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Multi-Electrode Arrays (MEAs) are a useful tool for inspecting the activity of living,

interacting cultures of neurons in a manner that is not intrusive to the cells. However,

the limited lifespan of the cells in vitro and the impossibility of exactly duplicating

any particular network of living cells are problems for research with MEAs. This

thesis proposes a simulation method for modeling the layout and networking of the

cells in a culture, and for simulating the activity of that network. The development of

the simulator and the selection of its parameters to match those of biological networks

are discussed. Results from the simulation are compared with results from biological

networks to determine if the simulation is of sufficient fidelity. Once the simulation is

completed, it will have sufficient predictive value for some aspects of MEA research to

allow easier “rough drafts” of experiments. These rough drafts may allow researchers

to determine if the effort of culturing a living neural network is warranted.
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CHAPTER 1

INTRODUCTION

1.1 Cultured Neurons in Research

In order to gather information about about the behavior of neurons, neurobiology

researchers grow cultures of neurons outside of the animals that produced them.

These cultures of neurons allow the researchers to perform experiments that oper-

ate directly on the neurons, without the complications that may be caused by the

interacting systems of a living organism. For example, tetrodotoxin (TTX) prevents

sodium channels from acting, which prevents neurons from signaling to each other.

In culture, the suppression of signaling does not kill the neurons, and can be re-

versed by removing the TTX. However, in organisms, the action of TTX paralyzes

the respiratory muscles, which kills the animal.

Despite the advantages of cultures, they also have drawbacks. Neurons in an

organism have the rest of the organism to protect them. The immune system of

the organism provides protection from bacteria, and the bloodstream of the animal

brings the food and oxygen that the neurons need to survive. In a culture, protection

and sustenance for the neurons must be provided by the researcher, which makes

the maintenance of cultures time-consuming and difficult. This thesis describes the

development and validation of software to simulate a culture of neurons, with the

intent to perform experiments in simulation before attempting them with biological

cells.
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1.1.1 Experimental Uses

A Multi-Electrode Array (MEA) is a type of culture dish that provides researchers

with a way to monitor the electrical activity of neurons at or near the level of indi-

vidual cells.

Because the cells are grown in a culture medium, chemicals can be added to

or removed from their environment to modify their ability to signal. Research in

Thomas Shea’s lab (Shea 2009) has used this method to demonstrate that inhibitory

connections are required for learning in cultured neurons. For the purposes of this

thesis, the neurons under discussion are a culture of disassociated mouse neurons.

1.1.2 Construction

The MEA itself consists of a glass plate with an array of conductive pads laid out

on it, as shown in Figure 1. Conductive traces extend from each pad to the edges of

the plate. These conductive pads are used to detect the electrical activity of neurons

cultured on the plate. When a neuron sends a signal, its electrical potential changes,

and this change in potential is detected by sensitive amplifiers connected to the traces

for pads near that neuron. The size of each pad is close to the size of a single neuron,

so neuron firing can be localized to a single neuron or small group of neurons by

determining from which pad the signal came.

To start a culture, the MEA glass is first prepared by coating it with laminin

and other proteins that enable neurons to bind to the plate surface. The presence of

this protein creates a surface that cells are able to stick to, but does not guarantee

that a cell will adhere to any specific location and grow there. In order to acquire cells,

mice must be bred and sacrificed, and the fetal mouse neural tissue must be surgically

prepared and chemically treated before being plated on the MEA. Fetal mice are used

as the cell source, because their neurons are still developing and forming connections.
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Figure 1: A. The glass base plate. B. Contacts for connection to amplifier. C. Culture
media retaining ring. D. Grid of electrodes to detect neuronal signals. Note that this
image is not to scale. The grid of electrodes, in particular, is magnified, as it would
not otherwise be easily visible. The connections between B and D are not shown for
clarity.

The chemical treatment uses enzymes to disassociate the individual neurons. The

neurons are added as a suspension in liquid medium and given some time to bond,

after which the culture medium is replaced, removing any unbonded cells with the

old culture medium (Wagenaar, Pine, and Potter 2006). Typical cell suspension

densities range from 300 to 2,000 cells per square millimeter, but can reach as high

as 80,000 cells per square millimeter (Shea 2009; Ruaro, Bonifazi, and Torre 2005).

Extremely sparse cultures tend to have high mortality rates and do not form sufficient

connections to display mature signaling patterns (Shea 2009).

In addition to culture density, the distribution of cells on the plate can be

controlled in other ways. One method is to apply the suspension of neurons to the

desired regions using a micropipette, resulting in higher neuron density in areas where

the drops of suspension were added. Another method is to apply the adhesive protein

to the plate in a pattern. The patterned substrate is created by using a process

such as microstamping to apply a pattern of binding proteins, rather than an even

coating, to the culture area. The cells can only adhere to the areas where the protein
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is applied, so the resulting plate has areas with high cell density and areas with few

or no cells. The pattern of cells influences the connectivity of the culture (Sorkin,

Gabay, Blinder, Baranes, Ben-Jacob, and Hanein 2006).

When the cells are initially added to the culture, they are not connected.

For most of the first month in culture, the cells build new connections. Starting

at around 7 days in vitro (DIV) and continuing to around 30 DIV, the connections

are not complete, and signaling is dominated by constant, high-amplitude spiking

(Warwick et al. 2010). This type of signaling is visualized in Figure 2. The resulting

signals have been described as “epileptiform.”

Figure 2: On the top is a graph of typical activity in a mature biological network.
The vertical bands are culture-wide activity. The bottom graph shows an immature
network. The inhibitory connections have not yet formed, so the there is substantially
more activity, particularly in the form of culture-wide bursts.
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After the initial period of epileptiform activity, the cells enter a “mature”

phase, characterized by sparse bursts of spikes separated by quiet periods. The active

bursts may be localized to one region, spread across the culture, or propagate from

region to region. After 2-3 months of this sort of activity, the culture eventually

becomes senescent, and only reacts to stimuli in simple, stereotyped ways (Warwick,

Xydas, Nasuto, Becerra, Hammond, Downes, Marshall, Whalley, et al. 2010). The

cells can continue to live for months or even years, assuming that equipment failure

or bacterial infection does not kill them (Potter and DeMarse 2001).

1.2 Problem Statement

Real neurons in culture have a limited life span. In the young, epileptiform stage,

it is impossible to isolate the neurons’ response to stimulus from the constant spike

activity, so experiments must be performed after the neuron network is finished de-

veloping. As a consequence, the window for research on an MEA only lasts as long

as the period of mature, complex interaction. The period of mature signaling usually

lasts 2-3 months, after which the culture enters a senescent stage, where the neuronal

responses are minimal or stereotyped.

The cultures as a whole are difficult to maintain. After the culture is plated,

the culture medium must be replaced regularly, and the culture as a whole must

be maintained at tightly controlled temperature and humidity levels, usually in an

automated incubator. All of this equipment and maintenance is expensive, and it is all

required to prevent the cells dying due to bacterial infection or a hostile environment.

In addition to the costs of keeping the culture alive, there is a significant investment

in hardware to acquire the signal from the MEA, amplify it, and record it. All of this

equipment is immobile, so physical access to the equipment is required to perform

experiments.
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Because the culture is applied to the plate as a suspension of neurons, there

are only limited ways to control the eventual location and distribution of neurons.

The formation of connections between cells in the culture is also stochastic, though

some overall organization is emergent from “rules” within each cell. As a result, each

biological culture is unique and cannot be exactly replaced when it dies.

There are computational methods for determining the approximate wiring of

a developed culture, based on the propagation delay of a signal in the culture and

the synchrony of activity between different sites in the culture (Erickson, Tooker,

Tai, and Pine 2008; Esposti and Signorini 2008b). These methods offer some promise

for mapping the connectivity of the dish, but they do not give a complete or fully-

accurate map. Even if it was possible to completely map the connections of a culture,

there is no way to duplicate it, as there is no way to control the growth of individual

biological neurons and their axons.

1.2.1 Advantages of Simulation

One desirable aspect of simulated MEA cultures is that the design of the simulation

may allow the elimination of aging as a confounding variable. It is actually simpler

to produce a simulation in which the age of the cells is not taken into account than

one in which it is. In such a simulation, the cells would be modeled as if they are

always mature but not yet senescent. Assuming that the parameters that govern

the behavior of cells in biological neural network at a particular point in time can

be determined, those parameters can be held constant. As a consequence, all of the

experiments performed in the simulation would be performed on a representation of

mature population of cells, removing the possibility of the culture aging out of the

period in which it supports experimentation.
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Another convenient aspect of simulated MEA cultures is that they are cheap

and portable. The proposed simulation would be a software environment and data

for it, which can be trivially duplicated and transported as easily as e-mailing it from

researcher to researcher. The simulation would run on an ordinary desktop computer,

and so running a simulated experiment would not require specialized hardware. De-

signing the simulation to operate on commonly available hardware enables geograph-

ically distributed groups of researchers to test multiple possible array configurations,

cell densities, and other parameters.

Assuming it is possible to map the connectivity of a culture and accurately

model the activity of the cells of that culture, it may be possible to have a simulated

culture model not only a common configuration of electrodes and cell types, but also

the neuronal connectivity and behavior of a particular culture. Such a simulation

would enable researchers to share a model of that specific culture, and its behavior,

with colleagues in distant locations. It could even allow researchers to continue to

experiment on a simulated version of a particular culture after the biological version

has died.

If the simulation could be shown to have sufficient fidelity, these simulated

experiments could also be used to test multiple avenues of research in parallel. The

results of the simulation would be used to guide the selection of configurations most

likely to be fruitful when applied to real cells, at a lower cost than experimenting

with living cells, and in much less time.

1.2.2 The Need for Validation

Overuse of simulations presents a danger of the research becoming ungrounded from

the behavior of actual neurons, and so researchers would do well to keep the limita-

tions of simulation in mind. As long as there are unknown factors in inter-neuron
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communication, no simulation will be perfect. In addition, limits to computational

power and development time impose limits on the fidelity of any simulation.

Biological neurons are sufficiently complex that the most accurate simulations

of a single cell are computationally intense to run. A simulation of a large population

of cells must trade some degree of biological veracity for computational tractability.

If the behavior being examined depends on a detail that the simulation elides to

save on processor cycles, the behavior of real cells and the simulation will differ. For

example, real neurons have separate channels for sodium and calcium ions. Some

drugs, e.g. lithium salts, are believed to work by interacting with sodium channels.

If a simulation does not model these channels, but simply treats all incoming charges

identically, it will not accurately model the reaction of neurons to a drug that interacts

with particular channels. For the purpose of suggesting potentially useful avenues

of research with real cells, it is not required that the simulation be perfect, only

good enough to match the observed behavior. In order to allow this development,

the simulation must be validated against real biological networks to confirm that

the products of the simulation display growth, connectivity, and behavior that are

sufficiently similar to biological networks for the desired application. As long as

the limitations of the simulation are kept in mind, it may serve as a useful tool for

researchers.

1.2.3 Contributions

This thesis describes the creation and development of a program called Cultured

Neuron Simulator (or CNS). CNS simulates the growth of neurons, in order to create

a simulated network similar in topology to a biological network. CNS also simulates

the behavior of the neurons, in order to create a record of activity similar to that

of biological neurons. The simulator performs both of these operations more quickly
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than growing the biological neurons, so it enables researchers to create experimental

simulations quickly and easily.

Because the simulation runs on commodity PC hardware, it can be used by any

researcher, without the investment in culture plates and support equipment needed to

conduct biological experiments. It can also be run thousands of times, with slightly

varied parameters, to explore a large space of possible experiment configurations.

Any results that appear interesting can be used to guide exploration with biological

cultures.

In order to assess the similarity of the results from CNS to biological networks,

analysis tools were developed. These tools can also be used to analyze and visualize

biological data.



CHAPTER 2

RELATED WORK

2.1 Frameworks for modeling neurons

The requirements for a framework that models a single neuron are different from

the requirements for a framework that can model an MEA. Because an MEA has

a very large number of neurons, the model used to simulate the activity of each

neuron must be computationally lightweight enough that the simulation as a whole

can run in a reasonable amount of time. The MEA also includes contact pads at

fixed locations, so the simulation must account for the alterations of the electrical

signal induced by imperfections in the connections between the pads and the adjacent

neurons. Many neuronal modeling frameworks emphasize accurate electrophysiology

over computational speed, or have no model of the spatial arrangement of neurons.

2.1.1 Requirements

In order to support a simulation of a MEA, the simulation software must be able to

simulate a number of cells equal to the number in an MEA, and do so more quickly

than simply plating the cells and observing them. A very dense culture might have

5,000 cells/mm2, on the order of 400,000 cells in a 20mm diameter MEA (le Feber,

Stegenga, and Rutten 2008; Vibert, Pakdaman, Boussard, and Av-Ron 1997). If the

simulation environment cannot simulate that many cells, it cannot simulate the full

MEA.

10
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Because the MEA has electrodes in a specific spatial arrangement, and can only

record from neurons near or on those electrodes, the simulator, and so the simulation

framework, must have the ability to work with the physical location of neurons.

Information about the relative locations of the cells is not generally an element of

most neural network simulation environments, which favor a highly detailed spike-

transfer model over concerns about cell placement and growth.

Further, it takes about two weeks for a culture to enter the mature phase of

development. If the simulation cannot produce results in less than two weeks, it would

be faster to just plate the cells, and perform the experiment on biological neurons. Of

course, it would be preferable to have the simulation be much faster, both to facilitate

development of the simulator and to ease the work of the simulation’s users.

In order to be useful for this project, the software used must be under current

development and open source. Choosing open source software allows other researchers

to use the work, as well as developing and contributing to it. Proprietary software

introduces a single point of failure, where the data produced by the software becomes

useless if the software is no longer available or is obsolete. Software obsolesces because

the company developing it goes out of business, changes their business plan, or releases

updated versions that break backwards compatibility. For this reason, the simulation

framework should produce and consume data in human-readable, open formats, and

be able to be developed by anyone if the original developers abandon it.

2.1.2 Existing Frameworks

There is already software available for simulating networks of neurons. The pre-

dominant model for simulation of individual neurons is a compartment-based model,

where the simulated neuron is divided into compartments. Each compartment re-

ceives inputs, performs calculations on those inputs, and produces outputs, which
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are sent to other compartments. The inputs and outputs are usually representations

of flows of ions and their attendant charges within the cell, so the models frequently

include representations of different ion channels and receptor types. GENESIS, NEU-

RON, SNNAP, NODUS, and XNBC are all compartment-based software packages for

simulating neurons (Kroupina and Rojas 2004).

NEURON allows for a three-dimensional topology of the neurons, and supports

modeling networks of neurons as well as individual neurons. The GUI for constructing

networks would not be useful for building a network with hundreds of thousands of

neurons, as it would require a large amount of interaction time from the user. To

avoid using the GUI, automated tools could be used to generate a large network in

NEURON’s domain-specific language, HOC.

However, executing a very large network could become problematic, as NEU-

RON uses highly detailed neuron models, and so must solve large sets of differential

equations for each cell. The original paper describing NEURON does not describe

any performance limitations, but makes some reference to the fact that NEURON

parallelizes well onto Cray supercomputers (Hines 1993). A later paper character-

izes the performance of NEURON on a variety of hardware, showing that multiple

processors will usually result in a significant speedup, but sometimes at the cost of

heavy investment in supercomputer hardware (Migliore, Cannia, Lytton, Markram,

and Hines 2006). A 2,525 cell network takes around a half hour on one processor, but

reduces to around 8 seconds when running on 256 processors of the IBM Blue Gene

supercomputer. For a complex compartment-based simulation, this level of perfor-

mance is quite good, but the number of cells involved is still much smaller than the

number of cells that may be present in an MEA.

Performance is also a concern with the GENESIS simulation environment,

but one that the authors have put significant work into ameliorating. Like NEURON,
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GENESIS is a compartment-based simulator with a significant level of detail, down to

simulating different types of ion channels. GENESIS includes several equation solvers,

and is available in a parallelized version for execution on multiprocessor computers.

Given that modern computers are frequently multiprocessor systems, such as Intel’s

“Core” series, parallelizing the execution of compute-bound aspects of the simulation

is a good strategy.

Still, as of 2005, attempting to model more than 1000 neurons, with significant

simplifications of the individual neuron models, was “too slow” (Vanier 2005).

SNNAP is largely written in Java, so it can run on any platform, but the DOS

version is highlighted as being the higher-performance version. The initial paper

describing SNNAP mentions supporting “up to 30 neurons”, but the DOS version

claims to support up to 10,000 cells, so it has clearly been improved since the first

release (Ziv, Baxter, and Byrne 1994). Unfortunately, it is quite possible for a MEA

to contain more cells in its active area than even the DOS version of SNNAP can

support. As a consequence, there are configurations of cell density and MEA size

that exceed the capacity of SNNAP to model. It would be preferable to have the

capabilities of the simulator exceed the configurations it could be called upon to

simulate, so this is a sufficient constraint to eliminate SNAPP from use in this work.

Neither NODUS nor XNBC appear to be in active development. NODUS was

written for Apple Macintosh computers of sufficient age to be of interest primarily

to historians, while XNBC has not had a Unix release within the last two years

(De Schutter 1993). The most recent version of XNBC supports three cell models.

These models appear to be highly customizable, but there is no mention of provisions

for describing new models without significant programming (Vibert, Alvarez, and

Kosmidis 2001). XNBC also only claims support for “thousands” of neurons as of

version 8.
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In all of these software suites, the emphasis appears to be on highly-detailed

models of individual neurons, more than on the behavior of large groups of interacting

neurons. Highly detailed models tend to be computationally intense, and so the

math involved in simulating the neurons consumes a large amount of time when the

networks become large. As a group, these simulators appear to be too detailed to

support a very large network, because of the amount of computation required to

update the network.

Recently, there have been two software frameworks, CX3D and NETMORPH,

developed for modeling the morphological properties of developing neurons (Koene,

Tijms, van Hees, Postma, de Ridder, Ramakers, van Pelt, and van Ooyen 2009). These

modeling frameworks do not include the activity of the cells once they are grown, but

instead aim to accurately simulate the forms of the cells as they develop (Acimovic

et al. 2011). For this reason, they are not complete tools for MEA simulations,

although the connectivity data they produce could be used together with an activity

simulator such as NEURON (Koene et al. 2009). They also are too slow for use

in simulating a complete MEA. On a modern PC with 4GB of RAM and a 3GHz

processor, both simulators took times ranging from 2 hours to a week to perform

simulations involving 100 neurons (Acimovic et al. 2011). A full MEA can have

10,000 to 100,000+ cells, so assuming a linear increase in runtime, the simulation

could be expected to take anywhere from just over a week in the best case, to more

than nine months in the worst case. A simulator that is slower than the real process

is not useful for performing the sort of massively parallel simulated experiments that

CNS is intended for. However, Acimovic et al. (2011) does provide methods of

characterizing the connectivity of networks that will be useful as ways to analyze the

networks generated by CNS.
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The software framework selected for this thesis is Brian (Goodman and Brette

2008). Brian is a programming framework, written in Python, which provides meth-

ods to configure the model used for individual neurons, assign neurons to popula-

tions, and connect the neurons. Brian permits researchers to express the equations

for the behavior of a neuron in standard time-derivative or algebraic formulations.

The observed biological parameters of the neurons, such as refractory periods, leakage

currents, and so forth, can be specified in the simulation as well. Combining this rep-

resentation of the behavior of an individual neuron with connection model generated

by simulator results in an executable simulation which can emulate the behavior of

a large collection of neurons. Because Brian supports multiple different cell models,

the model parameters may be changed to alter the behavior of the network.

Brian does not explicitly model the location and shape of cells in the way

that CX3D or NETMORPH do. However, Brian does not need to be concerned with

the shape or location of the cells as long as the rest of the simulation handles those

aspects of the network that are affected by cell placement. Brian’s implementation as

a framework for a programming language, rather than a program of its own, permits

the developer to bring the simulation of plating, cell growth, and execution together

into one program, rather than using a different modeling program and simulation

environment for each stage. Prior to developing CNS, the author of this thesis had

written simulations in Brian that model cell locations as a grid, based on the neu-

ral networks used in Natschlaeger, Maas, and Markram (Natschlaeger et al. 2002).

Using such a model allows for easy calculation of distance between cells and so their

interaction.

Brian is also not tied to any specific model of the neuron, but allows the user

to define the equations and functions that govern the behavior of the neuron. The

ability to define new models easily allows the user to choose an appropriate trade-
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off between computational speed and behavioral fidelity without having to switch

simulation environments. It is possible to implement a compartmental model in

Brian, or use a simpler model to save computation time.

2.2 Other MEA Plating Simulators

The MEA model created by Kahng et al. (2007) accounts for the distribution of

cells based on a patterned substrate in the MEA. The patterned substrate provides

areas where the neurons can stick to the plate, separated by areas where they cannot

adhere. The simulation in Kahng et al. is intended to capture changes in the behavior

of the network based on differences in the line widths of the pattern of cell-adhesive

proteins in the culture dish.

Kahng et al. represent the location of the cells using a square grid, where each

location on the grid may or may not have a cell on it. The pattern of cell-adhesive

proteins can be expressed by indicating whether each grid location is coated with

protein or not. The presence of adhesive protein in a grid cell affects the probability

that a cell will be located there.

In the interest of performance, the firing model used by Kahng’s group is

a leaky integrate-and-fire (LIF) model with a Poisson-distribution spike generation

process. Even with this simplified firing model, the simulation displays burst activity

like that observed in real dishes, so it is possible that more complex models are not

needed to achieve realistic behavior. However, while a LIF model produces activity

with spike timing similar to a biological network, it does not produce output voltages

like those observed in a biological network. More specifically, voltage at the membrane

of each simulated cell does not have fluctuations under the firing threshold, which a

real cell does have, and it does not produce an output spike like a real cell. Instead,
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the voltage merely resets, and the cell is considered to have “fired” at that point in

time.

Kahng et al. do not report whether varying the density of connections between

the simulated cells varies the prevalence of epileptiform activity and transition to

regulated firing as reported in real cells (Shea 2009).

SIMONE (Statistical sIMulation Of Neuronal networks Engine) is a model of

both biological neurons and the electrodes used to sample data from them. SIMONE

includes a more complex model of the activity of the neuron and the electrical char-

acteristics of the contacts in the MEA than Kahng’s paper (Escol, Pouzat, Chaffiol,

Yvert, Magnin, and Guillemaud 2008). SIMONE uses integrate-and-fire neurons, like

Kahng’s team’s simulator, but only for calculating spike timing. The actual spike

waveforms are based on templates, in order to more accurately approach the output

of real cells. The use of a model for the electrode’s electrical characteristics and in-

fluence on the spikes allows SIMONE to be relatively computationally light-weight,

while still producing electrically correct output.

SIMONE allows the user to provide statistical distributions to govern the

placement of cells in the simulated MEA and the connectivity between them, as well

as the distributions of many properties of the neurons themselves. However, SIMONE

does not appear to provide any mechanism to modify the model used to calculate the

spiking behavior of the cell. The model is leaky integrate-and-fire (LIF), and no

provision is made for replacing it with another model. The LIF model was chosen

because it provides similar spike timings to biological cells with minimal computa-

tional cost. Despite this decision, SIMONE’s authors also call it out as unable to

“quickly simulate large network synchronization.” Given that computers increase in

power (or decrease in cost for a given power) rapidly, it is useful to include the ability
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to transition to a more complex model, if either the simulation calls for it or the

available technology supports it.

The use of the Brian framework in CNS allows the user to modify the model

used to simulate neurons. During the development of CNS, this ability was important.

Initial versions of CNS used a LIF neuron model, which, as described above, produces

realistic spike timing, but not realistic spike voltage. When it became apparent that

a simple LIF model was not acceptable, the process of converting CNS to use a more

sophisticated model did not require extensive modifications.



CHAPTER 3

METHODOLOGY

3.1 Development

The goal of this research was to create a software simulation of a MEA. In order to

simulate a full MEA, the system must model the dispersal of cells over the surface

of the MEA, the networking of those cells, and their activity. The first part of the

simulation is deciding the distribution of the cells over an area according to the

density of the desired culture and the surface area of the MEA plate. The process

of determining the cell locations is called “plating.” After the plating simulation has

placed the cells, a growth simulation uses the locations of the cells to determine

how the individual neurons are connected to form the network. In order to decide

which neurons are connected, mathematical models based on the observed networking

behavior of real neurons are used. The plating and growth simulation have been

written and several iterations of testing and further development have been performed

to bring the output of the simulation into line with the observed behavior of biological

neural networks. The resulting body of software is called CNS, for “Cultured Neuron

Simulator.”

The output of the plating and growth simulations is the connectivity map of

a network. In order to be useful for simulation of real networks, the connectivity of

the simulated network must be “biologically plausible”; that is, it must match the

parameters of biological networks as observed in culture.

19
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In order to compare the output of a simulated network to that of a real net-

work, automated tools were written to operate on the data created by the simulator.

When the simulator is executed, it stores its output data in the same format used

by the biology department to collect activity data from living cultures. Using the

same data format allows the development of tools to compare the activity of two

networks. Common formats allow the tools to work the same way on both simulated

and biological data sets. The tools are used to confirm the utility of the model for

simulating biological networks. Discrepancies between the results of applying analysis

tools to data derived from simulated and biological networks indicate shortcomings

in the simulation, and so ways that the model can be improved.

The automated tools indicated that the behavior of the simulation as it was

initially written had substantial differences from the behavior of biological cultures.

Once the cause of the difference was understood, development was performed in itera-

tions. Each iteration consisted of analysis of the data from previous runs, modification

of the simulation, debugging, and execution of the modified simulation to produce

data for the next iteration. As the simulator was developed, the tools were re-run

on each new version to determine if the most recent modifications had increased or

decreased the ability of CNS to accurately model the behavior of biological cells. The

first iteration used LIF neurons, but the data from that iteration indicated that the

measured cell voltages were implausible. The next iteration used the Izhikevich neu-

ron model, but the resulting simulation was too active, in comparison to real cultures.

The final iteration modified the combination of neuron firing patterns in the simula-

tion to match the expected behavior of the types in a biological cortical culture, and

produced results in line with the results from biological neurons.
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3.2 Neuron models

For initial development, the cell model used was a simple leaky integrate-and-fire

(LIF) model. The LIF model was chosen because it is computationally lightweight

and displays a sufficient degree of similarity to real neurons to be used in simulation.

Both Kahng et al. (2007), and Jolivet, Lewis, and Gerstner (2004) indicate that a

LIF model can approximate the spike timing of a living neural network or a more

complex mathematical representation of a neuron, to a high degree of accuracy. The

particular model may have to depend on the cell, but Ostojic, Brunel, and Hakim

(2009) indicates that exponential integrate-and-fire models offer a good match for

the behavior of pyramidal cells in vitro, so, again, integrate-and-fire models may be

both sufficiently accurate and computationally tractable. The Jolivet et al. paper

also calls out specific portions of the simulated cells’ signaling behavior that the LIF

model does not accurately capture, so effort in improving the model may be focused

in these areas (Jolivet, Lewis, and Gerstner 2004).

However, it should be noted that accuracy of the output of a simulated neuron

can be examined for accuracy from the standpoint of timing, or by comparison of

the actual electrical output. From a timing point of view, a simulated neuron is

an accurate representation if the spike output of the neuron matches the conditions

and timing that would elicit spikes from a biological neuron. The electrical signal

has elements, particularly low-amplitude variations, that are not duplicated by LIF

models, but can be approximated by more complex models. In this case, not only

does the timing of spikes have to be correct, but the voltage output of the neuron

must match that of real neurons.

The LIF model is good for modeling the timing of signals between neurons, but

it does not produce biologically plausible action potentials. In a biological neuron,

the action potential is a sudden spike that appears when the neuron reaches its
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firing threshold. When they reach their firing threshold, LIF neurons simply reset

to their rest potential without producing a voltage spike. The point when they reset

is regarded as a spike event by Brian, but is not a spike in the sense of the neuron

producing an elevated voltage.

The result of this lack of spike voltage is that when analyzed by the same tools

used to determine the inter-spike intervals in biological networks, the simulation data

appears to have relatively few spikes. The lack of spikes results in the data used by

one of the analysis scripts being very sparse, which in turn appears as unrealistically

large values in the output of the analysis scripts, as detailed further in the results

section of this thesis.

The lack of biologically plausible spike voltage in the signal is a problem with

any simulation that uses LIF neurons. LIF neurons are useful, however, because

they are not computationally intensive to simulate, which enables scaling to large

networks. The SIMONE simulator uses LIF neurons, but gets around the lack of

spike voltage by adding a biologically plausible voltage spike to the signal when the

LIF neuron fires (Escol, Pouzat, Chaffiol, Yvert, Magnin, and Guillemaud 2008).

To obtain more realistic spike voltages, CNS was converted to use an Izhikevich

2-D integrate and fire model instead of basic LIF neurons (Izhikevich 2003). The

Izhikevich model has parameters that can be configured to reproduce the behavior

of many biological neurons. Intrinsically bursting neurons were selected, as that

behavior is found on in the pyramidal neurons of rat visual cortices. Changing the

behavior of the Izhikevich model neurons is a matter of altering four parameters. If

it proved possible to quantify the proportion of each type of firing behavior present

in the dish, the simulation could be changed to duplicate those proportions.
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3.3 Plating simulation

In this work, the layout of the simulated cells is simplified into a planar grid. In a

typical MEA, the cells are plated on glass prepared with binding proteins, allowed to

bond, and then washed, so any cells that are not in contact with the glass are removed.

As a result, all of the cells in the culture are in a single layer on the glass of the MEA.

Each square of the simulated grid is approximately the size of a single neuron cell

body (30µm), and the full grid is 2500µm square. These parameters are configurable

in the simulation software, to support different types of cells or configurations of

MEA.

Cells are distributed on the grid according to a midpoint displacement fractal

algorithm (Fournier, Fussell, and Carpenter 1982). Kahng et al. (2007) does not

provide details on their model of cell distribution beyond a description of the plating

process. For CNS, a midpoint displacement fractal was chosen to set the distribution

of cell adhesion probabilities because of the similarity of its results to turbulent flows.

The uneven distribution of cells in dishes is supported by the uneven areal density of

cultures as seen in Shea (2009). The plasma fractal provides a real-valued probability

of each point on the dish being occupied by a cell.

As an alternative to the plasma fractal, CNS also allows the use of an image

to specify the cell occupancy probabilities. The red channel of the image is mapped

to the grid of points on the dish, with the saturation of color at each point used

as the probability of that point containing a cell. The image can contain stripes or

other patterns, which can be used to simulate micropatterning of the adhesive protein

substrate of the dish, or micropipetting of the suspended neurons to specific locations

in the dish.

After the probabilities are determined, using either an image or a plasma

fractal, the plating simulation then marks each location as occupied or not, based
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on the probabilities of a location having a cell and the density of cells in the plating

solution. Those locations that are marked as occupied are treated as having a cell on

them. The others are assumed to be empty space.

After the cell locations are determined, there are a series of pruning steps that

are intended to simulate cell deaths in the culture. Not all of the cells from the initial

plating survive to maturity. In biological cultures, 45-60% of the cells die before the

network is done wiring itself, within approximately the first 17 DIV (Erickson, Tooker,

Tai, and Pine 2008). Because so many of the cells die off, they do not need to be

considered when the simulation begins to determine network connectivity. In order to

model the early cell mortality, the locations that the simulator has marked as occupied

are decimated based on the observed survival probabilities of cells in culture. The

survival rate, expressed as a percentage, is a configurable parameter of the simulator.

At present, the pruning function assumes that all cells are equally likely to die, but

this function could be updated to bias cell survival rates in a number of ways, such as

making cells that are near other cells more likely to survive. Obviously, such biases

should be supported by observation of biological neuronal networks.

3.4 Connectivity and Growth

Axons may be of any length. In humans, the sciatic axon reaches from the base of

the spine to the big toe, nearly a meter. Because the active area of an MEA is around

2mm2, it is possible for any cell to be connected to any other cell, resulting in N×(N−

1) possible connections among N cells. Typical cell suspension densities are in the

range of 300-2000 cells/mm2, resulting in 1200-8000 cells in the active area of the MEA

and so millions of possible connections (Wagenaar, Pine, and Potter 2006). However,

there are limits on cell growth and networking which make the computation of the

network connectivity more tractable. Chemical interactions between cells restrict the
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number of connections that should be considered when developing the connectivity

of the dish.

Kahng, Nam, and Lee (2007) provides a model based on observation of chemo-

taxis in developing neurons, but simplified into a stochastic model. The growing end

of an axon moves in a random walk on a grid. Each step may take it in any of 8 direc-

tions: up, down, left, right, or the four diagonals. If, after making a step, the walking

point is with 20µm of a dendrite of another neuron, the two neurons are considered

connected. The paper indicates that the probability of a connection between two cells

is effectively a function of the distance between them which makes it unlikely a cell

will connect to itself, but likely it will connect to neighbors, and unlikely that it will

reach very far (Segev and Ben-Jacob 2000).

Gafarov (2006) suggests that the spiking activity of developing neurons also

causes the release of the chemicals that will attract developing axons towards a cell.

The effect of these chemicals on the developing axons is interesting because it proposes

a function for epileptiform activity. The high frequency signaling in early development

would cause higher release of attractive chemicals, and so drive the formation of early

connectivity. Stimulation also increases activity of the stimulated neurons, and so

the development of connectivity in the growing culture can be guided by stimulation.

Specifically, a specific spatial pattern of stimulation will encourage growth around the

neurons activated by the stimulus, thus driving an increase in connectivity to those

neurons (Zemianek, Lee, Guaraldi, and Shea 2012).

CNS uses a Gaussian distribution to model the probability of a pair of cells

connecting based on the straight-line distance between them, with parameters set to

maximize connectivity around 200µm from the cell body. The Gaussian distribution

also provides a limitation on the number of possible connections that must be consid-

ered by the program during the growth simulation. If the distance between two cells
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is so large that the probability of a connection between them is vanishingly small,

it may be disregarded when the network is being laid out, thus saving computation

time.

In addition to the limits imposed by chemotaxis, observations of the connec-

tions in MEAs performed by confocal microscopy indicate that only 20-50% of the

possible connections are made. Once some connectivity threshold has been reached, a

neuron will not connect to any other neurons. The restriction on connectivity sets an

upper limit on the out-degree of neurons, that is, the number of other neurons that

they form connections to, considered from the perspective of the connecting neuron.

A number of possible limitations on the out-degree of neurons have been found in the

literature.

Segev et al. (2003) indicates that cultured neurons tend to send out approx-

imately 10 neurites to connect to other cells. The number of outgoing connections

provides a good upper bound on the number of connections made by simulated cells,

but it seems unrealistic to assume that simply stopping at 10 connections will build

a biologically plausible network.

Patel, Scott, and Meaney (2012) indicate that the out-degree of neurons can

be modeled using a Poisson distribution with a mean of 22. Allowing such a stochastic

distribution of connectivity will cause some neurons to be extremely well connected

while others are less connected. Such patterns of connectivity are seen in biological

cultures, so the Poisson distribution is used in the simulation to set the out-degree

of the neurons. Once a neuron forms a number of connections equal to its selected

out-degree, no further connections from that neuron are considered, although other

neurons may still form connections to it.

One factor that is not considered by CNS is the ability of neurons to migrate.

Individual neurons, at least during the first several DIV, are capable of moving around
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the MEA to form clusters (Segev, Benveniste, Shapira, Ben-Jacob, et al. 2003). The

formation of these clusters occurs at the same time as the transition of the culture to

a pattern of activity dominated by synchronized bursts. The activity of the network

is an emergent property of its connectivity (Fuchs, Ayali, Ben-Jacob, and Boccaletti

2009). It is likely that such a clustered network displays a small-world topology,

with the neurons in each cluster densely connected, and only a few connections from

cluster to cluster. The clusters form in cultures with greater than 10,000 cells/mm2,

which is an extremely high plating density. Clustering does not require support from

glial cells or electrical signaling, and so is probably a chemically and mechanically

mediated emergent property of neurons (Segev, Benveniste, Shapira, Ben-Jacob, et al.

2003). Segev et al. (2003) provides a model for the mechanical forces on migrating

neurons, should this functionality be required for future simulation work.

Once the model is completed, it may be executed, and voltage and spike train

data collected from it. Since each neuron is in a known location in the simulated

culture, the simulation selects the neurons located on or near the conductive pads

for a given MEA layout, and records data from those neurons. The Brian simulation

software also supports logging of potentials of arbitrary individual neurons as well as

collection of spike data from any neuron or set of neurons, including the the possibility

of logging the membrane voltage of every neuron in the entire simulated population.

Biological cultures do not support this level of logging detail.

3.5 Spike and Burst Characterization Tools

In order to assess the similarity of the simulated network to a real MEA, tools must

be created to quantify the activity of both networks. When these tools are applied to

both real and simulated networks, the results must be sufficiently similar. Activity

is measured in terms of spike signals from cells, which may be observed as individual
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spikes or grouped into bursts of spikes. To measure similarity between the output

of CNS and real neurons, the output of the simulation is recorded and spikes and

bursts are counted, as well as the timing of the intervals between spikes and bursts.

These data are compared to recordings from live groups of neurons, using the same

metrics. The recorded data is from MEA cultures of disassociated neurons, so it is

the sort of behavior that the simulation is intended to capture. If the spike and burst

data match, the simulation can be said to produce activity like that of a real neural

network.

Kahng’s et al.’s simulator has a notion of the location of cells, so by check-

ing locations that conformed to the area of their electrodes, represented by circles

30µm in diameter on a 100µm grid, they could determine which neurons were on

top of those electrodes, and so which neuronal signals the pad could detect (Kahng,

Nam, and Lee 2007). Those neurons were the ones whose spike trains were analyzed.

However, the paper does not discuss the actual spike train data produced from the

simulated MEAs, beyond displaying histograms of firing rates and inter-spike inter-

vals for the simulation. These data are not compared with similar statistics from

biological simulations.

The SIMONE paper does compare the results of actual cell recordings from

a cockroach and execution of SIMONE with the cell parameters configured based on

what is known of the neurophysiology of the cockroach. The statistical tests show

that the data sets arising from SIMONE and from the real cockroach are very similar

(Escol, Pouzat, Chaffiol, Yvert, Magnin, and Guillemaud 2008). The most obvious

difference is higher amplitude in the simulated sample, which can be eliminated by

increasing the simulated tissue resistance or the simulated sensor input resistance.

However, without further testing, it is not possible to determine if the resistances are

actually higher than they were configured to be in the simulator, or if this is simply
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a workaround that the simulator makes possible. When working with simulators, it

is important to confirm that the results are supported by reality.

Wagenaar, DeMarse, and Potter (2005) provide an algorithm for spike detec-

tion, which is used in Serra et al. (2008) to count neuronal signals and divide them

into spikes and bursts. A spike is is an individual signal of more than three times the

root-mean-square (RMS) value of a 5ms window surrounding the signal, separated

from other similar signals by 0.7 seconds or more. Bursts are clusters of at least three

spikes with less than 0.7 seconds between them.

When analyzing recorded data, it is possible to make assessments based on

the entirety of the data, rather than on a small window of it. In the analysis tools,

a spike is defined as any signal whose absolute value is greater than three times the

standard deviation of the entire recorded data set, once the mean has been subtracted.

The Center for Cellular Neurobiology and Neurodegeneration Research (CCNNR) at

the University of Massachusetts in Lowell, who provided the recorded data and live

cultures for this work, use this criteria for spike detection, so the tools detect the

same spikes that the CCNNR does, when used on the same data.

In addition to spikes and bursts, there are clustering algorithms and the Center

of Activity Trajectory (CAT) metric as explained in Chao, Bakkum, and Potter

(2007). CAT is particularly interesting because it captures the spatial character of

the neurons, both in live cultures and simulation. CAT tracings of real neurons display

complex, stable, recurring patterns of activity. The simulation should be expected

to display similar spatiotemporal complexity. Chao, Bakkum, and Potter (2007) is

of particular interest because it relates changes in spatiotemporal activity patterns

to training, allowing visualization of the changes in the activity of the dish as it is

trained.
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Another characterization approach is the cross-correlation functions (CCFs)

of the recording sites in the dish. The CCF of two neurons measures how the firing

of one neuron affects the firing of the other over a given time lag. When the cells

are directly connected, there is significant correlation, but the function is generally

more complex than that, and includes data about the overall network connectivity.

Beyond simple networks of a few neurons, “the relative impact of direct connections

and collective dynamics on cross-correlations ... remains an open issue in realistic

networks of spiking neurons,” and so CCFs may not produce results that are useful

for reading out the connectivity of a network (Ostojic, Brunel, and Hakim 2009).

However, by treating each site of the MEA as a “neuron” for the purposes of cross-

correlation, CCFs for each pair of recording sites in the MEA could be determined,

and used to characterize that culture. A simulated dish that is claimed to be a

functional duplicate of a specific culture should display the same CCFs as the culture,

between the same pairs of recording sites. It may be possible to create a model that

only generates the activity that would produce the appropriate CCF between the

recording sites, but does not individually simulate all of the neurons that are not

directly recorded. Such a model might run faster than one that simulates all the

neurons, but would be difficult to derive, and may lack the explanatory power of a

more detailed simulation.



CHAPTER 4

RESULTS

4.1 Simulation of Epilieptiform activity in Random Networks

Before developing CNS, some exploratory models were created to assess various ap-

proaches for simulation of large collections of neurons. One of these models was an

attempt to simulate the action of bicuculline on biological networks. Bicuculline in-

hibits inhibitory signaling in biological networks, leaving only excitatory signaling. As

a result, the level of activity in the network increases dramatically. Removing the in-

hibitory connections from a neural network simulated in Brian results in epileptiform

behavior much like that of a cultured biological network before inhibitory connections

form, or when inhibitory connections are disabled. These results seem to indicate that

this form of large scale model is capable of mimicking the behavior of real neurons.

The images in Figure 3 were generated using a random network, rather than the

approach later developed for the plating simulator. Similarly increased activity is

visible in biological cultures, as illustrated in Figure 2.

4.2 Activity Metrics

In order to characterize the activity of neurons near the recording sites, the time

intervals between spikes were measured. The inter-spike timing information was used

to create spike timing histograms by counting the number of inter-spike intervals of

a certain length. The spike timing histograms measure the relationship between the

length of an interval and its probability of occurring. Biological networks display

31
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Figure 3: On the left is a graph of the activity of a small simulated network with no
inhibitory signaling present. The upper graph is occurrences of signals at each neuron
over time, the lower is the membrane voltage of three arbitrarily selected neurons.
On the right is the same simulated network, but with inhibitory signaling present.
The inhibitory signaling reduces the activity of the network considerably.

a power-law distribution of inter-spike interval lengths, with longer intervals being

much rarer than shorter ones. The power-law distribution, and particularly the value

of the exponent of the distribution, captures the spread of lengths of inter-spike

intervals that the network displays. However, as a metric, the scaling exponent of

the inter-spike interval distribution does not capture the frequency of spikes, just

the relationship of frequency to occurrence. The same activity, stretched out over

a year or compressed into a second, would show the same scaling exponent for its

distribution.

The rate at which spikes occur, expressed as spikes over a given time, does

not capture the spread of lengths of inter-spike intervals in the way that the scaling

exponent of the power law does, but it does capture their frequency, which the power

law ignores. Consequently, the combination of scaling exponent and spike rate form a

combined metric that captures both aspects of the local, or single-site, spiking activity

of the neural network.
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In biological data, the scaling exponent varies with the activity level of the

culture. Young cultures, displaying epileptiform activity, generally have a higher

scaling exponent, which drops to a lower level as the culture matures. The addition

of bicuculline to the culture causes a return to epileptiform activity, resulting in a

higher scaling exponent.

4.2.1 Exponent of Interspike Interval Distribution

In order to determine the expected values of the scaling exponent and spike rate for

cultured neurons, the data from two experiments in cultured neurons was examined.

The cultures for each experiment were prepared identically, and used the same equip-

ment to record culture activity. The data collected from the cultures was compared to

data collected by running the simulation 50 times, to generate 50 different networks

and collect data from each of them. The same script that was used to calculate the

scaling exponent of the inter-spike interval was applied to the resulting output files.

4.2.2 Bicuculline Experiment

The first experiment was developed to determine the effect of the inhibitory antagonist

bicuculline on developing cultures. Because the action of bicuculline mimics epilepsy,

and so increases signaling, it could potentially drive synaptic growth, and so cause the

culture to reach a mature state faster (Zemianek, Shultz, Lee, Guaraldi, Yanco, and

Shea 2012). The mature state would be detected by examination of the recordings of

each culture, produced when it was not under the influence of bicuculline.

The cultures used in this study were in four groups: Control Bicuculline,

Control Epilepsy, Post-Epilepsy, and Pre-Epilepsy. The Control Bicuculline group

were mature cultures which were exposed to bicuculline, to provide a baseline for the

normal reaction of a culture to bicuculline. The Control Epilepsy group consisted
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Condition Mean Std. Dev.
Control Bicuculline 2.8624 1.5504
Control Epilepsy 2.7772 1.3578
Post-Epilepsy 2.8377 1.5355
Pre-Epilepsy 2.9812 1.5401

Table 1: Mean and Standard Deviation of the inter-spike interval scaling exponent of
biological cultures in the bicuculline experiment, grouped by experimental condition.
The value is a unitless exponent.

of immature cultures which were allowed to develop normally, to provide a baseline

for the normal transition of a culture out of the immature phase of its development.

The Post-Epilepsy group were developing cultures that received bicuculline after the

initial epileptic activity of the immature phase was complete. The Pre-Epilepsy group

consisted of developing cultures that received bicuculline before and during the initial

epileptic activity phase. Each group had three cultures in it, for a total of twelve

cultures in the experiment.

4.2.3 Stimulation Experiment

The second experiment was intended to measure the long-term effect of stimulation

on cultures (Zemianek, Lee, Guaraldi, and Shea 2012). The experiment had three

conditions. The Control condition consisted of mature cultures which were not stim-

ulated. The Continuous group received stimulation consisting of a recorded biological

signal every thirty minutes, for eight hours a day, for 5 days. The Single group re-

ceived a single stimulation each day, for five days. When the signals were read from

the cultures, they were separated into two further conditions, Normal and Stimula-

tion. In the Normal condition, the electrical activity of the culture is read, without

stimulating it, to produce a recording of the spontaneous activity of the culture. In

the Stimulation condition, the culture is stimulated, so the recording includes the
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Condition Normal Stimulation
Mean Std. Dev. Mean Std. Dev.

Control 6.7289 9.3068 6.2736 5.9524
Single 4.0961 6.0904 5.5239 4.6489
Continuous 3.4167 4.5725 5.3989 4.2063

Table 2: Mean and Standard Deviation of the inter-spike interval scaling exponent of
biological cultures in the stimulation experiment, by experimental condition

stimulation and the resulting reaction from the culture. The data for this experiment

is collected in Table 2.

4.2.4 Spike Rate Measurements

Spike rate data was also collected for each site of each culture in both of the biological

experiments. The cumulative means and standard deviations of the spike rates over

all the biological experimental cases were very similar, as shown in Table 3.

Condition Mean Std. Dev.
Control Bicuculline 4.2970 1.6069
Control Epilepsy 4.3432 1.4710
Post-Epilepsy 4.3477 1.7663
Pre-Epilepsy 4.0570 1.5872
Control 5.4279 2.0810
Single 5.3828 2.4163
Continuous 5.3976 2.5362

Table 3: Mean and Standard Deviation of spike rate across all conditions

The spike rates of the stimulation experiment in Table 3 are slightly inflated,

as they include both the stimulated culture and the unstimulated culture. As a

consequence, some of the recordings include the stimulation signal itself, which gets

counted as spikes.

Separating the recordings taken around the stimulation from recordings of the

culture’s spontaneous activity, as in Table 4, reveals that the cultures which developed

without stimulation displayed a higher overall mean spike rate, and higher standard
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deviation in spike rate when unstimulated than when stimulated. The stimulation

would lead to a large wave of mostly synchronous activity, which reduces the mean

spike rate by causing many spikes close together, and reduces the standard deviation

by causing those spikes to occur nearly synchronously.

Condition Normal Stimulation
Mean Std. Dev. Mean Std. Dev.

Control 5.4514 2.1480 5.2477 1.4609
Single 6.1371 2.7850 4.5503 1.5504
Continuous 6.0873 2.9236 4.5757 1.6346

Table 4: Mean and Standard Deviation of spike rate in the stimulation experiment,
by condition

The cultures which developed without stimulation were also slower to develop

to full maturity, and so they may present a higher spike rate because they remained in

the epileptiform signaling phase of their development longer than the other cultures.

4.3 First Development Iteration

The exponent of the inter-spike interval distribution of the simulated neural network

(Table 5) is well within the range expected of a biological neural network, when

analyzed with the same procedure as was used to analyze the biological cultures. The

match between the exponents indicates that the likelihood of an inter-spike interval

of a given length follows the same distribution, whether it is in the biological or

simulated networks.

The spike rate of the simulated neurons, as shown in Table 6, was both higher

than the observed spike rates of biological cultures in either experiment.

Condition Mean Std. Dev.
Simulation 3.7590 1.2391

Table 5: Mean and Standard Deviation of scaling exponent of the inter-spike interval
of a simulated network.
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Condition Mean Std. Dev.
Simulation 12.4878 4.9543

Table 6: Mean and Standard Deviation of spike rate in simulation

The difference in spike rates is an artifact of a difference between LIF neuron

models and biological cells in the definition of the signal that constitutes a spike. In

a LIF model, a neuron is regarded as having spiked when its membrane potential

reaches a certain value. However, the model does not produce a biologically plausible

output voltage. It merely records that the neuron has fired, and applies the required

charge to the membrane of all the connected neurons. As a result, the timing of the

spikes is correct, but their voltages are wrong.

4.4 Second Development Iteration

The failure of the LIF model to correctly simulate neuron output voltages is what

motivated the transition to the Izhikevich neuron model, as described in the method-

ology section of this paper. The second iteration of development was the addition of

this model, and testing to validate the changes.

In Izhikevich’s paper, the user-tunable parameters are called a, b, c, and d.

There is also the recovery variable u, and the membrane voltage v. The parameter a is

the time scale of the recovery variable, u, which is intended to simulate the activation

of potassium (K+) channels and deactivation of sodium (Na+) channels after the

delivery of an action potential. The parameter b affects the coupling between the

membrane potential and the recovery variable u. Higher values make the neuron

more likely to have oscillations when v is below the firing threshold. The parameter c

is the reset voltage of the neuron after firing, caused by the opening of K+ channels.

The d parameter controls the speed with which the recovery variable resets after

firing.
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For the second iteration of development, the neuron model used in CNS was

initially configured as what Izhikevich refers to as an “Intrinsically Bursting (IB)”

neuron. IB neurons produce bursts of spikes when first triggered, which would increase

the spike rate by having multiple spikes in quick succession after the threshold is

reached. In order to bring CNS into line with the observed biological spike rate, the

model for the neurons was converted to “Regular Spiking (RS)”, which only spikes

once in response to reaching the threshold. Izhikevich’s paper calls out RS neurons

as being “the most typical neurons in the cortex,” so it is reasonable to expect RS

neuron signals to dominate in a cortical culture.

The conversion to RS rather than IB neurons was not sufficient to reduce

the firing rate of the simulated culture. The resulting simulation had an average

firing rate over all sites of 8.2 spikes per second, with a standard deviation of 4.8503.

There is some reduction in the spike rate with the change of model, which can be

attributed to the lower reset voltage of RS neurons causing them to take longer to

return to threshold, and a higher d parameter which will initially slow recharging.

The simulation model as a whole still displays a much higher standard deviation than

the biological neurons.

4.5 Third Development Iteration

Izhikevich also indicates that while RS neurons likely dominate excitatory firing,

inhibitory firing is usually provided by “Fast Spiking (FS)” or “Low Threshold Spiking

(LTS)” neurons. Both of these neurons display high firing rates (quick recovery after

firing), but since their action is inhibitory, converting the simulated inhibitory neurons

to one of these models should result in an overall decrease in spike rates. Research

performed by Izhikevich et al. supports this expectation (2004)
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The third iteration of the development of CNS was to convert the simulated

inhibitory population to FS rather than RS neurons, and confirm that the change

resulted in an overall drop in signal rate.

After the inhibitory neuron model was corrected, the average spike rate per

site dropped to 6.574 spikes per second, with a standard deviation of 4.3182. The

mean of the modified simulation is within one standard deviation of the means of

the stimulation experiment conditions, but the standard deviation of the simulation

spike rate is still higher than the biological neurons.

The standard deviation of average spike rate would capture the breadth of

spread in activity levels between individual culture sites. As expected, some sites

show activity levels of around 14 spikes per second, while others have less than two

spikes per second. The network does not display the spontaneous activity of a pure

LIF network, and so must be driven by an input. In this case, as in Izhikevich, Gally,

and Edelman (2004), the stimulation is a Poisson-patterned noisy input applied to all

neurons. According to that paper, the frequency of the stimulation input can tune the

average firing rate of the network, and the magnitude of the fluctuation in the average

firing rate. With low-frequency stimulation, the network should be expected to display

an alternation between quiet periods and culture-wide burst activity, leading to a

high variance in spike rates. Stimulation at rates higher than 1Hz should result in

asynchronous signaling with a near-Poisson distribution. Some of this signaling would

be reaction to the input, but most of it would be a result of signals coming in from

nearby neurons.

In CNS, varying the stimulation frequency affected the average spike rate,

while leaving the standard deviation of the spike rate largely unaffected. However, the

alteration of the stimulation frequency was done using a subthreshold input of 10mV.

A superthreshold input is one sufficient to cause a spike when it reaches a cell, rather
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than just influencing the state of the cell membrane charge. When superthreshold

stimulation was used, it affected both the standard deviation of the spike firing rate,

as well as the value of the mean spike firing rate.

Freq. Voltage Mean Std. Dev.
0.5Hz 10mV 3.9954 3.1995
1Hz 10mV 6.6165 3.5776
5Hz 10mV 12.6314 3.4670
10Hz 10mV 12.8342 3.5377
0.5Hz 30mV 4.7848 2.9264
1Hz 30mV 6.3712 4.1304
5Hz 30mV 12.0730 7.5294
10Hz 30mV 16.3097 6.9309
0.5Hz 60mV 4.5510 2.4783
1Hz 60mV 6.4734 3.2452
5Hz 60mV 8.6803 7.1438
10Hz 60mV 11.4570 8.0073

Table 7: Mean and Standard Deviation of spike rate with varying stimulation fre-
quency. With subthreshold stimulation, the mean spike rate is altered without affect-
ing the spike rate standard deviation. As stimulation approaches the threshold, the
standard deviation of the spike rate is affected.

A stimulation frequency of 0.5Hz and a voltage of 60mV results in a firing

rate with a mean and standard deviation very close to that of biological cultures.

These parameters were incorporated into CNS to provide a default configuration that

closely mimics the firing of biological neurons.

4.6 Performance

The more cells there are, the longer the simulation takes to run. As of the writing of

this paper, a simulation of 5,254 cells takes approximately 28 minutes to execute 30

seconds of simulated culture activity, or about one minute for each second of culture

activity. One second of simulation per one minute of real time is obviously a much

worse runtime than an actual culture, which operates in real time, but the simulation

does not require the two weeks of growth time that a real culture would require, and
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so is still more efficient. The simulation speed of CNS also compares favorably with

the execution speeds of other simulators, as listed in the Related Work section.

The performance of CNS is highly dependent on the configuration of the sim-

ulation. The most important factors are the plating density and MEA size, which

directly contribute to the number of cells in the recording area. As a result, the

easiest way to reduce the runtime of the simulation would be to reduce the number

of cells that it is required to simulate. The problem then becomes determining which

cells contribute to the recorded activity of the dish, and which can be ignored without

affecting the validity of the simulation.

Whether it is necessary to simulate the activity of cells outside of the recording

range of the electrodes is still an open question. Cultures were prepared with neurons

and adhesive protein only present in the area of the recording electrodes, as well

as normal preparation, in order to determine if minimizing the culture area had a

detectable effect on the behavior of the culture. If there is no detectable effect, then

the area of the culture beyond the recording electrodes does not contribute to the

behavior of the culture. Areas which do not contribute to the behavior of the culture

can be eliminated from simulation, thus saving considerable processing time. At

present, the data recorded from the minimal cultures has not been fully analyzed, so

the validity of this approach is unknown.

4.7 Current State of the Simulation

As of this writing, the iterations of modification to the neuron model to bring it into

line with the actual neurons present in cultures have produced a model with an inter-

spike distribution scaling exponent and a spike rate that match the observed values

in biological networks.
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Figure 4: The upper image is electrical activity measured from a biological network.
Each point is a spike. Note the presence of strong vertical bands, which indicate the
near-simultaneous firing of many neurons. The lower image shows the output of the
current simulator. Note the absence of strong vertical banding as was seen in the
biological culture.

However, these metrics only capture the behavior of single points within the

simulated culture. They do not adequately measure the relationship between sites

within the culture, and this overall network effect is important for accurate simulation

of the biological cultures.

Figure 4 shows the output of the simulator and a biological signal. The vertical

bands which are present in the biological signal are absent in the simulated signal.

There are two possible explanations for this difference.
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The configuration of the simulator may have overly weak values for the synap-

tic strength of inter-neuron connections. If the cause of the problem is synaptic

strength settings, the likely problem is that the current configured strength of a

synapse is too low. With weak connections, each neuron does not exert enough in-

fluence on its neighbors to bring them into synchrony, and so the firing is out of

synchrony. As connections get stronger, the tendency of neurons to fire together

increases, which appears as vertical banding in the output. Once the connections

become too strong, any neuron firing immediately triggers all the other neurons to

fire, and so the culture is dominated by lock-step, culture-wide firing. In order to de-

termine the appropriate strength, values from the literature on synaptic connections

will be used to set the default strength, and the resulting output will be examined

for banding.

The failure to display synchronous firing may be caused by the influence of

noise on what the simulation considers a “spike.”. That is to say, the pattern may be

present, but masked by weaker signals that are erroneously regarded as spikes.

There is noise present in the apparatus used to collect data from the biological

culture. Some of the noise is removed by a filter implemented in LabView. The filter

is a Bessel bandpass filter with an upper cutoff of 200Hz and a lower cutoff of 0.5Hz.

However, any noise in that band still gets through. A recording of a dish of buffer

solution with no neurons in it produced a signal that consists entirely of this noise,

with no neuronal signals.

The noise in the system increases the standard deviation of the voltage over

the length of a recording. A spike is defined as a sample greater than three times the

standard deviation of the signal, minus the mean of the signal. Since the standard

deviation of the simulated signal does not include noise, it is quite low, and the
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threshold that must be met for a sample to qualify as a spike is also low, and so any

regular activity may be masked by a large number of spurious spikes.

There is also error present in the signal caused by the settling time of the

analog circuits in response to transients. The initial 500µSec of the signal are offset

by as much as a volt from the baseline of the signal due to the transient response of

the amplifiers as they come online. This distortion can have a strong effect on the

statistical properties of the signal unless the early samples are discarded.

In order to determine if the distortions inherent in the recording due to noise

and transient response are affecting the simulation, an option will be added to the

simulator to also simulate the transient response. The simulated transient response

will be added to the simulated recording data, to imitate the effects of the recording

hardware on the resulting recording.



CHAPTER 5

FUTURE WORK

5.1 Topological Characterization Tools

The metrics currently in use for assessing the similarity of the simulation produced by

CNS to a biological culture are focused on spike and burst timing. Spike and burst

timing will allow comparison of the simulated network to a real network in terms

of activity, but not in terms of topology. In order to characterize the connective

topology of the network, metrics from graph theory could be used, including some of

those related to small-world networks.

A small-world network is one characterized by most of the inter-node connec-

tions being local, but some “shortcuts” also existing which link non-local nodes. The

shortcuts result in a network where where any two nodes are unlikely to be directly

connected, but highly likely to have a short hop distance between them. Determining

the shortcut density of biological neural networks in comparison to simulated net-

works may help illuminate the sources of complex network activity. The simplest

metric of shortcut density is measuring the ratio of the diameter of the network, that

is, the greatest distance between any two points, and the number of nodes of the

network. A network with many shortcuts will have a low diameter despite a large

size, and so this ratio will be low. A shortcut-rich pattern of connections arises from

the distance-based model of neuron connectivity, where local connections are favored,

probabilistically, but longer connections are still possible. The longer connections

act as shortcuts between the densely-connected regions created by local connections.

45
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More specifically, small-world networks have a characteristic path length closer to

that of a random network than a regularly-connected network. However, small-world

networks also have a clustering coefficient, as defined by Watts and Strogatz (1998),

closer to that of a regularly connected network than a random network. These net-

works are seen in the organization of biological neural networks and in cultured neural

networks (Shefi, Golding, Segev, Ben-Jacob, and Ayali 2002; Esposti and Signorini

2008a; Roxin, Riecke, and Solla 2004).

In order to determine if the network connectivity of the simulated network

matches that of real networks, a metric that can be used to compare them must be

determined and applied. The density of shortcuts as a fraction of total connectivity

has strong effects on the ability of the network to sustain periodic patterns of activity,

so it would allow networks to be quantified with regard to their ability to support

periodic patterns. Loops in small-world networks can result in patterns of activity

that repeat over time, and can be elicited by stimulating a number of neurons that

is relatively small compared to the total population (Roxin, Riecke, and Solla 2004).

Similarly, a small number of inputs (relative to the number of cells in the network)

can destabilize the looping pattern or change it. Periodicity of activity has been

observed in biological neural networks, so it is likely that this metric supports a

useful comparison (Rolston, Wagenaar, and Potter 2007).

Acimovic et al. (2011) characterizes the connectivity of networks using two

other metrics. The first is prevalence of motifs, which are the possible connectivity

patterns between a set of three neurons. The second is in-degree distribution, which

is the distribution of neurons for each possible number of incoming connections from

other neurons.

Motifs provide a way to distinguish the topology of a network from a random

network. A random network would be expected to show a distribution of motifs
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largely based on the ratio of connected edges to nodes, while a non-random network

would show some other distribution. By producing random networks as well as non-

random ones, the two distributions can be compared to determine how closely the

non-random network resembles a random one.

In-degree distribution conveys information about network density as well as

network topology. A very densely connected network will have an in-degree distribu-

tion with most of the neurons having a high in-degree, while a sparse network will

have most of the neurons possessing a low in-degree. A small-world network, on the

other hand, will show neither of these patterns. Because a small-world network has

several very highly connected “hubs” providing short path length from any node to

any other node, and many nodes with few connections, a small-world network would

be expected to have a distribution of in-degree matching this configuration. That is,

there would be relatively few nodes with a very high in-degree, while all the rest of

the nodes would have a lower in-degree.

5.2 Difficulties with Topological Models

Kahng et al. (2007) highlights the difficulty of completely determining the total

synaptic connectivity of the neurons in the array, a problem that simulations do

not share. “Total” synaptic connectivity is different from local synaptic connectivity.

Local connectivity measures include mapping all the connections of one cell to others,

or characterizing the statistical distribution of connectivity patterns likely to occur

among neurons. Total connectivity is the production of a map of every single neuron-

to-neuron connection in the culture, also known as a “connectome,” by analogy with

“genome.” For a simulation, this connectivity is simple to determine and analyze.

For a biological culture, it is currently not possible to determine the total connectivity

of the culture.
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One method of determining the connectivity of a single neuron in culture is

to infect the neuron with a transgenic rabies virus that carries a genetic code for red

and green fluorescent proteins, rather than rabies viral coat proteins. As a result, the

neuron does not produce more rabies viruses. Instead, the fluorescent proteins are

expressed in the synapses of the infected neuron, with the red fluorescence appearing

at inhibitory connections and green at excitatory connections. A confocal microscope

can then be used to examine the tagged synapses. Since the neurons grow in a single

layer as a result of the MEA plating process, it is easier to see the connections between

them than it would be in a three-dimensional tissue mass. In order to automate

the process of converting from images of fluorescing synapses to a connectivity map

that can be used in simulation, computer vision techniques may be used to detect

synapses and their connections to neurons. However, the transgenic rabies virus does

not spread to all the neurons in the culture, so this approach is limited to imaging

single neurons. Since versions of rabies that can spread do so by eventually destroying

their host cell, a version of this process that uses viral spread to mark more neurons

would be doomed by its own success.

Another approach to determining the connectivity of the neurons is the use

of statistical measures on the movement of spike signals through the network. Work

with caged-neuron MEAs has provided a statistical basis for determining whether the

path taken by a signal traverses single or multiple neurons (Erickson, Tooker, Tai, and

Pine 2008). Sorting connections by whether they traverse single or multiple neurons

is not sufficient to determine the connectivity of the network, but it may be able to

be used as a metric to verify overall statistical similarity. It may also be possible,

with further research, to refine the measurement to more accurately determine the

number of neurons in a path and their connectivity. Determining the connectivity of
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existing biological neural networks can also validate the output of simulated plating

and cell growth models, as described in Kahng et al. (2007).

Due to the problems with determining the total connectivity of a biological

network to a degree of accuracy sufficient to make comparisons to a simulated network,

topological analysis tools were not used in the initial development of the simulator.

Instead, information about the known local topology of neurons in culture, such as

the maximum connection distance, out-degree distribution, and so on, were used to

guide the development of the simulator. In this way, the simulated culture can at

least be known to conform to what can be known about the connectivity of biological

cultures.

5.3 Duplicating Specific Networks

In normal use, the simulated networks generated by CNS are intended to have the

same sort of connectivity, at a global level, as biological networks constructed using

the same parameters, but do not match a specific existing network. If the designer

of the network wishes to have complete control over the simulated network’s connec-

tivity, they may configure each individual connection. Configuring the network by

specifying each connection is more labor-intensive for the programmer, but allows

the flexibility to have any specific connectivity model which the user supplies. Fur-

thermore, this mode of setting connections allows the user to attempt to duplicate

the observed connectivity of a biological neural network, which is a first step towards

duplicating the functionality of a specific neural network. Before a network can be

duplicated, the connectivity of the biological network must be determined. As previ-

ously discussed, current methods of assessing the connectivity of a biological culture

are insufficient to produce a complete map of the connections of the culture.
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5.4 Hebbian Learning and Oja’s rule

Hebbian learning is a mechanism for controlling the strength of connections between

neurons based on whether activity from one neuron causes the other to fire. The

colloquial statement of the rule is that “neurons that fire together wire together,”

that is, the synapses that connect them are strengthened. Hebbian learning does not

put an upper bound on synaptic strength, so over extended periods, the connection

weights grow very large. Oja’s rule provides a method of countering this, so the

network can “forget” associations and does not become over-trained.

Repeating patterns could be viewed as a form of active memory storage, where

the network keeps a representation of some stimulation pattern in active processing,

similar to trying to keep a list in mind by reciting it over and over (Rolston, Wagenaar,

and Potter 2007). Similar looping patterns are seen in simple circuits of neurons

called Central Pattern Generators, or CPGs. These networks are suggested as a

source of timing signals for animal locomotion. By increasing the synaptic strength

of the connections within a CPG, the resulting gait could become more stable, that

is, resistant to perturbation into another gait. The patterns of repeated activity

seen in Roxin, Riecke, and Solla (2004), when occurring in a network with variable

connection weights under a learning rule such as Oja’s rule, may serve well as a

model of memorization based on long-term potentiation. The network can receive

a stimulus that sets up a repeating pattern, and each repetition of the pattern acts

as a “rehearsal,” further strengthening the connections that support that pattern.

These recurring patterns of activity may in turn have a part in learning and memory,

as well as more abstract mental structures such as thoughts and beliefs (Madhavan,

Chao, and Potter 2007; Sharp 2011). New stimuli may extinguish or modify the

pattern, but the strengthened connections will remain, to make recognition of that

pattern, or in the case of CPGs, adoption of that gait, more likely in the future. Oja’s
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rule can contribute to the weakening of the connections that form the pattern over

time. Strengthening the connections that lead away from the neurons that support

the pattern may also contribute to diminishing the probability of activity remaining

in the pattern over long periods (Sharp 2011). In a simulated culture, the weights

of individual connections can be tuned, so a ring or loop could be set up to act as a

pattern generator, and then various methods of enhancing or diminishing that pattern

could be tested.

Limited connectivity and inhibition are important to sustain repeating, pat-

terned activity. In models with too many long-distance connections, the excess con-

nectivity suppresses repeating signals, because the signal returns to the location it

started from before those cells have time to rest and prepare to fire (Roxin, Riecke,

and Solla 2004). If the cell energy reserves are exhausted by firing too often in a short

period, the signal dies out. Inhibitory connections may also prevent excessive firing

in the cells, allowing them to reserve their energy.

Chao, Bakkum, and Potter (Chao et al. 2008a) shows that some degree of

random background noise is required to for a simulated MEA culture to display

learning. It may be that this noise is required to prevent the increase in associative

strength caused by Hebbian learning from resulting in attractors so strong that the

organism develops irresistible automatic responses to a given input, rather than being

able to shape its response to a stimuli. That is, without some degree of perturbation, a

stimulus-response pair could become so ingrained as to make it impossible to react in

any other way, or alter that response in the future. Perturbation from external sources

may also play the role of afferent signals, that is, signals that would be coming into the

brain from the nervous system throughout the rest of the body in an intact animal.

Feedback-controlled stimulation at random sites on the MEA resulted in reduction of

bursting across the entire culture, but did not prevent the culture from responding
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to stimuli (Wagenaar, Madhavan, Pine, and Potter 2005). However, it may not be

desirable to suppress bursts completely, as they may carry information or represent

the activity of stable, information-storing attractors in the network (Madhavan, Chao,

and Potter 2007). Combining the plasticity of the reaction to tetanus from Madhavan

et al. (2007) with the burst-suppressing feedback system of Wagenaar et al. (2005)

may present a way to “program” a culture to react to specific input with a specific

form of burst activity. Such a system would use a combination of tetanizing input

to shape burst patterns and a feedback-moderated stimulation system to eliminate

undesired bursts.

A functional simulation of a MEA could be configured to demonstrate Hebbian

learning, and the parameters of the learning and perturbing functions set to evoke

different responses. Tweaking the parameters in this way could result not only in

demonstrations of practical mechanisms for learning, but also suggestions of ways

that learning can fail. For example, a system with insufficient perturbation might

learn very quickly, at the expense of easily overtraining. In fact, the importance of

continuous random perturbation to maintain plasticity, and so aid in learning has been

demonstrated in simulation already (Chao, Bakkum, and Potter 2008b). Similarly,

a system with a weak influence from Hebbian learning might have to continually

discover new solutions to training problems, rather than retaining old ones.



CHAPTER 6

CONCLUSIONS

6.1 Plating and Growth Simulation

The primary contribution of this project is the development of CNS, the program

which generates a connectivity map of a simulated culture and simulates the activity

of that culture.

CNS has a wide array of configuration parameters, which are used to set the

properties of the neurons, MEA plate, and the plating and growth of the neurons.

The parameters are set based on observed properties of biological cultures and the

measurements of the MEAs used by the Center for Cellular Neurobiology and Neu-

rodegeneration Research.

The individual neuron parameters as listed in CNS’s configuration file control

the size of the neurons, the limits on axon length, and the in and out degrees of

individual neurons. The spatial parameters are all expressed in micrometers. At

present, the model used to simulate the activity of the neurons is part of the code

of CNS, rather than an independent module. The code of CNS can be edited by

anyone familiar with the Python programming language, but for future development,

the parameters of the activity model will be moved to the configuration file.

Because Brian supports easy changes to the cell model used to determine

the behavior of the network, modifications, such as adding or removing long-term

potentiation or using a more complicated model of the behavior of the cell under

stimulation, are fairly easy to accomplish. These changes do not alter the connectivity

53
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of the network, so it should be possible to test which aspects of the behavior of the

network arise from connectivity, and which require specific elements of the cell model

to be in place to occur.

The parameters of the MEA are also configurable. The current configuration

matches that of MultiChannel Systems MEA plates, which have an 8 by 8 grid of

electrodes, each 20µm across and spaced 200µm apart. The corner electrodes are

not present, leaving 60 contact points. In CNS’s configuration file, the configuration

is described by setting the number of rows and columns of pads to be 8, setting

the spacing and pad diameter parameters to 200 and 20, respectively, and setting

a boolean parameter to inform the simulator that the corner pads are not present.

The pad parameters also include a limit for how close a neuron must be to a pad to

be recorded by that pad. Increasing this parameter means the pad will receive more

signals, but it also increases the time required to calculate the voltage at that pad,

and so slows the simulation.

The only plating parameters are the density of the cells in solution, and an

optional image depicting the desired cell adhesion probabilities. The density is ex-

pressed in cells per millimeter2, as they are in the literature, so copying this parameter

from a paper is straightforward. The image is resized so that each pixel corresponds

to a potential neuron location, and the value of that pixel’s red channel is used to set

the probability of a neuron attaching at that location. Fully saturated red pixels get

a 100% chance of having a cell attach, but the cell may be removed later when the

cells are reduced to match the density of cells in solution.

The final set of parameters is the growth parameters. There is only one growth

parameter: the percentage of the initially plated cells that survive to maturity. In

culture, only about half of the cells survive from plating to the formation of the

mature network. The remaining cells die off. CNS removes cells from the plating
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simulation to match the configured survival rate. There was a growth parameter that

governed the percentage of the possible connections between neurons that actually

formed. This parameter was replaced by a stochastic limit on in- and out-degree of

neurons, based on research by Patel, Ventre, and Meany (2012).

6.2 Electrical Modeling of MEA Sites

Because the simulation produced by CNS is intended to model the behavior of neurons

in culture, the simulation also includes aspects of the culture dish and data acquisition

equipment used to monitor biological cultures. The recording sites within the culture

dish are in fixed positions, and can only monitor those neurons on or close to the

recording sites. CNS models this by determining the weighted sum of the voltages

for the neurons around a recording site. The weights are based on the distance of

each neuron from the recording site, so those neurons closest to the site contribute

the most to the voltage at that locations, while more distant neurons contribute less.

6.3 Analysis Tools

In order to compare the activity of the biological networks to the output of CNS, a

set of visualization and analysis tools were created. The analysis tools consume data

in the same format used by the biology lab, and so they are also useful for visualizing

and processing data generated from biological cultures.

Many of the scripts simply graph the voltages or spike occurrences over time

in a recording of a biological or simulated culture. The resulting images allow for a

visual check of approximate similarity, by letting a user look at the resulting images

to determine if they are similar. Visual overviews make it simple and quick to detect

large errors in the configuration of the simulation, but do not constitute a rigorous

test of similarity between the simulation and biological cells.
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In order to obtain more useful values for comparison, a script to calculate the

power law exponent and spike rate from recorded data was written. The spike rate

is simply calculated by counting spikes and dividing by the length of the recording

in seconds, to obtain the spike rate in spikes per second. The power law exponent of

inter-spike intervals is estimated using a combination of maximum-likelihood fitting

and goodness-of-fit tests (Clauset, Shalizi, and Newman 2009). Unfortunately, this

method does not work well for extremely quiet cultures, because such a culture will

not have a sufficient number of inter-spike intervals for a maximum-likelihood method

to find a good fit. This is typically apparent in the results as a very high exponent,

usually greater than 500, when the usual values from biological cultures are around

2-6.
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