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Abstract— It is especially important that robots are able
to explain their failures in a manner that helps a person
understand what went wrong and to appropriately align their
trust with the system. In this work we updated our Generative
explanation system to create explanations catered to novices.
We also leverage context to help ground the language used
in explanations with the environment. Through our study we
highlight the importance of word choice on people’s perception
of a robot’s trustworthiness.

I. INTRODUCTION AND RELATED WORK

Robots must effectively communicate their failures to
people who may be nearby. When explaining failures, a
robot should do so in a manner that appropriately aligns the
person’s trust in the system.

Robots can use several trust repair strategies such as
apologies, explanations, denials, and promises to help a
person align their trust in the system [1]. These trust repair
strategies can convey the same information through different
language choices, which can differ in effectiveness and can
influence a person’s perception of the system.

Explanations and apologies have been found to be effective
trust repair strategies [1]. Systems that explain their behavior
or failures have been shown to increase people’s trust [2],
[3], [4], [5], [6]. Explanations can contain different types of
information and can be structured in many different ways [7],
[8], [9], [10], [11], [12]. Robot explanations should take the
recipients’ roles and experience into account [13] and should
include sufficient details for non-experts to understand and
provide appropriate assistance [14].

Explanations can be created using templates or by generat-
ing text [15]. Templated explanations are more controlled and
can be more accurate compared to generative approaches.
However, this comes with a trade-off, as templated expla-
nations are not as fluent as generative explanations. This is
especially important to consider as large language models
are becoming popular tools for generating explanations of
robot behavior [16], [17], [18], [19], [20]. Although accuracy
has been argued to be more important than fluency [21],
several participants in our prior work [22] commented on
the importance of fluency on robot trust (e.g., “I lose a little
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faith in a supposed smart robot when its explanations aren’t
spoken in correct English”). This motivated us to compare
Templated and Generative explanations, where we found
that people surprisingly perceived the robot using Templated
explanations to be similarly or more trustworthy compared
to those using Generative explanations [17]. In this work
we evaluate our new Generative explanations and further
investigate these mixed results.

II. METHODOLOGY

To generate explanations when a robot fails, we utilize
our Proactive explanation architecture and LLMs [17]. This
architecture takes advantage of the hierarchical structure
of Behavior Trees (BTs) [23] to automatically generate
robot explanations [24]. The robot can leverage information
from the BT by framing its internal states and actions into
semantic sets: {goal, subgoals, steps, actions} [24]. We also
incorporate Assumption Checkers (ACs) [25], [26], into the
BT to track information about the robot’s internal states
or environmental conditions throughout task execution. By
using robot and object profiles, this architecture can abstract
out robot and object specific information leading to a more
generalizable framework [27].

Through this framework, a robot can proactively detect
and explain failures before they occur, resulting in better
human perception and more understanding of the robot’s
failure [22]. The robot’s explanations consist of information
from the BTs, ACs, and the Object and Robot Profiles. These
explanations can be created using templates or can be gener-
ated using LLMs [17] such as GPT-4o. To enable LLMs to
generate accurate explanations we prompt it with information
obtained from the BT, robot profile, object profiles to give
it context for the scenario and the robot’s functions. We
also prompt the LLM with information obtained at the time
the system predicted that a failure would occur including
information from the BT and ACs that were violated.

In this work, we modified the prompt used in our previous
work [17] with the goal of generating explanations that were
better suited for novices. In addition, we add a condition
where the prompt included an image from the robot’s camera
at the time of failure. This provided the LLM with context
that it could use to help ground its language, such as
references to objects, to the real world. Our complete prompt
can be found on our GitHub repository1.

We then conducted a user study to evaluate our explanation
systems which used the same manufacturing scenario as

1github.com/uml-robotics/GPTRobotFailureExplanati
onPrompts/



TABLE I
EXPLANATIONS USED FOR EACH CONDITION.

Explanation
Type

Screw Bin Empty Screw Bin Moved Caddy Out of Reach

TEM I do not see any screws on the table so
I will not be able to pick screw.

Objects appear to have moved so I will
not be able to pick screw.

My arm can not reach the caddy so I will
not be able to place object into caddy.

GEN I couldn’t find any screws on the table
so I can’t pick one up.

Objects seem to have shifted, so I can’t
pick up the screw.

I couldn’t find a way to reach the caddy,
so I can’t place the screw.

GEN+C I don’t see any screws in the blue bin,
so I can’t pick a screw.

The screws in the green bin have shifted,
so I can’t safely pick one up.

I can’t reach the green caddy because
it’s too far, so I cannot place the screw.

our prior work [22], [17]. Participants observed videos of
a Fetch mobile manipulator robot working on a kit assembly
task with a worker (the experimenter) with the objective of
evaluating its performance. The experimenter would imitate
potential real-world failures by manipulating the environment
(e.g., moving the screw bin while the robot was in the process
of picking up a screw). When the robot proactively detected
that a failure would likely occur based on violated ACs, it
would then generate an explanation.

This study was a mixed 3 (System Type: Templated (TEM),
Generative (GEN), Generative with Context (GEN+C)) × 3
(Failure Type: Screw Bin Empty, Screw Bin Moved, Caddy
Out of Reach) design online user study which was conducted
on Prolific (N = 252). The first explanation generated by
our Generative systems for each Failure Type were used in
this study. The explanations used in each condition can be
found in Table I. Nine total videos2 of the robot interacting
with a person were made, one for each of the combinations
of system type × failure type. Each participant watched
three videos and experienced all three explanation and all
three failure types, one of each per video according to
their randomly assigned configuration. The ordering of the
scenarios was counterbalanced to reduce ordering effects.

We hypothesized that GEN+C would be perceived as more
trustworthy compared to TEM and GEN, which do not have
access to the environmental context (H1).

III. RESULTS

We evaluated people’s perceived trustworthiness of each
system through the MDMT V2 Capacity trust scale [28].
We ran Kruskall-Wallis tests and did not observe significant
differences between our system types across each of our
failure types: Screw Bin Empty (χ2(2) = 2.27, p = 0.321)
TEM: (M = 2.96, SD = 1.18), GEN: (M = 2.86, SD =
1.15), GEN+C: (M = 3.14, SD = 1.10)), Screw Bin Moved
(χ2(2) = 1.53, p = 0.465) TEM: (M = 2.54, SD = 1.05),
GEN: (M = 2.46, SD = 1.13), GEN+C: (M = 2.66, SD =
1.14)), and Caddy Out of Reach (χ2(2) = 0.65, p = 0.722)
TEM: (M = 3.03, SD = 1.12), GEN: (M = 3.07, SD =
1.12), GEN+C: (M = 2.94, SD = 1.05)).

IV. DISCUSSION

Ultimately, we did not observe support for H1. While
providing additional context to help ground the explanations

2youtube.com/playlist?list=PLIwwT33Qq2HRE7w-XSjfr
5FiwtR8lyifo

did not result in significant changes in perceived trustwor-
thiness, this information could still be beneficial to a user’s
understanding. In future work we plan to further investigate
users’ responses to our understandability questions.

In this study we did not observe the same significant dif-
ferences as we had in our prior work [17]. We had previously
observed a significant difference in perceived trustworthiness
between our Generative and Templated explanations, where
the Templated explanation was perceived as more trustworthy
in the Caddy Out of Reach Failure Condition. Both studies
followed the same procedure, used the same videos with
edited audio for the explanations, and our experimenters
validated our Generative explanations to ensure that they
were accurate and contained the same type of information.
Since the content of the explanations were valid, we believe
that the language used to communicate the failure may
explain the differences we observed across studies.

In our previous work, we observed that language used
by the LLM seemed more technical in some cases. This
was especially true for the Caddy Out of Reach Failure
Type’s Generative explanation: “I couldn’t generate a path
to the caddy, so I’m unable to position the screw for
placement in the caddy.” The phrases “generate a path” and
“position the screw for placement” do not describe the failure
in language that a person would likely use when talking
to another person. We believe this was because we had
prompted the LLM with technical information, including
a BT, leading it to generate more technical explanations.
In this study, we modified our prompt to guide the LLM
to generate explanations for novices and as a result our
GEN and GEN+C explanations did not contain technical
terminology. We hypothesize that this helped them perform
on par with our handcrafted TEM explanations. This implies
that it is very important for LLMs to be prompted to generate
responses catered to the roles and experience of the recipient,
as has also been suggested by existing literature [13].

Based on participants’ responses to free response ques-
tions in our prior work, we anticipated that grammatically
incorrect explanations from TEM would be perceived as less
trustworthy than the grammatically correct GEN and GEN+C
explanations. We did not observe significant differences
between our explanation groups which suggest that grammar
might not impact people’s trust as much as the language used
to describe the failures. This implies that the tradeoff between
generalizability and consistency could be more important to
consider than the tradeoff between fluency and accuracy.
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[13] M. Ribera and À. Lapedriza Garcı́a, “Can we do better explanations?
A proposal of User-Centered Explainable AI,” in Joint Proceedings of
the ACM IUI 2019 Workshops. CEUR Workshop Proceedings, 2019.

[14] Z. Han, E. Phillips, and H. A. Yanco, “The Need for Verbal Robot
Explanations and How People Would Like a Robot to Explain Itself,”

ACM Transactions on Human-Robot Interaction (THRI), vol. 10, no. 4,
pp. 1–42, 2021.

[15] A. Gatt and E. Krahmer, “Survey of the State of the Art in Natural
Language Generation: Core tasks, applications and evaluation,” Jour-
nal of Artificial Intelligence Research, vol. 61, pp. 65–170, 2018.

[16] Z. Liu, A. Bahety, and S. Song, “REFLECT: Summarizing Robot
Experiences for Failure Explanation and CorrecTion,” 7th Conference
on Robot Learning (CoRL 2023), 2023.

[17] G. LeMasurier, C. Tagliamonte, J. Breen, D. Maccaline, and H. A.
Yanco, “Templated vs. Generative: Explaining Robot Failures,” in
2024 33rd IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN). IEEE, 2024, pp. 1346–1353.

[18] C. P. Lee, P. Praveena, and B. Mutlu, “REX: Designing User-centered
Repair and Explanations to Address Robot Failures,” in Proceedings
of the 2024 ACM Designing Interactive Systems Conference, 2024, pp.
2911–2925.

[19] D. Sobrı́n-Hidalgo, M. A. González-Santamarta, Á. M. Guerrero-
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