomous humanoid robots is proposed. The guidelines below are generated based on 
the successful HRI characteristics outlined in section 7.1.  
 
Balance the capabilities of the operator and the system to effectively perform the task. Allow the 
human operator to provide assistance to the robot in terms of operation of an independent tool (e.g., 
maneuvering the robot’s arm/hand to position the grasped tool’s end effector using manipulation level of 
effort 2; see section 6.2.1), modifying footsteps planned by the robot/interface when changing ground 
elevations (i.e., mobility level of effort 3; see section 6.2.2), and identification of objects (e.g., 
placement of models/templates; see section 6.2.3). Enable the robot/interface to automate processes like 
inverse kinematics for manipulation tasks and balance on flat ground for mobility tasks. 
 
Keep the operator in the loop. Design HRI that requires steady interaction from the operator that 
supports and benefits from the autonomy of the robot. Use methods like the placement of 
models/templates to supply task-relevant object information such that the operator and the system are 
“speaking the same language” and both interacting more directly with the task (see section 6.2.3). 
 
Maintain operator awareness of robot state and use consistent control methods that function 
regardless of bandwidth. Implement HRI that functions on minimal data streams regardless of 
communications strength, such as joint encoder values to display a 3D robot avatar on the interface to 
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maintain awareness of the robot’s state (level 1 SA), that can be maneuvered by the operator to plan and 
send trajectories to the robot (see section 6.2.1).  
 
Duplicate sensor fusion displays using different perspectives. Increased sensor fusion with common 
reference frames from an adjustable perspective is beneficial for remote teleoperation, and even more so 
by displaying two varying perspectives of the same data streams to increase the operator’s situation 
awareness (i.e., type 1+2 sensor fusion; see section 6.2.4). 
 
Allow time for operator training and specialization. At this stage, humanoid robots are too complex 
such that general-purpose interfaces could be designed to be usable without training. Multiple operators 
can specialize in the execution of certain tasks or maintenance of certain processes, as long as they 
maintain situation awareness by utilizing the prior guidelines. While a single operator approach will also 
benefit from the prior guidelines, it requires significant training time and mental capacity for high 
cognitive workload (see sections 6.2.5 and 6.5). 
 
Given the increased fidelity of the evaluation presented in this article as well as the larger number of 
teams observed, the guidelines above replace the ones generated based on the earlier HRI analysis of the 
DRC Trials [Yanco et al., 2015]. While that study used a similar methodology, it involved a much 
smaller sample set (only 8 teams), was less detailed in terms of interface characterization, and did not 
track HRI techniques used per task/robot action. The findings from that study are very high-level, but 
many of the HRI components suggested to influence performance remain true, some with further 
specifications. See Table 27 for an analysis of the guidelines from the Trials. 
 
Design guidelines from the DRC Trials Status of design guideline based on analysis of DRC Finals 

Increase sensor fusion 
Similar correlation between increased sensor fusion and better performance exhibited. 
Recommendation is further specified that varying perspectives of the robot and the 
environment should be presented. 

Decrease the number of operators 

Performance more impacted by relationship between operator roles than number of 
operators. Many teams used rotating operator layouts made up of many operators, each 
with differentiated responsibilities, and exhibited better performance than those with 
fixed layouts. Teams also had much more time to prepare and train for the Finals than for 
the Trials, enabling more diverse operator layouts. 

Decrease the amount of operator input 
needed to control the robot 

Similar correlations between lower levels of effort and increased performance, but more 
detailed findings with respect to supervised autonomy techniques to balance 
responsibilities between operator and robot, which also keeps the operator actively 
engaged and in the loop.  

Don’t separate the robot into legs and arms 
Control methods were clearly delineated between those for mobility and manipulation, 
with no suggestion that combining them is optimal over separating them. Higher fidelity 
study compared to Trials enabled this recommendation to be updated. 

Plan for low bandwidth 
Recommendation holds true, exhibited by many teams utilizing techniques that provided 
some of the same feedback (e.g., robot status and pose) when in full and degraded 
communications.  

Design for the intended users Still an ultimate goal, but humanoid control does not appear to be mature enough yet for 
non-developer interfaces to be designed. 

Table 27. Status of design guidelines generated from HRI analysis of the DRC Trials [Yanco et al., 2015].  

9. Conclusion 
This article described a human-robot interaction evaluation of competing teams at the DARPA Robotics 
Challenge Finals competition, the results of which were extrapolated to form guidelines for designing 
HRI with remote humanoids. The design guidelines were determined based on lessons learned from 
aggregate performance data correlated with exhibited HRI characteristics, a practice which can be used 
for conducting large-scale evaluations of similar events. Our approach was to extract all possible HRI 
factors influencing performance, but all factors were not considered within the scope of this study, 
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including robot locomotion methods (e.g., biped, quadruped, and wheeled), camera placement (e.g., 
video feedback from the robot’s hands vs. head), and manipulation gripper type (e.g., two vs. three 
fingers). Each of the proposed design guidelines should then be investigated further in targeted 
experiments to explore the complexities of each that are not covered in this article. 
 
Continued research is needed to further the improvement of an operator’s ability to interact with and 
control remote humanoid robots. HRI design for much simpler wheeled (or tracked) ground robot 
systems is still lacking in terms of giving equal consideration to the capabilities of the human, the robot, 
the interface, and the relationships between them, despite two decades of development. As the 
development of HRI for remote humanoids continues to grow, we have the opportunity to take lessons 
learned from the DRC, as well as from other types of robots, to move forward more quickly. As robot 
hardware and its use cases continue to evolve, so too must the way that we design HRI. While point 
cloud representations are on many interfaces now, they were not ten years ago. As new sensors and 
better autonomy becomes available, the way we interact with robots will need to change. We can learn 
lessons from past designs, but we need to think beyond them as well. 
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