
Teleoperating a Humanoid Robot with Virtual Reality
Jordan Allspaw∗

University of Massachusetts Lowell
Lowell, MA, USA

Jordan_Allspaw@uml.edu

Jonathan Roche
University of Massachusetts Lowell

Lowell, MA, USA
Jonathan_Roche@student.uml.edu

Adam Norton
University of Massachusetts Lowell

Lowell, MA, USA
Adam_Norton@uml.edu

Holly Yanco
University of Massachusetts Lowell

Lowell, MA, USA
Holly_Yanco@uml.edu

ABSTRACT
Teleoperating robots, particularly humanoid robots, from a remote
environment remains a difficult problem. Significant research has
been conducted in human-robot interaction for teleoperating mo-
bile ground robots for both novice and experienced operators with
a variety of interfaces and strategies; however, there is significantly
less research on teleoperating humanoid robots. By their nature,
humanoid robots tend to operate in very 3D environments, with
variable terrain. With humanoid robots, much of the focus is on
performing the tasks that a human would normally do, in the way
a human would normally perform it, in the environment that the
human would normally perform it in. This focus greatly increases
task complexity and the required effort. Current operator control
interfaces for humanoid robots often require very experienced oper-
ators and significant amounts of time for planning. A large amount
of the planning and cognitive load is attributable to the operator
attempting to gain adequate 3D situation and task awareness while
viewing a 2D screen. This is one area where virtual reality (VR)
has enormous potential to provide benefits to allow the operator to
quickly and accurately understand the state of a robot in a scanned
3D environment, and to issue accurate commands with less cog-
nitive load. In this paper, we will describe how we developed and
created a VR interface to remotely control a humanoid robot and
explain our methodology for the types of visualization and control
we present.

CCS CONCEPTS
•Human-centered computing→Virtual reality; •Computer
systems organization→Robotic control; External interfaces for
robotics;

KEYWORDS
Human-robot interaction (HRI), virtual reality (VR), teleoperation
of humanoid robots
∗This is the corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Virtual, Augmented, and Mixed Reality for HRI, March 5, 2018, Chicago, IL, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Jordan Allspaw, Jonathan Roche, Adam Norton, and Holly Yanco. 2018.
Teleoperating a Humanoid Robot with Virtual Reality. In Proceedings of
HRI-18 Workshop on Virtual, Augmented, and Mixed Reality for Human-Robot
Interaction (Virtual, Augmented, and Mixed Reality for HRI). ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In October 2012, the DARPA Robotics Challenge (DRC) was an-
nounced, a competition where teams would compete with the over-
all goal of developing semi-autonomous humanoid robots that could
perform “complex tasks in dangerous, degraded, human-engineered
environments” [4]. The competition consisted of three rounds: the
Virtual Robotics Challenge (VRC), the DRC Trials , and the DRC
Finals. During the Trials and Finals, disaster response tasks, such
as driving and exiting a modified Polaris, opening and walking
through a door, operating a drill, and walking across debris, were
completed using physical, typically humanoid robots. During the
Trials, tasks were performed in individual runs, whereas the Finals
had all tasks performed in succession in a combined run. The most
successful teams from the Trials continued on to the Finals.

An analysis of the human-robot interaction (HRI) techniques
used at the DRC Trials [18] and the DRC Finals [10] was performed.
Both studies examined approaches taken by the teams for inter-
action design, such as the number of operators, types of control,
how information was conveyed to the operator(s), and varying ap-
proaches to semi-autonomous task execution. There were a number
of strategies employed by the various teams, but they predominately
relied on a combination of mouse, keyboard, and gamepad inter-
faces. For the visualization of sensor data in the DRC Finals, the
teams in the study averaged 5.1 active screens, 6.2 camera views,
and 2.5 different point cloud visualizations. There was an average
of 1.6 active operators (using an input device for robot control)
and 2.8 passive operators (watching over the shoulders of active
operators, offering strategic advice). All of this represents a large
amount of manpower with the goal of allowing the operator to gain
proper situation and task awareness of the remote environment
by interpreting sensor data from a 2D interface (the screen) and
building a 3D mental model.

Another interesting and common trait was that teams frequently
had different visualization and control paradigms depending on
the task they were performing. For example, one team went so far
as to intentionally lock the interface of the operator depending
on the task selected, preventing them from switching to different

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Virtual, Augmented, and Mixed Reality for HRI, March 5, 2018, Chicago, IL, USA Allspaw et al.

visualization or control modes [11]. This strategy is also evident
from the DRC HRI analysis; most teams would adjust what sensor
data was being displayed, what types of control to give the operator,
and changing whether a gamepad would be used or keyboard and
mouse. All of this seems to imply that each team spent a significant
amount of effort creating a specialized interface for each task, in
order to provide enough situation awareness to allow the operator(s)
to complete the task within the allotted time.

The only known uses of VR in the competition were teams uti-
lizing the Oculus Rift Developer Kit (DK) [2] for viewing point
clouds, but this was used as a situation awareness complement to
viewing point clouds through traditional means. No teams used
VR as their primary interface for either visualization or control. A
discussion with a member of one of the teams revealed that they
had investigated using the Oculus Rift DK, but given its limitations
found it to be of limited use and did not end up using it at the Finals.

The Oculus Rift DK required the wearer to be in a fixed sitting
or standing position, ideally keeping their head in a set position.
While the headset could handle rotation in the pitch and yaw axis,
it could not handle lateral movements. If the operator moved their
head significantly, the virtual world would be unable to adapt and
the operator would frequently get motion sickness [5]. Even when
using it in the ideal position, low pixel density and low refresh rate
made it difficult for VR to reach its potential. Shortly after the DRC
Finals concluded in June 2015, several powerful consumer virtual
reality headsets were released, including the consumer readyOculus
Rift and the HTC Vive [1]. Both of these headsets were significant
improvements over the Oculus Rift DK, and while we will focus on
the HTC Vive headset, they are largely interchangeable.

The newer headsets remove the fixed position limitation and
have built in accurate position tracking which allows what is called
"room scale" or the ability for VR experiences which allows users to
freely walk around a play area, with their real-life motion reflected
in the VR environment [3]. Coupled with other improvements
such as increased screen resolution and increased refresh rate, we
believe that another look at using VR for visualizing and controlling
humanoid robots is warranted, and have designed and created a
humanoid robot VR interface to be used in examining HRI.

2 SYSTEM
While fully autonomous robots are popular in research and have had
success in very specific domains, for many complex tasks having
a human operator in the loop is still often preferred. For the DRC
specifically, many of the teams utilized very little autonomy. The
teams that did have some autonomy typically used it in very specific
and limited cases. For example, IHMC started with scripts that could
perform tasks on their own and over time broke up those scripts
into smaller pieces. The end result was a series of steps where
the robot would plan a smaller action, and the operator would
either confirm the plan or, more often, make adjustments to the
robot’s state or plan before approving [7]. After the DRC Finals,
many teams published papers about their robot control interfaces
and lessons learned including Team IHMC which allowed their
robot operator to "command the robot via interaction with the
three-dimensional (3D) graphic tool rather than specifying robot
motion or joint positions directly" [7]. With all of that in mind,

we are primarily interested in an interface where the operator
retains control of most of the robot functions. Similar strategies
were common among several of the teams, albeit all on portrayed
on 2D screen interfaces, and usually interacted with by a mouse
and keyboard.

While the teams competing in the DRC had a specific goal,
namely completing a series of structured tasks in a controlled com-
petition, it still represents one of the most significant events in HRI
for humanoid robots, and so we built off of the lessons learned when
building our own VR interface. For instance, teams with greater
success at performing tasks relied on a fused display of the 3D ro-
bot avatar, point cloud, and camera images, in a common reference
frame [10]. However, 2D interaction methods, like a mouse and
keyboard, were used to maneuver the displays and issue commands.
HRI for humanoid robots consists inherently of 3D data, for which
VR offers a unified solution for both 3D display and control. Our
goal was to create an interface that would leverage VR in order to
increase operator situation and task awareness when visualizing
a remote location, while also providing adequate control methods
to compete with traditional 2D screen with mouse and keyboard
interfaces.

Our proposed interface utilizes the HTC Vive [6], a commercially
available VR headset combined optionally with the Manus VR [8]
gloves, a pair of gloves that allows accurate finger tracking, as well
as tracking the wrists’ location with the HTC Vive Trackers [6].
As an alternative to the glove, we also use the standard controllers
that come with the headset.

2.1 Robot platform
While our interface has been designed to be applicable to any hu-
manoid robot with similar features, we developed and tested it using
the Valkyrie R5 created by NASA [14]. Valkyrie is a 6 foot tall, 300
pound humanoid robot with a pair of four fingered hands attached
to 7DOF arms. The robot has several sensors built in including a
Carnegie Robotics Multisense [15], located in its head, capable of
generating both high and low density point clouds, depending on
bandwidth requirements, as well as a stereo camera view. The robot
also has an additional pair of stereo cameras in the lower torso. Fi-
nally in addition to accurate joint state and torque tracking on each
joint the robot has embedded tactile sensors in the fingers and palm
to detect grasping success. The types of actions the robot perform
are to move a foot to a location in 3D space and hold without taking
a step; to move a foot to a location in 3D space and take a step; to
command the torso, pelvis, or neck to a commanded position; and
to command one of the arms to a location in 3D space.

2.2 Software Platform
Valkyrie’s sensors and controller interface communicate using ROS
[13], a communication middle-ware commonly used in robotics.
When this project was started, the Linux driver for the HTC Vive
was lacking many important features so we built our application
within the Windows operating system. In order to communicate
with the Robot we utilized a Unity [17] plugin of ROS.NET [16]
which handled all of the communication and conversion between
standard ROS topics and types into things that could be uses within
Unity. With the infrastructure settled, we were able to use the most



Teleoperating a Humanoid Robot with Virtual Reality Virtual, Augmented, and Mixed Reality for HRI, March 5, 2018, Chicago, IL, USA

supported and feature complete SDK for the HTC Vive, with the
added bonus of being able to leverage several other features within
Unity.

3 INTERFACE
We have built our VR interface to attempt to take full advantage of
the available features. With the operator wearing the VR headset
and wearing either the gloves or controllers, the operator finds
themselves inside a virtual world. The operator is able to physically
move around a clear work space in order to move an avatar in the
virtual world. Since the physical work space can be significantly
smaller than the remote robot work space, we have also allowed
the operator to teleport around the virtual world by pointing their
controller at a location on the ground and pressing a trigger button.
This allows the operator to continue to navigate in remote environ-
ments that are much larger than the operator’s own environment.

The robot is capable of accurately tracking its own relative move-
ment in the world via an IMU, as well as the joint state of each
of its limbs. This means that with a known robot model, we are
able to render a virtual version of the robot for the operator that
updates in real time as seen in figure 1. The operator is then able
to navigate around using room scale to view the virtual robot from
any angle and position.

3.1 Visualization
Sensors capable of scanning the nearby environment and generat-
ing 3D point clouds have seen increased use on both research and
commercial robot platforms. Traditionally the operator can view
the point clouds by navigating a virtual camera throughout the
point cloud to different viewpoints, in order to build up their own
internal 3D understanding of the environment layout, a process
called moving parallax. Once the operator has a solid mental model
of the remote environment, they can then plan out the actions the
robot should perform. This process can be time consuming, men-
tally taxing, and error prone; however, the ability to visualize point
clouds as virtual environments is one of the most powerful features
VR can bring to teleoperating robots. Rather than attempt to rebuild
a 3D mental model of the environment from 2D vantage points, the
operator can view and virtually navigate the 3D environment as
is, at proper life scale. The environment is also presented to the
operator in stereo vision by the VR headset, allowing for enhanced
innate understanding, compared to using a 2D display. By render-
ing the point cloud data into the virtual world, the operator can
understand the state of the remote world in a way that requires
significantly less time and effort.

3.2 Rendering
As discussed in Davis et al. [5], cybersickness remains a concern.
Whereas in many traditional interfaces, the frame rate of the sys-
tem can be considered insignificant, for VR it is recommended to
maintain a frame rate above 90 frames per second. One method for
reducing system load is to throttle the sensor data which can work
for static environments; however, for dynamic environments the
operator needs up-to-date information in real time. To that end,
particular care was taken when handling point clouds to make sure
that receiving and rendering the point cloud in VR was both fast

and efficient. Figure 2 gives an example of rendering a high density
point cloud of a cluttered table with minimal impact to system
performance.

VR poses several unique challenges when rendering 3D data.
Unlike a 2D interface, the computer can not simply pause rendering
to load new sensor data to the graphics card. One must worry about
both average frame rate that may be slowed down simply by the
quantity of data in the scene, and the maximum latency between
frames, which is caused by loading new sensor data.

In an effort to keep the total data as low as possible, the decision
was made to render each point in a point cloud as octahedrons,
which only have 8 triangles and 6 vertices, compared to a cube
which has 12 triangles and 8 vertices. Voxel filtering and surface
reconstruction are also highly effective methods of reducing the
total number of points that have to be rendered.

The problem of reducing the maximum frame latency is equally
challenging, if not more so. When a new point cloud is received by
Unity, it must be broken up into vertex, triangle and color arrays that
unity mesh objects can understand. This can be handled on a thread
other than the main rendering thread, but loading those arrays to a
Unity mesh object to be visualized must pause rendering while they
are loaded. As long as the user maintains an average frame rate of
90 frames per second, a brief drop to 50 or 60 for a single frame is
generally not a problem, but that still only allows for a maximum of
20 milliseconds to load new point cloud data to the mesh object and
then to the graphics card. To overcome this limitation, the point
cloud may be broken down into several different meshes, such that
each may be loaded in under 20 milliseconds. These meshes are split
into different color groupings, all of which get updated in the same
frame. This color grouping prevents having discreet chunks of the
point cloud update in different frames. Special care is also taken,
if there are several different point clouds from different sensors in
the scene, to avoid updating them in the same frame to prevent a
drastic increase in frame latency.

3.3 Usability
Of particular use is the ability for the operator to view the point
cloud in relation to the robot as seen in figure 3. Notice the low
density point cloud of a doorway in front of the robot. Because
the scene is recreated in a one-to-one scale, both for the robot
and the operator’s virtual avatar, the operator can see both the
position and size of the door relative to the robot and themselves,
then maneuver their viewpoint throughout the virtual space as
necessary. This should allow operators to plan their actions quickly
and reliably. This design follows recommendations from Nielsen,
Goodrich, and Ricks [9] and Okura et al. [12], where it is suggested
to use a common reference frame, with variable perspectives, for
3D displays of the environment and the robot avatar to provide
greater surroundings awareness to the operator.

This VR system also has the capability to load static models or
even static point cloud scans of an environment if available. By
adding this additional information, the operator can more easily
localize themself and understand the robot’s position and environ-
ment. Static models and point clouds help to fill in information
about what the robot may not currently be looking at.




	Abstract
	1 Introduction
	2 System
	2.1 Robot platform
	2.2 Software Platform

	3 Interface
	3.1 Visualization
	3.2 Rendering
	3.3 Usability
	3.4 Control

	4 Future Work
	5 Conclusion
	6 Acknowledgements
	References

