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Abstract

Evaluating the capabilities of a robotic system for manufac-
turing can include metrics related to performance, efficiency,
and productivity. Measures for traditional industrial automa-
tion typically address operations that rely on strict repetition
that does not allow for much variation. The inclusion of artifi-
cial intelligence (AI) in robotic systems can allow for greater
aptitude in maintaining capability in the presence of varia-
tion, such as local changes in environmental characteristics or
global changes in task execution parameters. New evaluation
methods and metrics are needed to allow these advanced ca-
pabilities to be appropriately measured. This paper discusses
evaluating the robustness, adaptability, generalizability, and
versatility of AI-enabled robotic manufacturing systems. The
considerations for conducting evaluations of these capabili-
ties are reviewed, including implications for robots that learn
and those that are designed to be explainable. Recommenda-
tions are made for advancing the development of metrics and
evaluation methods that highlight the capabilities afforded by
AI. A prototype framework is presented to guide the design
of evaluations and classification of metrics.

Introduction
Traditional robot automation in manufacturing performs the
same task over and over, allowing for highly repeatable
metrics related to performance, efficiency, and productivity.
Such systems may not be robust in the presence of variation
(e.g., a target object is not in the exact place it is expected
to be) or may not be able to be reconfigured for other tasks.
The advent of robots with artificial intelligence (AI), or AI-
enabled robots, in manufacturing enables agile and flexi-
ble solutions that can adapt to variation or uncertainty (El-
Maraghy 2005; Browne et al. 1984). Variation can appear in
many forms including fluctuations in environmental or task
characteristics, which can be expected and trained for or un-
expected and must be acclimated to.

Metrics and evaluation methods are needed to measure
and express the capabilities of advanced robotics in manu-
facturing and to induce variation that appropriately demon-
strates those capabilities. Robots in this domain may also
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be outfitted with learning capabilities to improve their per-
formance and may be tasked with explaining their behavior.
Both capabilities require special attention when designing
evaluations. Prior work in test and evaluation can be lever-
aged from relevant domains including those for industrial
manipulators, autonomous industrial vehicles, human-robot
interaction (HRI), and machine learning.

This paper presents some of the considerations for devel-
oping metrics and evaluation methods for measuring robot
capabilities that are enabled by AI, particularly those that
operate in the presence of variation. These variations aid in
defining the context of a manufacturing operation/evaluation
and can include changes to:
• the input data provided to the robot to perform its task,
• the target objects being interacted with,
• the tasks being performed with those objects,
• the environment where the tasks are being executed, and
• the robot platform executing the tasks.

These variances must be properly characterized so that
they accurately represent the context in which a robot will
operate (Norton, Messina, and Yanco 2020 In Press). This
process is paramount to eliciting results that are potentially
generalizable to other, similar scenarios (Amigoni, Luperto,
and Schiaffonati 2017), rather than abstract test cases. To do
so, the parameters must be selected, measured, and induced
as part of an evaluation.

This paper is primarily concerned with outcomes-based
measures (i.e., those more directly observable) rather than
internal assessments of AI. Considerations for developing
metrics and evaluation methods are discussed, including im-
plications if the robot possesses learning capabilities or is
designed to be explainable. Several recommendations are
made followed by a proposed framework for guiding the de-
sign of evaluations and classification of metrics.

Related Metrics and Evaluation Methods
Performance evaluation is critical to many robotics do-
mains including mobile vehicle navigation, manipulation,
and human-robot interaction. Some of the metrics and eval-
uation methods used in these domains are applicable to AI-
enabled robots in manufacturing.



The capabilities measured for autonomous mobile ve-
hicles include navigation, obstacle avoidance, and local-
ization. Test methods such as those presented in (Norton,
Gavriel, and Yanco 2019) vary the shape of the boundaries
defining the environment in order to exercise these capabili-
ties and account for dynamic changes like obstacle presence.
Relevant metrics include the distance maintained from ob-
stacles, dimensions of the space being navigated, robot tra-
jectory smoothness, and traversal time (Ceballos, Valencia,
and Ospina 2010); repeatability of the latter is particularly
important for manufacturing environments (Gill et al. 2019).

Evaluating robotic manipulation capabilities includes
measures related to grasping and functional task perfor-
mance like assembly. A series of test methods for mea-
suring the characteristics of robot end effectors includ-
ing strength, cycle time, and repeatability are discussed in
(Falco, Van Wyk, and Messina 2018; Falco et al. 2020a).
Those three metrics in particular are very important for man-
ufacturing; e.g., timing informs productivity throughput, re-
peatability influences expected error rates. Protocols have
also been developed for pick and place or kitting operations,
attempting to generalize a protocol that can be adapted for
particular contexts (Mahler et al. 2018) and utilizing task-
specific constraints to determine a success metric (Ortenzi
et al. 2019). Common object sets for benchmarking manip-
ulation (Calli et al. 2015) are also widely used in the com-
munity. Test methods and protocols for robotic assembly of
small parts have also been developed (Falco et al. 2020b)
which represent various manipulation and perception com-
petencies for locating objects, inserting, nut threading, etc.;
see Figure 1. The boards can be used for assembly and dis-
assembly operations.

There are also efforts to develop test methods for mobile
manipulators in manufacturing settings. A reconfigurable
mobile manipulator artifact (RMMA) is specified in (Bostel-
man et al. 2016) that can be used to represent positioning re-
quirements of assembly tasks. Performance is evaluated by
motion capture and by measuring uncertainty of end effector
position using reflectors. Test methods for agility have been
developed to test a robot’s ability to perform kitting tasks
in the presence of induced variation (Downs, Harrison, and
Schlenoff 2016). Metrics include awareness of parts having
been dropped, correcting the task by picking up a part hav-
ing been dropped, and acclimation to new prioritization of
tasks (e.g., does the robot optimize for efficiency by ful-
filling the new order using the kit it is already building?).
More performance metrics for agility in smart manufactur-
ing are presented in (Lee et al. 2017) which include metrics
related to environmental characteristics, quality, flexibility,
and adaptability.

Additional relevant fields for AI-enabled robots in man-
ufacturing include metrics for HRI (Steinfeld et al. 2006),
particularly those that could be applied to co-located sce-
narios in manufacturing (e.g., operator interventions to cor-
rect autonomous failures, the robot’s awareness of the hu-
man and vice versa). Metrics for explainable AI are also rel-
evant for robots that can learn in a manufacturing setting,
such as measuring the “goodness” of an explanation, user
satisfaction, understandability, trust, and human-robot task

Figure 1: Assembly task board artifacts used to benchmark
robotic assembly capabilities. Adapted from (Falco et al.
2020b) with permission.

performance (Hoffman et al. 2018). The referenced paper
reviews many tools that can be used for analysis including
surveys for humans to rate explanations and a framework for
conducting evaluations of explanations.

Selecting Parameters
When selecting which parameters will be varied, it is impor-
tant that those selected are (1) modeled after expectations
of the real world scenario and (2) when adjusted from a
baseline, the introduced variation is expected to challenge
the system. For example, randomized bin picking has sev-
eral parameters that are expected to affect robot capability,
including scene complexity, degrees of freedom of the ob-
ject’s pose, image feature complexity, and part rigidity (Mar-
vel et al. 2012). Each of the parameters can also be tied to
robotic components whose capability can be exercised; e.g.,
scene complexity for vision, part rigidity for grasping. Man-
ufacturing processes can be broken down and classified into
the unique capabilities required to perform them to use as a
starting point for selecting relevant parameters. Taxonomies
of tasks like those used in (Shneier et al. 2015) for robotic
assembly can be leveraged or similar exercises can be per-
formed to derive the performance requirements of other do-
mains. That paper draws from (Boothroyd, Dewhurst, and
Knight 2010), which features many details of manufacturing
processes including assembly, machining, injection mold-
ing, casting, and forging.

It is infeasible to test all possible variations of a param-
eter, even within a limited threshold, so a downselection of
reasonably varied test cases must be performed. Given how
thoroughly manufacturing processes are defined, it is likely
that the expected amount of uncertainty could be modeled
to generate various unique test cases. There remains a chal-
lenge to determine how many unique test cases should be
selected and what they should consist of in order to prevent
exhaustive evaluations while also sufficiently covering the
possibilities. When varying a single parameter, one option
is to utilize maximum, minimum, and median settings along
that parameter, the former two representing edge cases. This
method is utilized in (Falco et al. 2020a) to evaluate the



grasp strength of a robotic end effector by testing with ar-
tifacts that represent the largest, smallest, and average size
object that can be grasped.

As more parameters get added, one could generate all pos-
sible combinations of settings for each parameter then elim-
inate combinations that are unrealistic, but this could still
lead to exhaustive, expensive testing. The unique parame-
ters of a target object or task according to their related ap-
plication domain can influence the appropriate selection of
parameters. For example, (Malhan et al. 2019) utilizes five
target objects of various dimensions and shape that represent
types of parts for composite layup in aerospace manufactur-
ing (see Figure 2). Each object can be classified as requiring
different types of trajectories to be planned across parame-
ters including shape, pattern, and number of discrete paths
needed. Another example is in (Dietz et al. 2016) where the
parameters (referred to as “degrees of freedom”) of welding
a T-joint seam including welding direction and rotation are
varied to create unique test cases (see Figure 3).

Measuring Variation and Success
If only a few measurable parameters are varied as part of an
evaluation, the “amount” of possible variation can be quan-
tified and presented as a threshold; e.g., +/- 5 cm variation
in object placement on a surface. As the number of param-
eters increases, though, it is likely infeasible to quantify all
of them. Instead, qualitative groupings of unique test cases
can be generated to articulate the context. Using the exam-
ple composite layup target objects in Figure 2, the param-
eters can each be given a set of discrete qualifiers that can
be attached to each test case; e.g., shape: concave or con-
vex; pattern: lawnmower or spiral. The metrics derived from
these test cases could then be generalized to others with sim-
ilar qualities (Amigoni, Luperto, and Schiaffonati 2017). A
similar “feature-extraction” technique is taken when using
the ASTM F3381 standard (ASTM 2019), which identifies
several parameters of stationary obstacles that could be en-
countered by an industrial mobile robot. Qualitative param-
eters in that standard include shape, material, color, and face
quality (e.g., open, closed). The parameters are selected be-
cause some combinations are known to be problematic for
certain sensors used in obstacle avoidance (e.g., flat black
surface with lidar (Kneip et al. 2009)).

It is desirable to record the precise parameters present
for every repetition of a task, particularly if performance is
shown to be inconsistent under certain conditions. If testing
is performed in simulation then recording these parameters
should be feasible. In physical testing it may prove difficult
to record the conditions of every task repetition if there are
multiple parameters being varied and if the speed of oper-
ation is fast (e.g., rapid pick and place). Additional sensors
can assist in establishing ground truth measurements of the
environment, such as by outfitting target objects with IMUs
for orientation data, affixing fiducials to track position via
cameras, or utilizing additional sensors on the robot. For ex-
ample, (Morrow et al. 2018) outfitted robotic hands with po-
tentiometers to provide ground truth measurements of joint
angles while evaluating grasping.

Figure 2: Example target objects for a composite layup
task that each require different trajectories to be planned.
Adapted from (Malhan et al. 2019) with permission.

For any evaluation of a robot’s capabilities, multiple repe-
titions of performance must be elicited such that statistically
significant measures can be obtained. Success criteria should
be set for every repetition (e.g., target object must be sanded
in 10 minutes or less) and for the test as a whole (e.g., must
successfully complete 29 repetitions). The number of suc-
cessful repetitions required is associated to a probability of
success and confidence in the results, ranging from 10 to 459
successful repetitions with no failures for 85% to 99% prob-
ability of success (respectively) with 80% to 99% confidence
(respectively). To achieve similar probability of success and
confidence while allowing for some failures, the number of
required successful repetitions increases. See (Leber, Pibida,
and Enders 2019) for more detail. These statistics assume
that the experiment stimuli used in all repetitions is static.
The introduction of variance into some of the stimuli may
impact how to perform these types of evaluations.

Inducing Variation
Before inducing variation into an evaluation, a baseline
of performance should be established. When varying lo-
cal contextual characteristics (i.e., environmental perturba-
tions or variations in characteristics of target object or input
data), the baseline should be established under ideal—but
realistic—conditions. When varying global contextual char-
acteristics (i.e., markedly different environments, tasks, or
robots), the baseline can be established from an intended
initial scenario. This type of variance is typically induced
when demonstrating the versatility of a system to serve mul-
tiple, distinctly different functions. The baseline may con-
sist of performance measures derived in the initial context
where the robot is planned to be used. Variations may be in-
duced systematically (i.e., selecting from a set of test cases)
or stochastically. The latter may be necessary if relying on
naturally occurring variance, such as the location and ori-
entation of objects delivered via chute to a platform before
they are grasped.

After the baseline is established, another evaluation
should be conducted that includes the induced variation.



This is similar to the introduction of “agility challenges”
in (Downs, Harrison, and Schlenoff 2016), which compares
performance of a static task to a dynamic one that induces
interruptions and reprioritizations. During the 2017 Agile
Robotics for Industrial Automation Competition (ARIAC)
Competition (which used the test methods in the referenced
paper), one team was able to place by studying the timing
and patterns of when the events were triggered and thus did
not require an AI solution (Harrison, Downs, and Schlenoff
2018). Variations like this that are more event-based must
consider timing as a parameter to be varied during task rep-
etitions as they otherwise risk being able to be gamed.

Aside from preventing gaming, overfitting of an au-
tonomous solution is also a concern. For example, a mobile
robot may encounter an obstacle and add the obstacle to their
cost map such that it can plan around that obstacle when
the area is traversed again. At this point, the robot is techni-
cally no longer detecting and avoiding the obstacle on every
subsequent repetition. To counteract this, the characteristics
of the obstacle can be varied in between repetitions, inten-
tionally modifying its features and/or position in the oppo-
site part of the aisle that was previously traversed, a con-
cept described in (Norton and Yanco 2016). A similar tech-
nique was used in one of the experiments for the DARPA
Fast Lightweight Autonomy program wherein UAVs au-
tonomously navigated several test courses in a warehouse.
Each test course had a unique overall design (e.g., single
corridor, multiple corridors with a turn, etc.), but multiple
runs were conducted in each course with different obstacle
layouts to test each system’s robustness (Mohta et al. 2018).

Robots operating in manufacturing environments are of-
ten provided input data that will assist in performing its task,
such as a CAD model of a target object for identification
purposes or a map for navigation. With this information pro-
vided, the robot may select from a set of predefined actions
or plan its actions and then modify based on sensed mis-
alignments between expectation and reality. (Gill et al. 2019)
induces variation along this parameter into the evaluation of
a mobile robot for automotive manufacturing, intentionally
misaligning the presence of obstacles physically and/or vir-
tually (e.g., present in the robot’s map, but not physically,
or in a different location). This parameter has been formal-
ized as “knowledge conditions” in a test method for evaluat-
ing navigation and obstacle avoidance capabilities (Norton,
Gavriel, and Yanco 2019). Another common variable to in-
put data for manufacturing systems is human interaction to
program it to perform a task. Relevant parameters that could
be varied for HRI evaluation include user experience and the
complexity of a task that must be programmed.

Evaluating Learning Robots
Machine learning is a technique aimed at maintaining and
building capability in the presence of variation. AI-enabled
robots that are able to learn can do so offline or online. Train-
ing an offline learning system is critical to its success and
presents another avenue for potential variation; parameters
can include the number of training samples, characteristics
of the samples used for training, and training on synthetic
or physical data. The latter has shown to be problematic

Figure 3: Parameters of welding a T-joint seam that influence
required different robot capabilities: welding directions (red
arrows) and welding rotations (blue arrows). Adapted from
(Dietz et al. 2016) with permission.

as some simulators cannot accurately model certain sensors
(e.g., contact forces (Xu et al. 2018)). Learning from demon-
stration can also be subject to variances inherent in the hu-
man teacher. For example, in (Liu and Zhang 2015), train-
ing data for a robot learning to weld is obtained from human
demonstration wherein the welding current is randomly var-
ied to elicit appropriate response data from the human. The
robot is then evaluated in experiments where artificial error
is induced systematically to mirror the induced variance dur-
ing training, albeit in a controlled manner.

Online learning systems will adjust their performance
over time as they continue to operate, hopefully improving
the system performance. Conducting performance evalua-
tions of these systems is very challenging because of the
additional parameters at play (e.g., supervision, reinforce-
ment, amount of learning each task) and the compound-
ing nature of learning. Continuous or lifelong robot learn-
ing approaches are typically evaluated against other algo-
rithms or in comparison to a baseline without learning. An-
other technique is to conduct progressive experiments where
a new task is continually revisited as experience in previ-
ous tasks grows (Chen and Liu 2016). When reporting met-
rics derived through this kind of progressive experimenta-
tion, the “amount” of experience learned (or at least exposed
to) at each testing interval should be quantified and reported
alongside the derived metrics, as well as the threshold of
variation induced at each stage (as described previously).
Some techniques from machine learning algorithms can be
leveraged here, too, such as introducing adversarial data sets,
inducing expected perturbations to a data set, and mutation
testing. See (Braiek and Khomh 2018) for a more compre-
hensive survey of techniques.

As online learning continues for longer periods of time,
systems can forget certain learned techniques. As described
in (Farquhar and Gal 2018), it is easier for a continual learn-
ing system to learn a completely new task without forget-
ting than learning a task that is similar to one it has al-
ready learned. This presents an opportunity for evaluating



a learning system’s memory by varying parameters includ-
ing the order in which tasks are learned. There is also the
concept of forward and backward learning transfer, a met-
ric that can be evaluated by intentionally varying learning
order. This and other elements of continual learning are out-
lined in (Lesort et al. 2019) where recommendations that
include evaluation are provided, such as recommending to
evaluate algorithms on more than two tasks and using pub-
licly available baselines and benchmarking tools to improve
reproducibility. Datasets and benchmarks are available for
continuous object recognition such as CORe50 (Lomonaco
and Maltoni 2017), but much less for other robotic and man-
ufacturing oriented tasks. Regardless of the benchmarking
tools used, conducting evaluations of continuous learning is
still in need of more robust approaches to exhaustive bench-
marking and evaluation schemes (Parisi et al. 2019).

Evaluating Explainable Robots
An explainable robot system is one that can provide insight
to another agent as to its capabilities or why it performed a
certain way. Efforts for the latter to develop robots that are
able to self-assess their proficiency before, while, or after ex-
ecuting a task seek to tackle this problem (Han et al. 2019;
Lee 2019) with the goal of producing more fluent HRI. As
learning is introduced for robots in manufacturing and new
tasks are learned, explainability may be required throughout
the system’s life cycle. For an outcomes-based evaluation of
these capabilities, relevant metrics will pertain to the com-
munication of an explanation, which can relate to how the
communication is performed and how the human agent re-
acts to the communication. Both axes of evaluation can in-
form one another.

Success criteria for evaluating an explanation can include
whether or not a provided explanation is correct, warranted,
and/or understood. Example metrics include qualities of the
communication itself (e.g., succinctness, latency, commu-
nication modality) and how the human agent interprets the
communication (e.g., perceptability, understandability, pro-
cessing difficulty). Evaluation will involve an experiment
design wherein the next action to be taken by a human agent
after receiving an explanation is dependent on the accuracy
of the robot’s explanation and/or the human’s interpretation
of it. The conceptual model of processing an explanation
provided in (Hoffman et al. 2018) outlines this type of eval-
uation as a “test of comprehension” (i.e., alignment of the
user’s mental model) followed by a “test of performance.”
This produces a three-step evaluation process: (1) the robot
performs a task, (2) the robot communicates an explana-
tion as to its performance on that task, and (3) the human’s
performance in reaction to that communication. These steps
may happen in a different order depending on when the ex-
planation occurs (e.g., if a priori: 2, 3, 1).

Recommendations
With the previously described considerations in mind, sev-
eral recommendations are made to advance metrics and eval-
uation methods for AI-enabled robots in manufacturing.

Develop guidance and resources for deriving salient

parameters of manufacturing contexts that can be var-
ied as part of evaluation. One option to support this is
the development of taxonomies of relevant robot capabilities
and characteristics and correlating the associated challenges
posed when used in a manufacturing setting. Common issues
associated with different robotic components, tasks, or pro-
cesses in manufacturing environments should be cataloged.
Reference materials like (Boothroyd, Dewhurst, and Knight
2010) that define the various components and characteristics
of manufacturing tasks and processes should be leveraged as
starting points for development.

Generate more manufacturing-oriented data sets and
benchmarks. Evaluation resources like data sets for object
recognition (Lomonaco and Maltoni 2017) and benchmark-
ing tools for robotic manipulation (Calli et al. 2015) have
proven beneficial for the research community, but are not fo-
cused on manufacturing. An effort out of the National Insti-
tute of Standards and Technology is to develop data sets and
models specifically for AI and machine learning of robots in
manufacturing (National Institute of Standards and Technol-
ogy 2020).

Develop benchmarking tools and test methods for
robot learning and explainability. These burgeoning ca-
pabilities for manufacturing require careful consideration
when being evaluated and can leverage techniques from non-
robotic machine learning evaluation and HRI metrics. For
example, efforts like REPLAB (Yang et al. 2019)) which
provide a common platform, task definition, and protocols
for benchmarking robot learning of grasping. There do not
appear to be any common resources towards evaluating ex-
plainability in robots.

Develop tools to automatically induce variation and
record ground truth measurements. Physical methods
that can automatically reset the position of target objects in
order to conduct evaluation with a high number of required
task repetitions to achieve statistical significance can ease
the burden of long-term evaluation. Additionally, the ability
to measure and record the events of an evaluation through
sensorizing the test space can greatly increase fidelity.

Define the scope of an evaluation and classification of
metrics using a common lexicon and framework. The
context of an evaluation, the metrics used, what element(s)
they correspond to, and the comparison of results are im-
portant factors when designing evaluations. Similar to the
benchmarking scheme for bipedal locomotion (Torricelli et
al. 2015), a framework and standard terminology set for
robots in manufacturing can be used to guide the design of
an evaluation and in communicating these concepts. Follow-
ing this recommendation, an evaluation framework is pro-
posed in the next section.

Proposed Evaluation Framework
The framework consists of several components that can as-
sist in defining and communicating the scope of an eval-
uation. See Figure 4. This framework is under develop-
ment as part of an effort to standardize metrics used in
projects funded by the Advanced Robotics for Manufactur-
ing (ARM) Institute (ARM Institute 2020), but aims to be
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Figure 4: Framework in development for designing evaluations and classifying metrics of AI-enabled robots in manufacturing.

more broadly applicable to other outcomes-based evalua-
tions of robots in manufacturing.

Three measurement levels are defined in order to spec-
ify what element(s) the metrics used in an evaluation are
being used to measure: robotic component, manufacturing
task, and manufacturing process. Three metrics categories
are also defined: performance, efficiency, and productivity.
By combining these two components, one can express what
the evaluated metric is representative of; e.g., measuring the
performance of a planner (robotic component) by measuring
the speed at which it calculates trajectories, the efficiency of
transferring a grasped object to a bin (manufacturing task)
by measuring its duration, the productivity of kitting (man-
ufacturing process) by measuring throughput rate.

The contextual characteristics that can be varied as part
of an evaluation are divided into local (environment, target
objects, input data) and global (environment, task, robot).
These are corresponded to four capabilities that an AI-
enabled robot can possess, each of which are defined accord-
ing to what type of variability the robot is able to withstand:
• Robustness: local variations in the environment; e.g., fluc-

tuations in ambient lighting or target object location.

• Adaptability: local variations in target object and/or input
data characteristics; e.g., varied geometry of objects that
all require the same robot competencies to be effectively
interacted with.

• Generalizability: global variations in environment; e.g.,
for a mobile robot, changing from navigating through
open spaces with less features to narrower, confined
feature-dense aisles.

• Versatility: global variations in task and/or robot plat-
form; e.g., for a trajectory planner of a robot manipulator,
changing the task from kitting (coarser object placement)
to welding (sensitive adherence to planned paths).

If a robot possesses the capability, then evaluations con-
ducted under defined variation of the related contextual char-
acteristics will have been successful. These terms are com-
monly used throughout manufacturing with many possible

definitions, but no single unified definitions exist. Their def-
initions in this paper are intended to delineate them from one
another purely for evaluation purposes.

If variation is induced systematically, then multiple
unique test cases will be generated and evaluated. Stochas-
tic variation may be less measurable for ever task repetition
and may occur naturally as part of a task design (e.g., po-
sition of an object to be inspected may slightly shift due to
human error in placing it in front of the robot). The results of
the evaluation can be compared to baselines, publicly avail-
able benchmarks, or to prior results if the robot is capable
of learning. The framework can also be used to design ex-
periments in order to elicit appropriate training data for a
learning system, and then later used to evaluate that capabil-
ity under new context.

The terms used in the framework are intended to simplify
specification of an evaluation and the interpretation of re-
sults. For example, one could evaluate the adaptability of a
robot while performing a sanding task by varying the target
objects to include those with similar but unique geometry.
The performance of the manufacturing task can be evaluated
by measuring speed (e.g., time per workpiece) and quality
(e.g., surface roughness in microinches) and comparing it
to a baseline of a single workpiece. If the robot learns, ad-
ditional evaluations can be conducted at different intervals
after so many workpieces have been sanded for comparison.

The prototype framework does not purport to address all
evaluation needs of AI-enabled robots. It is presented as a
starting point for cultivating discussion and development of
metrics and evaluation methods for these systems and will
continue to be refined in the future.

Conclusion
This paper presented several considerations for developing
metrics and evaluation methods for AI-enabled robots in
manufacturing, including how to select, measure, and induce
variation as part of an evaluation, evaluating a robot’s ability
to learn, and if the robot is explainable. Recommendations
were made to advance the development of metrics and eval-



uation methods, outlining gaps related to context definition,
benchmarking, automated testing, and guidance for design-
ing evaluations. In response to the latter recommendation,
a prototype framework that corresponds several elements of
evaluating AI-enabled robots in manufacturing is presented.

There are additional efforts by the authors and collab-
orators following some of the recommendations made in
this paper, such as developing physical testing infrastruc-
ture outfitted with sensors for ground truth measurements
and automation systems to support systematic evaluations
of robots (National Science Foundation 2020), and devel-
oping metrics for explainability as part of the SUCCESS
MURI project (CMU, BYU, Tufts, UML 2020). The pro-
posed framework is still under development and the authors
encourage feedback on its design such that it can be more us-
able in guiding evaluations. We will continue development
such that more concrete evaluation guidelines can be gener-
ated as the research field advances.
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