
COMMAND LANGUAGE FOR SINGLE-USER,

MULTI-ROBOT SWARM CONTROL

Abraham M. Shultz

3 December, 2018

Copyright © 2016-2019 by Abraham M. Shultz. All rights reserved.

Abstract

Command and control systems designed for a single operator to operate a single

robot do not scale to control of swarms. Interfaces that require the user to attend

to each robot overwhelm the user when the number of robots increases beyond 12

or 13 for uncrewed aerial vehicles (UAVs) and 3-9 for uncrewed ground vehicles

(UGVs). As robot swarms increase beyond these bounds, the control system must

shift to from controlling individual robots to controlling the swarm as a single entity

while permitting easy and understandable control of the swarm.

Previous work in human-robot interaction (HRI) shows that multi-touch in-

terfaces allow a scalable and direct mapping between the desires of the user and

sequences of commands to robots. This thesis presents an interface that extends

previous work on multitouch interfaces for small groups of robots to larger swarms,

and automates the process of converting command gestures into programs for each

robot. The use of individual control programs rather than centralized control is

important to realize the potential of swarms to continue to operate despite the

failure of individual swarm robots.

The contributions of this thesis are a new swarm hardware platform, software

to support it, and a user interface that converts user commands into programs for

each robot in the swarm. The new swarm platform initially combined an Internet of

Things (IoT) platform with drivetrains from toys to allow large swarms to be built

at a low cost. Ultimately, toys were not sufficiently reliable to serve as mobility

platforms, so the controller was applied to 3-D printed chassis. The user interface

was defined by allowing users to select the gestures that they would use to issue

commands to the swarm. It was discovered that as the size of the swarm increases,

the gestures that users choose vary, particularly in the case of selection gestures.

The resulting user gesture set, with some modification to remove ambiguity, can

be translated into programs for individual robots, but the correctness of these

programs is only provable in limited cases.

i

Acknowledgments

Thank you to Dr. Holly Yanco, for encouraging me to turn one of my side projects

into a dissertation, for providing guidance and resources for all these years, and

finally for the encouragement to get out. Your ceaseless work to run the Robotics

Lab and the NERVE Center and encourage a good mixture of freedom and focus

for the people working there have made it a fantastic place to work.

Thank you to Dr. Jay McCarthy for the useful pointers in programming

languages and verification, and for keeping me on track when I was getting into the

weeds of Turing completeness.

Thank you to Dr. Radhika Nagpal for the loan of the E-Pucks, and for an

impressive body of work in swarm robotics that inspired and informed some of this

work.

Thank you to Jonathan Roche for vastly speeding up the virtual laser, to

James Kuczynski and Dalton Curtin for their attention to detail in coding the

user responses, and everyone else in the UML robotics lab that I’ve asked to read

papers, write ROS modules, or otherwise help out. Collaboration is one of our lab’s

strengths, keep it that way when I’m gone.

Thank you to my parents, for teaching me, for encouraging me to pursue my

own education, and putting up with the huge piles of messed-about-with hardware

that follow me around. Your unconditional love and support has been a comfort to

me in times of stress, and a joy always.

Thank you to Alexander Shultz, Renee Furr, Margaret Lark, Adeline Violas,

and anyone else who offered proofreading and other help along the way. If I have

left anyone out, know that the blame lies with my memory, and not with your

assistance.

ii

Contents

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Hypotheses . 4

1.2.1 H1: A cheap indoor swarm can be built with commodity

hardware . 4

1.2.2 H2: User gestures change based on the size of the swarm . . 5

1.2.3 H3: Changes in display of the swarm can change user behavior 6

1.2.4 H4: User gestures can be converted to programs 7

2 Related Work 9

2.1 Overview of Previous Swarm Hardware 9

2.1.1 Tabletop Swarms . 10

2.1.2 Room-sized Swarms . 14

2.2 Swarm User Interface Designs . 16

2.2.1 UI Designs . 25

2.2.2 Multitouch Gesture Discovery 27

2.2.3 Multitouch UI Design Concerns 29

2.2.4 Human/Swarm Interaction 31

2.2.5 The Interfaceless Interface 38

iii

2.2.6 Video Game UI Design . 39

2.2.7 Intel Drone Swarm Interface 42

2.3 Swarm Software Development Methods 43

2.3.1 Amorphous Computing . 44

2.3.2 Pheromone Approaches . 46

2.3.3 Vector Fields . 50

2.3.4 Compositional Approaches 52

2.3.5 Evolutionary Composition 54

2.3.6 Domain-Specific Languages for Swarms 60

2.3.7 Program Generation from Formal Specification 63

2.4 Group Perception of Humans . 68

2.5 Human-Robot Teaming . 71

3 Swarm Robot System Development 75

3.1 Hardware Platform . 76

3.1.1 Toy Compatibility . 80

3.1.2 Potential for Expansion . 81

3.1.3 Firmware . 83

3.1.4 Why Heterogeneity? . 85

3.2 Swarm Robot Software Framework 86

3.2.1 Virtual Localization . 89

3.2.2 Virtual Laser Scanners . 90

3.2.3 Virtual Networking . 91

3.3 Swarm Hardware Results . 92

3.3.1 Calibration . 94

3.3.2 Drive Testing . 96

3.3.3 3D Printed Robots . 102

iv

3.4 Conclusion and Discussion . 106

4 User Gesture Collection 109

4.1 Experiment Setup . 111

4.1.1 Experiment Conditions . 115

4.1.2 Participant Demographics 117

4.2 Analysis . 117

4.2.1 Initial Coding Pass . 118

4.2.2 Second Coding Pass . 119

4.3 Selection Gestures . 122

4.4 Multi-hand Gestures . 126

4.4.1 Influence of Video Games 128

4.4.2 Influence of Operating Systems 131

4.4.3 Use of Voice Commands . 132

4.5 Use of User Interface Widgets . 133

4.6 User Strategies . 134

4.6.1 User Strategies for Formations 135

4.6.2 User Strategies for Manipulation 138

4.7 Robot Count in Unknown Number Case 142

4.8 Selection Behavior . 143

4.9 NUI Metaphor Failure . 146

5 UI Design and Implementation 148

5.1 Selection of Gestures for Control of Swarms 148

5.2 Ambiguities in Gesture Commands 154

5.2.1 Implicit Selection . 157

5.2.2 Gesture Complexity . 158

v

5.3 Termination of Commands . 159

5.4 Acceptable Command Sequences 161

5.5 Simultaneous Actions . 165

5.6 Representation Of The Command Language 166

6 UI Design for Trained Users 168

6.1 On-line Training . 169

6.2 “Other” Gestures . 172

6.3 Gesture Modification . 174

6.4 Gesture Direction . 177

6.5 Gesture Velocity . 178

6.6 Assessment of Training-Oriented Gestures 179

6.7 Missing Gestures . 180

6.8 Gesture Coverage . 183

7 Implementation of Swarm Actions 185

7.1 Localization . 187

7.2 Vector Field Path Following . 189

7.3 Composition with Obstacle Avoidance 191

7.4 Code Generation Refinement . 194

7.4.1 Approaching a Point . 196

7.5 Completeness of Navigation . 196

7.5.1 Path Following . 200

7.5.2 Formation . 202

7.5.3 Patrol . 205

7.5.4 Dispersion . 207

7.5.5 Swarm Manipulation . 210

vi

7.6 Completeness Under Poor or Absent Localization 216

7.6.1 Motion to a Point . 218

7.6.2 Path Following . 219

7.6.3 Formation and Patrol . 220

7.6.4 Dispersion . 220

7.6.5 Swarm Manipulation . 221

8 Interface Implementation 223

8.1 Gesture Recognition . 225

8.2 Translation Into Programs . 228

8.3 Implementation Details . 230

8.4 Interpretation of Programs . 232

8.5 Interface Testing . 234

8.5.1 Causes of Failed Recognition 237

8.6 Translation Testing . 245

9 Contributions 250

9.1 Swarm Hardware and Software Platform 250

9.2 Multitouch Gesture set for Swarm Control 252

9.3 Compilation of User Gestures into Robot Programs 254

10 Directions for Future Work 257

Literature Cited 262

Appendices 282

A Coding Definitions for User Gestures 283

A.1 General Points . 283

vii

A.2 Gestures . 284

B All Task Slides 289

B.1 1 Robot Case . 289

B.2 10 Robot Case . 291

B.3 100 Robot Case . 294

B.4 1000 Robot Case . 297

B.5 Unknown Number of Robots Case 300

10.6 Biographical Sketch . 304

viii

List of Figures

2.1 The 10-level model of autonomy from [Parasuraman, Sheridan, and

Wickens, 2000] . 20

2.2 Typical top-down RTS view from the game Nuclear Dawn, by In-

terwave Studios. The view is of a courtyard and buildings, showing

units (highlighted in red), a picture-in-picture map of the larger area

(grey box in lower left corner), and game controls (yellow boxes in

lower right corner) [InterWave Studios, 2013]. 39

3.1 Toys with controller boards and batteries mounted. The spider has

a two-motor holonomic drive, the tank uses differential drive, and

the car is Ackerman drive. 76

3.2 Layout of bits in motor command byte for DRV8830 84

3.3 The image on the left shows the swarm arena. The top-down camera

is mounted on the crossbar at the top. The image on the right

shows the camera view before ROS image rectification removes barrel

distortion. 87

3.4 Overview of the software framework. Rectangular nodes are hardware,

oval nodes are software. 88

3.5 Data flow in the virtual laser service 92

ix

3.6 Data flow in the virtual network. The virtual network service can

take the distance between the transmitting robot and the receiving

robot into account when determining if the message is delivered. . . 93

3.7 Commanded velocity (lin vel) as opposed to recorded motion (vel).

Vel is always positive because it is measured in terms of euclidian

distance moved by the center of the AprilTag between successive

updates of the tag tracking. Note that while the magnitude of the

motion is proportional to the commanded motion, sometimes the

robot did not move at all, and when it did move, the recorded velocity

is quite noisy. Noise may be removed in software, but mechanical

failure cannot. 94

3.8 . 99

a Motion of toy car based robot, showing long tracks across arena 99

b Motion of big wheel robot, showing no track due to the loss

of tracking as the robot either did not move, or flipped over 99

3.9 . 100

a Motion of 6-wheel bug, showing tight arcs and spirals caused

by different motor speeds . 100

b Motion of green tank, showing one successful run and four

tight spirals due to a stopped track on one side 100

3.10 . 101

a Motion of blue tank #8, showing lack of motion 101

b Motion of blue tank #18, showing arc to the right on most

runs, and overflow leading to sudden reverse (light yellow track)101

3.11 Motion of bug robot, showing tendency towards the left and more

erratic path than tracked or wheeled robots 101

x

3.12 3D printed robots, two with LED rings and one with an AprilTag for

tracking. The LED rings are intended to display computer-trackable

constellations and human-readable information. 104

4.1 Experiment setup, showing, L to R, the survey computer, microphone,

cameras and multitouch interface device, and an example robot. . . 112

4.2 Instructional slide and situations for moving around the wall to area

A, in each condition. 116

4.3 Instructional slides for the unknown number of robots condition,

showing cloud representation of robot swarm. 143

4.4 Images for selection strategy question. 144

5.1 UI gestures, selection gestures, and position gestures. 149

7.1 Simple obstacles that result in looping behavior for a bug algorithm

that combines wall following with leaving the obstacle when the

vector field points away from the obstacle. 194

7.2 The proposed modifications (in green) to the Tomita and Yamamoto

TangentBug algorithm for user path following in cases with multiple

robots, some of which may be treated as moving obstacles. This flow

chart does not include the option for maximally dense packing at

the goal described in the text. 201

8.1 Result of a failed recognition, showing laddering between strokes and

the system’s guesses at the classes of each gesture. 238

8.2 Successful recognition of all gestures, moving eight of the robots to

form a line with the other two. 244

B.1 One robot: Move to A . 289

xi

B.2 One robot: Move to A with wall . 289

B.3 One robot: Stop the robot . 290

B.4 One robot: Orange to B, Red to A 290

B.5 One robot: Orange to A, Red to B 290

B.6 One robot: Divide group . 290

B.7 One robot: Move the crate to A . 290

B.8 One robot: Mark defective robot 290

B.9 One robot: Remove defective robot 291

B.10 One robot: Patrol the screen border 291

B.11 One robot: Patrol area A . 291

B.12 Ten robots: Move to A . 291

B.13 Ten robots: Move to A with wall 291

B.14 Ten robots: Stop the robots . 292

B.15 Ten robots: Divide around obstacle 292

B.16 Ten robots: Orange to B, Red to A 292

B.17 Ten robots: Orange to A, Red to B 292

B.18 Ten robots: Orange to A, Red to B 292

B.19 Ten robots: Divide group . 292

B.20 Ten robots: Combine groups . 293

B.21 Ten robots: Form a line . 293

B.22 Ten robots: Form a square . 293

B.23 Ten robots: Move the crate to area A 293

B.24 Ten robots: Move the crate to area A 293

B.25 Ten robots: Mark the defective robot 293

B.26 Ten robots: Remove the defective robot 294

B.27 Ten robots: Patrol the screen border 294

xii

B.28 Ten robots: Patrol area A . 294

B.29 Ten robots: Disperse over screen . 294

B.30 100 robots: Move to A . 294

B.31 100 robots: Move to A with wall . 294

B.32 100 robots: Stop the robots . 295

B.33 100 robots: Divide around obstacle 295

B.34 100 robots: Orange to B, Red to A 295

B.35 100 robots: Orange to A, Red to B 295

B.36 100 robots: Orange to A, Red to B 295

B.37 100 robots: Divide group . 295

B.38 100 robots: Combine groups . 296

B.39 100 robots: Form a line . 296

B.40 100 robots: Form a square . 296

B.41 100 robots: Move the crate to area A 296

B.42 100 robots: Move the crate to area A 296

B.43 100 robots: Mark defective robot 296

B.44 100 robots: Remove defective robot 297

B.45 100 robots: Patrol the screen border 297

B.46 100 robots: Patrol area A . 297

B.47 100 robots: Disperse over screen . 297

B.48 1000 robots: Move to A . 297

B.49 1000 robots: Move to A with wall 297

B.50 1000 robots: Stop the robots . 298

B.51 1000 robots: Divide around obstacle 298

B.52 1000 robots: Orange to B, Red to A 298

B.53 1000 robots: Orange to A, Red to B 298

xiii

B.54 1000 robots: Orange to A, Red to B 298

B.55 1000 robots: Divide group . 298

B.56 1000 robots: Combine groups . 299

B.57 1000 robots: Form a line . 299

B.58 1000 robots: Form a square . 299

B.59 1000 robots: Move the crate to area A 299

B.60 1000 robots: Move the crate to area A 299

B.61 1000 robots: Mark defective robot 299

B.62 1000 robots: Remove defective robot 300

B.63 1000 robots: Patrol the screen border 300

B.64 1000 robots: Patrol area A . 300

B.65 1000 robots: Disperse over screen 300

B.66 Unknown number of robots: Move to A 300

B.67 Unknown number of robots: Move to A with wall 300

B.68 Unknown number of robots: Stop the robots 301

B.69 Unknown number of robots: Divide around obstacle 301

B.70 Unknown number of robots: Orange to B, Red to A 301

B.71 Unknown number of robots: Orange to A, Red to B 301

B.72 Unknown number of robots: Orange to A, Red to B 301

B.73 Unknown number of robots: Divide group 301

B.74 Unknown number of robots: Combine groups 302

B.75 Unknown number of robots: Form a line 302

B.76 Unknown number of robots: Form a square 302

B.77 Unknown number of robots: Move the crate to area A 302

B.78 Unknown number of robots: Move the crate to area A 302

B.79 Unknown number of robots: Patrol the screen border 302

xiv

B.80 Unknown number of robots: Patrol area A 303

B.81 Unknown number of robots: Disperse over the screen area 303

xv

List of Tables

3.1 Prices in US Dollars for TinyRobo components. 78

3.2 Current draw for Mabuchi-branded motors. 81

3.3 No-load and stall current for coreless DC micromotors. Measurements

were performed at 3V supply voltage. The Hexbug mini spider

includes a slip clutch, so attempting to stall the motor by holding

the toy does not prevent the motor from turning. 81

3.4 Semiconductors for a simple IR communication ring, and their prices,

in US Dollars. The PCB is the same size and type as the TinyRobo

controller, and so has the same cost. 83

3.5 Truth table for DRV8830 drive direction bits. Coast allows the

motor to turn freely. Brake connects the motor leads, resulting in

braking using the motor’s back-EMF. Z indicates the output is in a

high-impedance state . 84

4.1 User tasks per condition. 115

4.2 Gestures used by experiment participants, by count and as a percent-

age of the total gestures used. This table includes example gestures

in the counts, as defined in appendix A. 122

4.3 Per-condition total use of selections 123

xvi

4.4 P-values for the use of tap as select between conditions 124

4.5 P-values for the use of group selections between conditions. The

ANOVA between the unknown case and the single robot case was

not computable, as no group selections were used for the unknown

case or the single robot case for the common tasks. 125

4.6 Counts of group selection gestures in the common tasks and all tasks.125

4.7 Counts of tap selection gestures in the common tasks and all tasks. 125

4.8 Lengths of sequences of taps within conditions. 126

4.9 Two handed gesture pairs. Note that the total is lower than the

actual count of total gestures, since it counts e.g. two simultaneous

drag actions as a single two-handed drag action. 127

4.10 Use of two-handed gestures by task. 128

4.11 Counts of UI widget interactions and of users requesting them, per

task. 134

4.12 Strategies used to form robots into a square formation. 136

4.13 Strategies used to form robots into a line. 138

4.14 Strategies used to move the crate in the non-dispersed condition. . . 139

4.15 Strategies used to move the crate in the dispersed condition. 141

4.16 User responses for whether robots on the edge of a selection should

be included. The unknown case is omitted because the relationship

of individual robots to the line is not visible in that case. 145

5.1 Use of voice commands by task. The use of high numbers of voice

commands for the formation tasks, line and square, was likely biased

by the text of the instructional slides. 152

xvii

8.1 Overall comparison of detected gestures versus those from the coding

of the participant data. The gaps on each side are for distinctions

that are present in the coding and absent in the detection, or vice

versa, such as the distinction between tapping waypoints or tapping

robots, versus simply making a tapping gesture. 242

xviii

1

Chapter 1

Introduction

Methods for command and control that are based on issuing individual orders to

individual robots do not scale to large numbers of robots [Wang, Lewis, Velagapudi,

Scerri, and Sycara, 2009]. By defining a mapping from user interface gestures to

individual programs loaded on each robot, an individual can control arbitrarily large,

heterogeneous groups of robots. While swarm hardware is not yet at a point where

very complex computation may be pushed directly to the swarm nodes themselves,

that time is not far off. Indeed, some systems already have moderately powerful

computers, but at fairly high cost for each the individual robots [Millard, Joyce,

Hilder, Fleşeriu, Newbrook, Li, McDaid, and Halliday, 2017].

Until computational power in the individual swarm units reaches the

levels required for complex computation, virtualization of computing resources

can provide an adequate test environment for the development of swarm control

algorithms at modest requirements in terms of space and power consumption.

Centralizing the control of a single swarm of robots makes the system as a whole

sensitive to the failure of the central controller. To avoid this type of failure, the

2

overall action of the swarm should be guided by decentralized emergent behavior,

rather than centralized orchestration. Each robot receives its own program, and

the sum of the execution of the programs on each robot results in the completion

of the swarm’s task. The various approaches to the development of swarm robot

control programs show that a wide variety of approaches can still result in robust

controllers for swarm robots. However, placing bounds on the sensing ability and

communication ability of the robots has substantial effects on the programs that

can be developed for them.

Thesis Statement

One potential method to control a swarm of robots is having a central computer

dictate to individual robots how the robots should move. However, centralized

control is only as robust as the central controller and its connection to the robots.

Distributed control systems do not have a single point of failure as centralized

models do. In order to create reliable and useful swarm robotic systems, users

must be able to specify a desired end state of the system to which the swarm can

converge without reliable orchestration from a central controller. Moreover, this

convergence must occur in the face of unreliability on the part of the individual

swarm members.

The current state of development of emergent control of swarms is guided

by ad-hoc, iterative development models that are somewhat suited to software

developers, but not suited for use by non-programming end users [Palmer, Kirschen-

baum, Seiter, Shifflet, and Kovacina, 2005b]. The motivating examples of uses for

swarms are task oriented, such as sending swarm robots into disaster zones to search

for survivors. Iterative software development does not have the ability to adapt

3

quickly enough in the face of changing situations in a disaster area, and software

development training would be out of scope for first responders. Therefore, it is

desirable to automate the construction of control software for a swarm so that it

can adapt to a situation, without requiring significant development time. In order

to support interactive control during a developing situation, the construction of the

software should occur over a similar time scale to the user interactions.

Initially, part of the intent of this work was to determine if robot control

programs could be developed to function under the following assumptions, which

mirror some of the difficulties found in operation of robots under difficult field

conditions.

1. Robots’ sensing is limited in range. Because of this limitation and dynamic

environments, the information that robots can have about distant points is

limited.

2. Networking between robots is unreliable, due to range, limited power, and

possible interference. It is not the case that any robot can reach any other

robot at any time.

3. Because of limits in sensing and networking, it may be the case that global,

absolute localization is unavailable.

4. Robots can fail. Algorithms to control them should not depend on the perfect

functioning of any individual robot.

Ultimately, while the resulting programs can operate under many of

these conditions, the user interface (UI) design used in user experiment implies

some form of localization for the robots. For the study described in this work,

the UI displays, on a multi-touch screen, a top-down view of the robots and their

4

surroundings. Placing the robots in a map-like view relative to each other implies

that the locations of the robots relative to each other can be determined. With

this interface, the users were presented with a series of tasks, and could use any

method they wished to command the robots to perform the task. Without metric

localization, some of the tasks posed in the user experiments are possible, if certain

aspects of the goals are relaxed.

Hypotheses

H1: A cheap indoor swarm can be built with commodity

hardware

The Kilobots set a remarkably low price point for individual swarm robots, with the

parts for each robot costing approximately $15 [Rubenstein, Ahler, Hoff, Cabrera,

and Nagpal, 2014a]. However, the Kilobots move by stick-slip locomotion, and

so require a smooth, level surface to operate on. Children’s toys, such as radio

controlled (RC) toy cars, tanks, and legged “insects” are designed to operate

on slightly more difficult terrain, and so could be used to extend swarm robotic

experiments into natural indoor settings. In order to enable the control of toy

mobility platforms as swarm robots, a common controller with the ability to adapt

to various toys is needed. As computing hardware decreases in price and size, more

and more ability can be built into smaller and smaller hardware. The development

and popularity of smartphones has driven the development of smaller sensors and

lower power processors, as well as thinner and smaller battery technology. As

Internet of Things (IoT) technology becomes increasingly popular, it becomes easier

and cheaper to add smaller and lower-power devices to communications networks.

5

The parts that go into these consumer technologies are also made less expensive

by economies of scale. Assuming a fixed set-up cost, the more finished devices

are produced, the greater the amortization of the setup cost across the devices.

Since IoT is expected to deliver connectivity for tens or hundreds of devices per

end user, the expected economics drive down the cost of network connectivity. As a

consequence, by using components intended for IoT devices, cell phones, and similar

consumer electronics, the cost of building small robots will also continue to drop.

This hypothesis would be disproved by a swarm robot capable of operating

in a naturalistic indoor setting requiring more than $30 in parts. The $30 target

price was selected under the assumption that a base with sufficient terrain handling

capability to operate in a natural indoor environment will, at worst, double the

cost of the robot from the lower limit set by the Kilobots.

H2: User gestures change based on the size of the swarm

It is hypothesized that there exists a number of robots beyond which users will

transition from treating robots as individuals to interacting with the robots in small

groups or as a single large group. As the user interacts with the multi-touch user

interface, they will choose the gestures that they feel convey their intention to the

system. The collected gestures for a particular user are their gesture set. Across

multiple users, the transition point will be apparent because of a change in the

gesture set that the users choose to interact with the swarm. It is hypothesized that

above the transition point, users will be more likely to neglect some subset of the

available robots. The user will instead issue commands that control the bulk of the

robots as a cloud or flock, but may leave some robots unused. For example, the user

may switch from selecting robots as individuals to shaping and pushing the swarm

the way a child might play with a bug, putting their hand down so the bug goes

6

around or avoids it, touching the back of the bug gently to make it scurry forwards,

and so forth, or by shaping the group as if sculpting, with pushing and pinching

to “carry” groups around. The user may also change how they indicate which

robots are to be interacted with. Rather than selecting each robot by clicking on it,

they may “paint” over the area containing the robots they want to use, or draw

a circle around them. The size of the swarm where changes in the user gestures

occur will indicate the transition point between interacting with individual robots

and interacting with the swarm as a whole. This hypothesis would be invalidated

by the gestures selected by the user displaying no correlation with the size of the

swarm that they are controlling.

H3: Changes in display of the swarm can change user

behavior

It is hypothesized that a display that obscures individual robots and displays a

cloud or swarm boundary will cause the user to treat the swarm as a whole rather

than individuals, which will be apparent because the user will use the same gestures

they would use to control a single robot.

Once the ratio of the size of individual swarm members to the size of the

area the swarm is in becomes sufficiently large, displaying the swarm members at

the same scale as the map will result in the representation of the swarm members

being too small to interact with. This problem will arise at smaller scales if the

swarm robots are themselves quite tiny, and some of the available swarm robots

are indeed small [Pelrine, Wong-Foy, McCoy, Holeman, Mahoney, Myers, Herson,

and Low, 2012]. Scaling the representation of the robots up, relative to the map,

will make the robot representations overlap unrealistically and obscure the map.

Instead, it is proposed that for certain scales of swarms, it makes sense to represent

7

the swarm as the area covered, rather than the locations of the individual robots.

This approach has been used successfully for navigation of a swarm of uncrewed

aerial vehicles (UAVs) in three dimensions, by developing a controller that causes

the individual UAVs to remain within a bounding prism, and allowing the user to

control the shape and location of that prism [Ayanian, Spielberg, Arbesfeld, Strauss,

and Rus, 2014].

This hypothesis would be invalidated by the gestures selected by the user

in the single robot case being dissimilar from those selected in the case where the

swarm is displayed as a cloud or covered region.

H4: User gestures can be converted to programs

It is hypothesized that user commands on a multitouch display can be automatically

converted into programs for each robot that will converge to the desired behavior.

These programs will operate using only local sensing and local communications,

and without resorting to global, absolute localization.

Further, it is hypothesized that the user commands can be represented as

a grammar that can be transformed into programs for each robot. These programs

should result in the convergence of the swarm to the desired behavior using only

local sensing and local communications, and without resorting to global, absolute

localization. However, this hypothesis must be modified with a few caveats. First,

under the assumption that robots can fail, it is possible that the entire behavior

can fail. For example, if enough of the robots are incapacitated, it may be that not

enough are left to complete the task. It’s also possible that at compile time, the

task is still possible, but a later change of the environment renders it impossible.

Assessing whether or not a user-specified action will be completed is not possible for

all of the usual reasons that prevent prediction of the future, but in some limited

8

cases, it may be possible to determine whether a specified action is impossible. The

goal of this work is to provide a best-effort attempt to satisfy the user command,

rather than prove anything about the possibility of doing so. This hypothesis would

be disproven by demonstration that a desired user action, as represented by control

gestures on the user interface, could not be converted to a program that operates

without global localization and that requires only local sensing and communication.

9

Chapter 2

Related Work

Overview of Previous Swarm Hardware

Swarm robots are generally small. The reason to keep swarm robots small is related

to both the cost of making them and the cost of using them. Larger robots consume

more materials per unit, and so cost more money. As a result, for a given number

of swarm units, larger robots will result in a higher cost swarm. Also, each robot

requires some amount of space to move around in. To keep the ratio of free space

to robots constant, the area of space used by the robots grows as the robots do. If

the ratio is not kept constant, the robots will crowd each other: large robots will

require either a very large space, or become overly crowded. Finally, larger robots

are more cumbersome to deal with. They require larger storage areas, possibly

teamwork to lift or repair, and so forth. All of these efforts are multiplied by the

number of robots in the swarm.

In addition to budgetary constraints, interaction with an environment

built for humans places an upper bound on the scale of the individual swarm

10

members. For example, typical indoor doorways are around 80cm wide, so a robot

would have to be less than 80cm wide to fit through them. The lower bound on

swarm robots is generally dictated by fabrication technology, with smaller robots

becoming increasingly difficult to assemble. As detailed below, swarm robots are

mostly between 1cm3 and 30cm3. This scale range divides fairly evenly into robots

that can operate in large swarms on a table, and those that can operate in swarms

within a room, albeit possibly a large room. The challenge of construction of swarm

robot hardware is to put all of the same parts as non-swarm mobile robots into a

small package. Many impressive designs for small swarm robot platforms have been

proposed and constructed as part of research in swarm robotics. However, most of

these platforms are no longer easily commercially available, or never were.

Tabletop Swarms

At the low end, in terms of size, the I-SWARM Project was intended to create

a 2x2x1mm robot that moved by stick-slip locomotion actuated by piezo levers

[Seyfried, Szymanski, Bender, Estana, Thiel, and Wörn, 2005]. Over the course

of the project from 2004-2008, the hardware was developed and used in research,

but was not converted to a commercial product. Other techniques have been

developed to use magnetic fields to apply force to small magnetic objects, resulting

in controlled motion of the objects [Floyd, Pawashe, and Sitti, 2008; Pelrine

et al., 2012]. These systems are not amenable to decentralized control, because

the moving components are not themselves robots. The moving parts are more

accurately viewed as manipulators, with the instrumented environment, any sensors

for feedback from that environment, and the manipulators themselves comprising a

single robot.

Early small-scale swarm robots were based on microprocessors, and were

11

primarily research platforms for the groups that developed them, rather than

commercially available products. Alice combined a PIC16F84 processor, motors,

RF and IR networking, and enough battery power for 10 hours of autonomy into a

robot measuring under 2.5cm3 [Caprari, Balmer, Piguet, and Siegwart, 1998]. The

Jasmine swarm robots were possibly the closest thing to a commercially-available

successor to Alice [Kernbach, 2011]. Jasmine measured 26x26x20mm, and included

an ATMega processor, IR close range communication and obstacle detection, two

motor skid steering, and lithium-polymer batteries. Jasmine units cost about $111

each when they were available, and they are no longer available for purchase. InsBot

was a small robot, measuring 41mm x 30mm x 19mm, that was designed to interact

with cockroaches [Colot, Caprari, and Siegwart, 2004]. It used two processors, one to

run higher level behaviors and one to interface with a suite of sensors that included

12 IR sensors and a linear camera. The AmIR robot measured 6.5cm in diameter

and 6cm tall. It has a more modern processor than Alice [Arvin, Samsudin, and

Ramli, 2009]. There is no evidence that AmIR was ever widely available, and it

cost $92 per unit [Arvin, Yue, and Xiong, 2015b]. The successors to Amir, Colias,

and the related Colias-Φ, are dual-microprocessor systems similar to Jasmine in

functionality, with additional features for pheromone robotics applications [Arvin,

Murray, Zhang, and Yue, 2014; Arvin et al., 2015b]. Colias is built out of two

PCBs, with the upper PCB and processor handling IR collision avoidance and

communication, and the lower processor controlling the motors, power management,

and various sensors. Colias robots cost $35, in parts, but are not commercially

available. The Colias-Φ model has an even more impressively low price, at $22.

Even when they are commercially available, most existing swarm robots

are too expensive to build a large swarm. The E-puck from EFPL is approximately

$795 per unit, so the cost of maintaining a large swarm can become daunting quickly.

12

The high price of the E-puck is a result of its extensive suite of sensors, including a

camera and 360◦ IR range sensor and communication system. As of January 2018,

the E-Puck 2 has been commercially available. Version 2 E-pucks have a 168MHz,

VGA-resolution camera, and WiFi connectivity in addition to the bluetooth that all

E-Pucks use. They cost 850 Swiss francs, or approximately $845 as of this writing.

The r-one research robot is cheaper than the E-puck, at approximately

$220 per unit [McLurkin, Lynch, Rixner, Barr, Chou, Foster, and Bilstein, 2013].

The developers of the r-one position it as a more featureful and less expensive

alternative to the E-puck ($795), Parallax’s Scribbler ($198, minimal sensors), the

iRobot Create ($220, requires additional hardware to be programmable), the K-team

Khepera III ($2000), or the Pololu 3pi ($99, minimal sensors).

The Harvard Kilobots are a more recent entry to inexpensive swarms,

and have been produced in large quantities [Rubenstein et al., 2014a]. Kilobots

contain $15 worth of parts, while a 10-pack of assembled Kilobots sells for about

$112 per robot. The Kilobots are intended for research in a highly homogeneous

environment, with most or all of the robots executing the same program. As a

result, they are designed to be programmed in parallel using an IR interface. For

small groups, individual Kilobots can be programmed differently, but any attempt

to give each of a very large collection of robots an unique program will take a

long time. The Kilobots also move by stick-slip motion, and so must operate on a

smooth surface, such as a whiteboard.

The GRITSBots platform is a differential-drive platform using stepper

motors [Pickem, Lee, and Egerstedt, 2015]. GRITSBots use the same processor as

Colias, in a similar configuration, with one processor operating sensors and the other

controlling the robot’s motors. The sensor board incorporates a 3D accelerometer

and gyro as well as a 6-direction IR distance sensing ring. GRITSBots measure

13

31mm x 33mm, and cost approximately $50 for parts per unit.

The Psi Swarm robot is a 10cm diameter round robot with proximity

sensing, a compass, bluetooth wireless connectivity, and autonomous charging via

ground contacts [Hilder, Horsfield, Millard, and Timmis, 2016]. As with many of

the platforms described in this section, it is not commercially available, but the

designs to have the circuit boards fabricated and the body 3D printed are freely

available.

MROBerTO is a swarm robot with a 16mm2 footprint. It has modular

expandability via a header for daughterboards, and includes a single-point laser

rangefinder, gyro, accelerometer, compass, and a VGA resolution camera [Kim,

Colaco, Kashino, Nejat, and Benhabib, 2016]. The mROBerTO processor is a 32-bit

ARM processor with Bluetooth and ANT+ wireless. All of this hardware is only

$60 per unit in quantities of 25 or more units. In order to permit an overhead

camera to localize the mROBerTO robots, a single RGB LED on top of the camera

can be lit in a unique color to localize the robot, and a green LED on the front of

the robot indicates its heading. The use of color information is likely much faster

to process than fiducual tags, but does have the disadvantage that it is only useful

in 2D unless a stereo camera is used.

The Zooids of Le Goc et al. are interesting in that the robots themselves

are positioned as both a physical interface and a swarm [Le Goc, Kim, Parsaei,

Fekete, Dragicevic, and Follmer, 2016]. They are designed to be used as physical

controls, such as knobs or sliders, as well as being able to move themselves. The

individual robots measure just under 3cm in diameter, and localize themselves

using a projected grey coded light signal from a high-speed projector. Le Goc et al.

estimate the individual cost of a Zooid at around $50.

Swarm robots have also been developed for aquatic and aerial robotics as

14

well, although the problems unique to those domains are outside of the scope of this

work [Costa, Duarte, Rodrigues, Oliveira, and Christensen, 2016; Preiss, Honig,

Sukhatme, and Ayanian, 2017]. It is worth noting that the Crazyflie quadcopter

platform on which the Crazyswarm is based is a commercial product. In single

quantities, it costs $180 per quadcopter. At least one inexpensive, legged robot

platform has also been proposed as a swarm platform, but no swarm composed of

them appears in the literature [Kalat, Faal, Celik, and Onal, 2015].

One way to reduce the cost of swarm robots is to use commercial, off-the-

shelf (COTS) hardware in the construction of the robot. Reusing existing hardware

leverages the economies of scale that reduce the price of commercial hardware, as

well as eliminating the need to design or build the COTS parts. Use of COTS

parts in research robotics has led to at least two platforms referred to as COTSBots

[Bergbreiter and Pister, 2003; Soule and Heckendorn, 2011]. The first COTSBots

used mote hardware for the communications link and sensing, plus a motor control

add-on board [Bergbreiter and Pister, 2003]. The mobility platform is a modified

toy, in particular, a specific brand of high-quality micro radio controlled car. At

the time of this writing, the car used in COTSBots is moderately expensive for

a toy car, costing a little over $100 per unit. COTSBots use TinyOS, a modular

and event-driven framework for developing software for low-power wireless devices

[Levis, Madden, Polastre, Szewczyk, Whitehouse, Woo, Gay, Hill, Welsh, Brewer,

et al., 2005].

Room-sized Swarms

One potential problem with extremely small swarms is that while the robots may

scale down, the obstacles they have to traverse do not scale with them. This sort

of vulnerability prevents the smaller, tabletop swarm robots from operating well

15

in human-scaled environments. In order to overcome this problem, larger swarm

robots can be constructed.

The MarXbot swarm platform is capable of operating in unstructured

human environments. It measures 17cm across by 29cm tall, and uses a combination

of tracks and wheels for mobility. MarXBots can also use their grippers to link

themselves together and perform operations that an individual robot could not

perform, such as bridging a gap larger than a single robot [Bonani, Longchamp,

Magnenat, Rétornaz, Burnier, Roulet, Vaussard, Bleuler, and Mondada, 2010]. The

size and complexity of the MarXbots, as well as their powerful computer, likely

rendered the individual robots quite expensive, but their price does not appear in

the literature.

Swarmanoid extends the interlinking mechanism of MarXbot to a hetero-

geneous swarm with three different types of robots [Dorigo, Floreano, Gambardella,

Mondada, Nolfi, Baaboura, Birattari, Bonani, Brambilla, Brutschy, et al., 2013].

The “foot” robots are MarXbots, and provide ground motion for “hand” robots.

“Hand” robots have grippers to manipulate objects, and can also climb. The “hand”

robots have an attachment point like the MarXbots, and so can be carried by “foot”

robots. Flying “eye” robots provide overviews of the work area and networking.

In order to reduce costs, another platform called COTSBots was developed

[Soule and Heckendorn, 2011]. Instead of sensor motes on micro-scale RC cars, the

newer COTSBots platform is composed of a laptop for processing and a modified

RC car, tank, or similar toy as a mobility platform. In order to interface between

the laptop and motor drivers, a second micro-controller board, such as an Arduino

or Phidget interface, may be used. Due to the diversity of possible combinations

of hardware that can be assembled into this configuration, it is still a very viable

platform. However, the minimum size of this style of COTSBot is the size of a

16

laptop, which is in turn dictated largely by the minimum size of a useful keyboard.

The large size of these COTSBots demands a very large space if the density of

robots in a large swarm is to be kept low. Additionally, each laptop has a screen,

keyboard, and so forth that are not useful while the robot is operating. All of these

parts add to the overall cost of the swarm.

Pheeno is an inexpensive robot of approximately the same scale as the

MarxBots [Wilson, Gameros, Sheely, Lin, Dover, Gevorkyan, Haberland, Bertozzi,

and Berman, 2016]. It has an optional gripper module, and uses a Raspberry

Pi miniature computer for its main processing power. The developers of Pheeno

provide a comparison with other robots in the same size range, which cost from $150

for the Parallax Scribbler 2 to over $3,000 for the much more sensor-rich Khephra

IV. Pheeno itself costs $270 in parts, with a $80 optional gripper.

Beyond the scale of rooms, swarm research has been done with Amigobots

and Roombas, as well as larger custom platforms for outdoor multi-robot work [Guo,

Hohil, and Desai, 2007; Tammet, Vain, Puusepp, Reilent, and Kuusik, 2008; Olson,

Strom, Goeddel, Morton, Ranganathan, and Richardson, 2013]. In theory, swarm

research could be performed using robots of any size, but financial limitations would

place it out of the reach of most academic organizations.

Swarm User Interface Designs

The user interface to a swarm has two functions. The first is to allow the user to

provide input to the swarm, so that the user can direct the swarm to perform tasks.

For the purposes of this research, the user interface is a multitouch surface that

displays representations of the area the swarm is in and of the individual swarm

robots. The second function of a swarm user interface is to display information

17

about the swarm, or to display information gathered by the swarm to the user. By

providing an overview of the activities of the swarm, the user interface can give the

user feedback on the progress of the task as it proceeds, as well as allowing the user

to detect problems.

Multitouch interfaces have been determined to improve on “window, icon,

mouse, pointer” (WIMP) or voice interfaces for multi-robot control in a sequence

of command and control tasks, including commanding the swarm to a location,

performing reconnaissance, and having the swarm cross a dangerous area [Hayes,

Hooten, and Adams, 2010]. The interface displayed the locations of the robots on a

directly manipulatable map, and used movable or semi-transparent user interface

widgets, in order to minimize occlusion of the map. Areas were selected with

drawing gestures, and paths with fluid strokes, rather than, for example, selection of

vertices bounding an area. The use of multi-touch interaction is desirable because

one-at-a-time selection does not scale beyond a very limited number of robots. In

order to interact with large groups of robots, the user must be able to perform

operations on areas and groupings, rather than on the single point available with a

traditional pointer-based interface.

Because of the limitations on individual sensing, especially in the case

of a robot with poor localization, providing a third-person user interface rather

than a first-person one is better for control of swarm robots [Kapellmann-Zafra,

Salomons, Kolling, and Groß, 2016]. Kapellmann-Zafra et al. provided a user

interface that allowed users to control swarms through the influence of teleoperated

leaders. Because teleoperation places the user in the point of view of the individual

robot being operated (as with many combat UAV interfaces), the user had some

difficulty acquiring an idea of the overall disposition of the robots. Once the user

was provided with a third-person, “eye in the sky” view, their performance increased.

18

Users with global information were able to aggregate 90% of the robots, as opposed

to approximately 50% in situations without global information.

One approach to getting feedback from a swarm was the development

of the Swarmish sound and light system [McLurkin, Smith, Frankel, Sotkowitz,

Blau, and Schmidt, 2006]. Swarmish provides an ambient means of determining

the overall state of the swarm, as well as some information about individual robots.

The swarm that used Swarmish had autonomous charging, and so the individual

robots had long runtimes, and minimal one-on-one interaction with humans. The

“ambient” aspect of the interaction is that the information is continuously available,

and the human user “tunes in” to it when needed. Swarmish uses a set of colored

lights and sounds, produced by each robot, to provide feedback. The lights were

in three colors, and had a total of 108 different combinations of colors and blink

sequences, as a visual indicator of the state of each robot. In addition to the lights,

each robot could produce MIDI notes over its audio system. Each note could vary

in instrument, pitch, duration, and volume, as well as having tempos and rhythms

as the code executes. The designers of Swarmish indicate that the sum of the audio

output of the swarm could provide a overall idea of the status of the swarm, but

that as a musical instrument, it is difficult to play well. Further, the use of lights

as signaling mechanisms assumes that the user or operator can see the robots.

If we accept the assumption that the robots are visible to the user, the

robots can carry some form of display that provides local information to the user.

This information can then be displayed as an overlay in the real world, with the

display of the information conterminous with its presence [Daily, Cho, Martin, and

Payton, 2003]. For example, if each robot has a gas sensor, and a light that it can

illuminate in response to detected gas, then the user can look at the swarm, and see

which areas of the swarm are detecting gas. Local display of local information works

19

if the user is part of a hybrid human-robot team, and so is in the same location

as the users. However, there are many situations where the robot is not in the

same location as the user. A common example is urban search and rescue, where

buildings may be known to be unsafe, or of unknown stability, but it is desirable to

search them for trapped people. In such a situation, the human user would rather

be located elsewhere, and receive information from the robots.

For situations where the user is not located in the same area as the

robots, one possible approach is a “call center”, where robots can request human

attention when required [Chen, Barnes, and Harper-Sciarini, 2011]. The human in

the call center, however, is faced with having to answer potentially multiple calls

with no awareness of the robot’s situation. The theoretical basis for call center UI

is Supervisory Control. Supervisory control has the human act as the planner and

monitor of the systems being supervised, but allowing the systems to operate on

their own. Automation is frequently broken down into ten levels of automation,

with level ten being a fully automatic system with no humans involved, and level

one having no automation, such as a bicycle [Parasuraman et al., 2000].

It would be expected that reducing the number of times the human is

required to interact with the robot will permit the user to operate more robots.

With level one automation, the user has to interact constantly, and so could not be

expected to operate more than one robot. By increasing the level of autonomy of

the robot, the time required for the user to operate the robot decreases. Instead

of continuous interaction, the user can specify actions for the robot to undertake,

and then ignore the robot while it performs the actions. It is expected that the

robot’s effectiveness will decline over time since the last user interaction. This time

that the robot operates without interaction before its effectiveness declines to a

fixed minimum is called “neglect time”[Olsen and Goodrich, 2003]. With increasing

20

1. Robot does nothing, human makes all the decisions.
2. Robot presents complete set of possible actions.
3. Robot presents a proper subset of possible courses of action.
4. Robot presents single suggestion.
5. Robot executes single suggestion on human acceptance.
6. Robot allows human to veto actions, acts if not vetoed.
7. Robot performs automatically and then informs the human.
8. Robot informs the human if asked.
9. Robot informs the human if it decides to do so.

10. Robot decides and acts autonomously, no human input.

Figure 2.1: The 10-level model of autonomy from [Parasuraman et al., 2000]

autonomy, neglect time increases.

At the higher levels of the autonomy scale, the robot’s neglect time

far outweighs the time the user is expected to operate it, and so the user could

reasonably be expected to operate other robots during the neglect time.

Increasing neglect time may allow the user to operate more swarm robots,

but it comes at a cost. The longer a user goes without learning about the state of

one of the robots, the less idea they will have of the robot’s situation when they

are called upon to operate that robot. The problem of automation decreasing the

situational awareness (SA) of the user has been described in cockpit automation

for aircraft [Wiener and Curry, 1980], and generalized well to other systems that

combine automation with human control [Kaber and Endsley, 1997]. If the user

takes a long time to relearn the situation, the efficiency of the system will drop.

Worse, the user may make errors because of an incorrect understanding of the

system when they begin operations after a long neglect time [Cummings and Mitche,

2008]. One possible approach to maintain a constant and manageable workload

on the user is adapting the level of automation to the workload. When the load

is low, the user is more directly engaged, but when the load is high, there is more

automated assistance. By varying the level of automation, the workload for the user

21

is kept constant. A constant workload is desirable because the user remains engaged

with the work, and so has an ongoing understanding of the situation as it develops.

The user is not suddenly called into a situation after remaining disengaged for some

time. However, the workload must also be manageable. If the user is overloaded,

their attention will become subject to triage, and they will begin to miss elements

of the task. Adaptation does not have to be based on measured load, but could

instead be based on perceived load or physiological markers in the user.

However, in situations with even moderate numbers of robots, even

relatively high levels of automation may overwhelm the user [Lewis, Polvichai,

Sycara, and Scerri, 2006]. Level five, operation by consent, is a fairly high level

of autonomy, but with a large number of robots checking in, even this level may

generate too many events for the human to deal with. Increasing the autonomy

to level nine, so that the robots are only checking in with the operator when an

exceptional situation occurs, may still overwhelm the operator if enough robots are

active. Increasing the use of automation may also create new difficulties by leaving

operator out of practice, or encouraging mis-placed trust in the automation’s ability

[Lee and See, 2004].

In fact, any kind of multitasking may prove insufficient for large swarms.

Due to their strategic potential, research in human-swarm interface for UAV swarms

is a rapidly developing field [Hocraffer and Nam, 2017]. Potential issues for an

interface can be cognitive limitations of the users, or actual design problems in

the interface. Research in the field attempts to measure the difficulty of using the

interfaces in a number of ways, including cognitive workload, task effectiveness,

effective use of operator time, and situational awareness. Perhaps due to the

expected mission parameters, very few studies are performed using swarms of more

than tens of robots. For teleoperation, the best case is uncrewed aerial vehicles

22

(UAVs), which require relatively little oversight. Uncrewed ground vehicles (UGVs)

require more oversight than UAVs, due to the higher complexity of the ground

environment. Estimates place the limits on the number of robots under control at

12 or 13 for UAVs and 3-9 for UGVs [Wang et al., 2009]. There is some latitude,

at least in UGVs, to increase multitasking by increasing automation, as shown by

the relatively wide range in the interaction limits, but even 9 robots per operator

is nowhere near the scale of kilo-robot swarms [Olsen and Wood, 2004]. Failure

generally takes the form of task effectiveness no longer increasing as more robots

are added. Instead, the amount of time the user spends interacting with the robots

begins to outweigh the neglect time, and so the robots spend increasing amounts of

time waiting for interactions [Cummings and Mitche, 2008].

Ecological interface design (EID) presents a possible guide to the ar-

chitecture of user interfaces for swarm robotics, and has been used in interfaces

with mixed human-robot teams [Vicente and Rasmussen, 1992; Gancet, Motard,

Naghsh, Roast, Arancon, and Marques, 2010]. In EID, a user’s abilities that enable

them to interact with a system is separated into a taxonomy of skills, rules, and

knowledge. The user has skills, which are rote, simple activities that form the basis

of the normal operation of the system. The user also knows a set of rules about the

system. Rules allow the user to handle exceptions or unusual cases that have come

up before. Rules do not require the user to understand the system, just to know

that when certain situations are recognized, certain actions must be performed

in response. Beyond rules and skills, the user also has knowledge of the system.

Knowledge gives the user an understanding of how the system works, which they

can apply to react to situations that the user has not experienced or been told about

before. Events are also broken into three levels: routine, which uses skills; foreseen

exceptions, which use rules; and unforeseen exceptions, which use knowledge. All

23

levels should be supported by the interface, but the user should not be forced to

operate at a higher level than is required. The abstraction of the process maps onto

the hierarchy of ecological design, with the highest level being the function of the

process and the lowest level being how the function is accomplished. At each level,

there are constraints on the process that are used to define the normal operation of

the process. Detection of exceptions requires the display of all constraints, because

an exception is the breaking of constraints, and undisplayed constraints cannot be

assessed to determine if they have been broken.

The user should be able to extract meaning from the information display

quickly. By using the lights in Swarmish, the user can assess the state of individual

robots, but by listening to the overall sound of the swarm, the user can also assess

the behavior of the system as a whole. The state and status lights of an individual

robot is the low level in EID, watching how an individual action of the overall

process is progressing. The “tune” of the entire swarm, produced by the sum of their

MIDI notes, provides the high level overview, where a user can tell if the system

is progressing well or developing problems. As the system changes, the changes

and predictions should be highlighted so that the user understands consequences of

their actions. In Swarmish, sudden changes in the tone or tempo of the swarm tune

indicate transitions in its behavior, without the user having to observe the actions

of the robots closely.

EID is well-positioned to deal with emergent behavior, because the

emergent behavior of the entire system is present at the functional level, but is

composed of actions at the physical level. The control of swarm robots can be viewed

as a hierarchy of increasing abstraction. At the least abstract, base level are the

individual interactions of the swarm robots with each other and their environment,

as dictated by their explicit programs. Above that level is the implicit, emergent

24

behavior of the swarm as a whole. Finally, the most abstract level is the user intent,

as expressed in the interface through their gestures. This hierarchy corresponds well

to the abstraction of process in EID, with discrete physical actions at the lowest

level and the overall results of the process at the highest level. Consequently, the

user is permitted to issue commands in the most abstract domain, and the system

can propagate them “downwards” into the concrete actions of the robots in the

world, while also propagating information from individual robots “upwards” into

the global view.

Automation in EID allows the user to operate primarily with rules and

knowledge, dealing with exceptions [Vicente, 2002]. The interface should allow direct

manipulation of perceptual forms that map directly onto work-domain constraints

and represent all of the information identified by the abstraction hierarchy. In a

swarm context, this means displaying functional information in such a way that

the user can move across the hierarchy from individual swarm robots to high-level

swarm-wide tasks, and interact at all levels to control the swarm. More practically,

this means that the information displayed must be integrated in such a way that the

mapping from one unit of information to another is made apparent in the interface,

rather than offloaded to the user to compute in their head [Yanco, Drury, and Scholtz,

2004]. For example, if a robot can send video and range information, the information

can be projected into a 3D space around the robot, rather than being displayed

in separate UI windows. Such a projection allows the user to easily relate visual

and range information, and relate that information to the ongoing robot control

task, which in turn increases task performance [Ricks, Nielsen, Goodrich, et al.,

2004]. Previous work in multi-touch interfaces directly satisfies these requirements

of EID by providing both an omniscient camera view for direct manipulation of the

high-level, functional actions of the entire swarm, and the ability to move down the

25

hierarchy to control individual swarm members [Micire, Desai, Courtemanche, Tsui,

and Yanco, 2009]. The ability to display information about individual robots along

side or on top of the interface representation of the robot is an important method

of providing feedback to the user [Kato, Sakamoto, Inami, and Igarashi, 2009].

UI Designs

The user interface may be able to drive the re-imagining of the robots as a unified

swarm, and so alter the user’s interaction with the swarm. The base case is to

simply display all the units as individuals, but this may not be useful for the

operator [Coppin and Legras, 2012]. Heuristic evaluation has been performed on

several methods, including an amorphous shape covering the area occupied by the

swarm, an amorphous shape with density shading and motion arrows, the fields of

influence for leaders in the swarm, and the web generated by the flow of information

within the swarm [Manning, Harriott, Hayes, Adams, and Seiffert, 2015]. The

utility of different methods varies with the desired task. Considered as a whole, the

swarm has properties, such as center of gravity or flock thickness, that do not exist

in individual robots. Views of these properties may assist the user, for example

in determining what areas have insufficient robot density for a thorough search

operation.

The information available to the user through the UI also implies the

availability of certain information within the system. The distinction between UI

representations of the swarm that display each robot as an individual robot versus

those that display a cloud or amorphous shape in the area occupied by robots

is the most obvious example. A system that displays the location of each robot

must actually have localization information about each robot. The presence of

this information in turn implies that the localization information can be used to

26

plan the actions of each robot, which in turn affects the structure of the programs

generated for each robot.

For example, if the task assigned to the swarm is to surround a fixed

point, and localization information is available, then each robot can be given a

program that instructs it to move towards a known location, based on its current

known location. Even if the robots cannot determine their location, but the UI and

program generator have it, the robots closest to the point can be assigned programs

that cause them to act as beacons, while all the other robots are assigned programs

to wander until they see a beacon and then move towards it. If, instead, neither the

robots nor the program generator have information on the location of the robots,

then all of the robots can be assigned programs that instruct them to wander until

they detect the target point, and then act as beacons, at which point the overall

behavior of the system returns to the previous example.

In the most extreme case, neither the robots nor the user interface have

any information about the location of the robots. As a consequence, the system

could not display the individual robots situated in relation to each other on some

form of map. This extreme is outside the scope of this work, as it is more suited

to an interface that permits the provisioning of the robots with a description of

the target point. A method for providing such a description through multitouch

gestures is likely to be more tedious than other approaches, e.g. summarizing

desired sensor precepts or including an image of the target area for the robots to

recognize. However, if the user task is expressible in terms of the overhead view of

the area, the user interface could simply allow the user to issue commands that are

situated in that view, such as rallying at a certain point or moving an object that is

visible in overhead view. Without information about the robot positions, the user

would not be able to watch the motion of the robots to see that the commands

27

were being followed.

Multitouch Gesture Discovery

Previous work in multitouch user interface gesture sets can be broadly separated

into two classes: those that attempt to build a general gesture set, and those that

attempt to build a gesture set to be used for a specific task.

General gesture sets would be for operations such as the cut/copy/paste

editing metaphors, which show up in word processing, image editing, and other

productivity applications. These operations act in differing ways, depending on

their context, but are conceptually similar, e.g. paste always inserts information

that was previously cut, but the information type may vary. The operations are

also invoked in the same way across applications and even across operating systems.

Wobbrock, Morris, and Wilson use an interesting technique to elicit

general user-interface gestures from non-technical users [Wobbrock, Morris, and

Wilson, 2009]. The user is shown the effect of a command, and then asked to

perform the gesture that caused that effect. The users were asked to think aloud,

in order to understand their cognition about the system and gestures, in addition

to their behavior. The experiment used 27 commands: move a little, move a

lot, select single, rotate, shrink, delete, enlarge, pan, close, zoom in, zoom out,

select group, open, duplicate, previous, next, insert, maximize, paste, minimize,

cut, accept, reject, access menu, help, task switch, and undo (listed in order of

complexity as ranked by Wobbrock et al.). Many of these commands are related

to window managers, or occur in some form in multiple applications, such as the

cut/copy/paste metaphors.

Task-specific gestures are for operations such as flying through a 3D

rendering of an architectural space, or transposing cells in a spreadsheet. While

28

somewhat intuitive gestures may exist for both operations, the operation is tightly

bound to the task at hand, and the gestures would likely be different.

Yao, Fernando, and Wang develop a set of task-specific gestures for urban

planning from the required functionality of the interface and paper prototyping on

a table [Yao, Fernando, and Wang, 2012]. The gestures were collected by placing a

map on the table, and asking users to perform the gestures they would use to access

the required functions. The resulting interface is modal. Depending on the selected

mode, different gestures are available. The interface also permits the combination

of some gestures, such as panning or rotating the map while zooming in or out at

the same time.

Micire et al. developed a taxonomy of user gestures using a process

similar to Wobbrock et al., but did not show the results of the actions. Rather,

the users were asked to perform tasks, and could use any gesture they chose.

The gestures controlled both the actions of the robots and the behavior of the

interface to control them [Micire et al., 2009]. The interface control gestures are

for actions such as zooming in on the content of the screen or panning around a

map. Individual users chose a variety of gestures to perform the tasks, but for

almost all types of tasks, having two gestures available to perform it would be

sufficient to cover 60% of the users. It was also noted that the gestures that users

use are informed by their previous experience both with traditional mouse-oriented

windowing interfaces and with touch-screen technology. Since smartphones are a

common multitouch interaction device, it would be expected that smartphone users

expectations of multitouch interaction would be informed by their phones. Micire

et al. confirmed this, finding that iPhone owners used significantly more pinch

gestures than participants with no iPhone experience.

The more general gestures sets, such as those from Wobbrock, Morris,

29

and Wilson, could be used in a gestural window manager or operating system

interface. They are not tied to a specific application or working with a specific

type or presentation of data. The gesture sets developed by Micire et al.; Yao,

Fernando, and Wang; or in this work, are all intended to provide a more precise set

of meanings for a single application and task.

Multitouch UI Design Concerns

Multitouch user interfaces do not have an agreed-upon standard for the gestures

used in interaction with them, largely due to the relative novelty of the technology.

Early in the development of multitouch user interfaces, it became apparent that

the window, icon, menu, and pointer (WIMP) interface would not be the best way

to interact with novel interface technologies [Van Dam, 1997]. WIMP interfaces are

tied to a metaphor of a desktop, where a user interacts with 2D spreadsheets and

documents. To extend to information with higher dimensionality, the interfaces

become more complex and less direct. The somewhat prescient model proposed by

van Dam is a multi-modal interface of gestures and natural language, as is found

in modern smartphones. This paper also shows an early example of a two-handed

manipulation of a virtual object in a 3D environment, which presages the direct

interaction style of multitouch user interfaces.

The directness of user interactions can be understood to be the degree to

which the interaction resembles the same interaction with physical objects, such

as flipping pages of a calendar. With a physical calendar, one can turn pages by

sliding a finger over them. Having a slider or buttons to switch months in a virtual

calendar is thus less direct, and with a mulitouch interface, can be replaced by the

same finger motion that would flip a page of a physical calendar.

This sort of emulation of design elements of an object the same when

30

the object is moved to a new material or created by new techniques is called

“skeueomorphism”, and the copied design elements are “skeueomorphs” [Gross,

Bardzell, and Bardzell, 2014]. There are several reasons for skeueomorphs in design

of user interactions. One reason is effectively kitsch. Design elements can be kept,

despite not having a function in the new medium, simply because people find it

entertaining to keep the appearance. The vestigial jug handles on bottles of maple

syrup or the yellow “paper” background of Apple Notes prior to its redesign are

an example of this type of skueomorphism. The jug handles are too small to use

as handles, and the “paper” of Apple notes has no effect on the functioning of the

application.

Another reason to keep a design element, especially in multitouch UIs, is

that the design element may provide hints to the user as to how the object can be

interacted with. For example, in displaying photos, if the photo has a slight border,

and the border appears to curve and “lift” off the screen background slightly, it

will imply that the photo is a mobile object with a small space under it, and so

could have other photos under or on top of it. If the photo is displayed totally flat,

without a border, it will look more like a sticker or part of the background, and

not imply that it can be moved. In neither case is the image actually “above” the

background, but the visual impression to the user provides a clue for interacting

with it. The interface itself can be viewed as a message from the developer to

the end user, which hopefully conveys enough information about the design of the

interface to the end user that they are able to use it [Derboven, De Roeck, and

Verstraete, 2012].

In the study of interactions with tangible interfaces, it has been proposed

that the use of skueomorphic interfaces can also bridge between these two reasons for

their use [Gross et al., 2014]. Rather than simple functionality, or pure amusement,

31

the use of skueomorphic interface designs can convey messages about abstract

qualities of a product to a user. One example given by Gross, Bardzell, and Bardzell

is a digital synthesizer with a user interface that copies the knobs and switches

of physical analog synthesizers. While this is likely not an optimal interface for

controlling the synthesizer, it has connotations of quality, performance, and reference

to more traditional electronic instruments, and so appeals to the user’s idea of

themselves as an artist and a participant in a tradition of artists.

Human/Swarm Interaction

There does not appear to be a consensus on how the user interface for a swarm

should work. Indeed, the term “Swarm UI” is sometimes used to describe the user

interface to a swarm, and sometimes used to describe a user interface which is itself

a swarm [Le Goc et al., 2016; Suzuki, Kato, Gross, and Yeh, 2018].

Swarm interaction is distinct from multi-robot HRI. Multi-robot HRI

interfaces typically allow the user direct control of individual robots, which can be

switched between, but generally do not treat the group as a whole. An example of

a multi-robot HRI study is the assessment by Humphrey et al. of the scalability

of a multiple-robot control interface that uses a “halo” around the view from the

currently-controlled robot to provide awareness of the positions of the other robots

[Humphrey, Henk, Sewell, Williams, and Adams, 2007]. While this interface did

appear to have a positive influence on the number of robots the user could control,

it is not a swarm interface, but an interface for individual control of multiple robots.

Previous work in human-swarm interaction (HSI) shows an interesting

diversity of methods to convey a command to a swarm. One approach, for co-located

swarms, has the user making hand signals to the robots. If the swarm is equipped

with cameras, the hand signs can be recognized visually by members of the swarm

32

[Nagi, Giusti, Nagi, Gambardella, and Di Caro, 2014b; Giusti, Nagi, Gambardella,

Bonardi, and Di Caro, 2012; Nagi, Giusti, Gambardella, and Di Caro, 2014a].

Because the recognition is performed by multiple robots at once, with different

views, the robots can confer among themselves to arrive at a better understanding

of the sign used. Another approach to gesture control of swarms is to have the

human and gesture recognition hardware separate from the swarm [Alonso-Mora,

Lohaus, Leemann, Siegwart, and Beardsley, 2015]. This approach also allows the

software to use the user’s gestures to select part of the swarm by natural methods,

such as pointing at robots.

Another approach is the management of attractive and repulsive forces

in the interface, which are conveyed to the robots. This style of interface maps

reasonably directly to at least three of the programming paradigms used in swarm

robotics. In physicomimetics, the attractors or repellents are points in the field that

act on the robots through the same forces that the robots use in their interaction

with each other. To cause robots to gather in an area, the user could place a source

of virtual gravity there, which would draw robots towards it. In pheromone robotics,

the effect would be much the same, but would be expressed as a pheromone source

that diffused into the space and attracted robots. In vector fields, the vector field

itself would be changed so that all vectors pointed towards the desired location.

One implementation of a human-swarm allows the human operator to describe the

desired density of robots at locations within an operating area [Diaz-Mercado, Lee,

and Egerstedt, 2017]. The use of density, rather than robot count, scales with the

swarm size. The desired configuration of the swarm can be drawn by the user on a

tablet, and then converted to an update control law for the robots. Alternatively,

the user can directly place Gaussian functions in the space and vary their parameters.

The resulting desired densities are smoothed to avoid discontinuities.

33

The use of density over location is similar to a number of interface

methods that function by allowing the user to specify attractors and repulsion

points in the swarm space [Goodrich, Pendleton, Sujit, and Pinto, 2011; Brown,

Kerman, and Goodrich, 2014; Vasile, Pavel, and Buiu, 2011; Kira and Potter,

2009]. Goodrich et al. use an attractor model under two different design metaphors,

physicomimetics and a biomemetic model based on the dynamics of schooling fish, to

solve an abstract information foraging problem [Goodrich et al., 2011]. The human

influence is applied to a swarm system that is capable of solving some aspects of

the problem without supervision, but is improved by the addition of human control.

In keeping with the bio-inspired metaphor, the human can either control a leader,

which the other members of the swarm are attracted to and follow, or a predator,

which repels and can chase other members of the swarm. Leader-based models tend

to lead to more stable, long-running interactions, as the members of the swarm move

to remain near the leader, increasing the duration of the human operator’s influence

on the leader. In contrast, predator models result in high turnover of the swarm

members that the human can influence, as the “prey” elements of the swarm act to

get away from the predator’s influence. This turnover is part of the two invariants

proposed for swarm interaction by Brown et al., which are that the collective state is

the fundemental perception of the swarm, rather than the individual robot, and that

the ability of a person to influence and understand the collective state is determined

by the balance between span and persistence [Brown, Goodrich, Jung, and Kerman,

2015]. Persistence is the duration of each interaction with the swarm, and span is

how many units the user interacts with. In a leader-based control UI, the span and

persistence are both kept high, because the swarm elements are attracted towards

the leader and remain under its influence for longer. In the predatory/repellent

model, the span and persistence are low, because the other swarm elements flee

34

from the user-controlled predatory unit.

Brown, Kerman, and Goodrich demonstrate that a swarm can be con-

trolled to form two different higher-level structures, a flock and a torus, by managing

abstract attractors rather than individual behaviors. Further, the transition between

modes was amenable to human control, so the overall behavior of the swarm could

be configured with a relatively small set of tunable parameters. While the paper

only indicates two possible modes, the torus and flock, these two behaviors are

a relatively good match for the publicized behavior of the Perdix military drone

swarm. Flock is a useful behavior for organized motion to a location, while the torus

mode is good for loitering and overwatch of an area, matching the point-orbit, and

move-to-point functions that are visible in videos of the Perdix UI. However, public

materials on the Perdix system indicate that it uses a playbook interface, where the

user selects from a set of available “plays”, which the swarm then executes, rather

than an explicit management of attractor parameters [Strategic Capabilities Office,

2015].

Parasuraman, Galster, and Miller examined the use of playbook, waypoint,

and combined playbook and waypoint control on robot teams in a capture-the-flag

task [Parasuraman, Galster, Squire, Furukawa, and Miller, 2005]. Playbook control

provides a delegation layer to the interface, where the user does not have to specify

the minutia of how a task is completed. The use of delegation decreases mission

time and increases success, in this case, winning the game of capture-the-flag.

There have been previous studies of the behavior of users in control

of swarms with poor localization and bandwidth constraints [Nunnally, Walker,

Kolling, Chakraborty, Lewis, Sycara, and Goodrich, 2012]. These constraints are

realistic as the motivating examples for swarm robotics, urban search and rescue or

planetary exploration on e.g. Mars, take place in locations where high-speed and

35

high bandwidth networking infrastructure may be absent. The study describes a

task similar to foraging, but under human control, where a 30-robot swarm is used

to find a sequence of targets. The interface is mouse-based, and allows the user to

issue two commands, “head towards the selected point” and “stop”. The robots

had Gaussian error added to their estimated location and orientation, meaning

that the robots could start on a heading that was not exactly towards the selected

point, when the user gave them a point to move towards. However, the robots had

a consensus algorithm that would allow them to match their heading with their

neighbors, which acts to counter the error in their initial headings. There were three

conditions: low swarm-to-swarm bandwidth with low swarm-to-user bandwidth,

high swarm-to-swarm with low swarm to user bandwidth, and high swarm-to-swarm

bandwidth with high swarm-to user bandwidth. The results showed that the medium

bandwidth condition, with high swarm-to-swarm bandwidth but low swarm-to-user

bandwidth was sufficient to complete the task. The users did adapt their behavior

to match the information they had available, issuing more commands closer together

in the medium bandwidth condition to drive the swarm into a smaller region and

increase intra-swarm connectivity. In the low bandwidth condition, the user did

not receive updates about the swarm condition often enough to enable them to

maintain a dense swarm, and as a result, had trouble finding targets. The fact that

the user interface and the user’s intuition about the swarm could drive adoption of

different behaviors supports the use of different rendering schemes for the swarm to

encourage different user control strategies or conceptualizations about the swarm.

Walker et al. explored the condition where a limited amount of informa-

tion was available, but the time it takes for that information to become available

(latency) is another factor in human-swarm interaction [Walker, Nunnally, Lewis,

Kolling, Chakraborty, and Sycara, 2012]. In the study, the latency was either

36

absent, present both between members of the swarm and between the swarm and

the user, and present, but the interface to the user predicted future swarm motion

and displayed it. The task was similar to Walker et al., in that the swarm was used

to search a region for targets in a foraging task. The swarm could be commanded

to move to a heading, stop, or flock under a model similar to boids [Reynolds,

1987]. The latency condition was significantly worse, in terms of targets found,

than the no-latency condition, but the predictive display countered the latency

sufficiently that the predictive and no-latency conditions were not significantly

different. Interestingly, latency also drove the appearance of what the authors refer

to as “neglect benevolence”, where the user not interacting with the system was

not only tolerated, but actually helped improve the behavior of the system. Under

latency, the user would issue a command, and then wait out the latency period

to see how the system responded. The resulting delay allowed operations such as

flocking to converge and stabilize, thus increasing the swarm connectivity beyond

what was attained in the no-latency condition.

The previously discussed work on attractor management and control

under latency and bandwidth restriction is concerned with UI design for swarm

robots from the point of view of controllability and influence, which is to say

whether or not the user can maintain desirable aspects of the swarm under the

given conditions. It is not largely concerned with whether the interface itself, as

presented in the experiment, is the best way for the user to attempt to control

the swarm. Instead, the interface is taken as a fixed point, and the experimental

condition is variation in the quality of the link between the user interface and the

swarm.

Kolling et al. compared two forms of influence-oriented UI, selection and

beacon based control, with a variable number of robots [Kolling, Sycara, Nunnally,

37

and Lewis, 2013]. Selection control requires that the user select a group and then

influence the selected group, or put the group into a specific autonomous behavior

mode. This is arguably a form of playbook control, where some robots are selected

and then given a play to execute. Beacon control has the user place beacons that

attract the robots with a range, which is form of leader or attractor-based control.

The paper also refers to these control methods as “intermittent,” for selection, and

“environmental,” for beacons. The intermittent method is called that because the

user issues infrequent commands, rather than continuously operating the group.

This is in opposition to a persistent control method, where the user might directly

operate some of the robots with a joystick or other constant control input, as in

some predator/leader systems. The beacons are environmental, because rather than

interacting with the robots, the user interacts with the beacons and their locations

in the environment. Selection control outperformed beacon control, especially as the

number of robots in the swarm increased. The authors indicate that as the swarm

size increased, the per-robot precision of beacon control decreased, while selection

control remained constant, allowing the user to exert a more precise influence

over the swarm. This indicates that the selection and operation control scheme

used in this thesis is a better method for controlling large swarms than beacon

or attractor based schemes. However, humans were solidly outperformed by fully

autonomous benchmarks developed to more optimally perform the foraging task in

the experiment, which indicates that human control is more useful in conditions

where the humans may have access to information that the robots do not have

access to. Otherwise, human control may present a bottleneck, rather than an

advantage.

38

The Interfaceless Interface

Some swarm robots are designed to be used with no control interface at all. By

altering the shape of simple stick-slip locomotion toys with laser-cut foam “hats”

that change their outer perimeter, and changing the outline of the laser-cut foam

forms they interact with, the random motion of the toys can create stable structures

[Andreen, Jenning, Napp, and Petersen, 2016]). The development of the shapes

relies on human interaction, but specifying the shapes of the hats and interactive

components seems amenable to solution with genetic algorithms. Because the toys

used in this work were about $4-8, and everything else was composed of laser-cut

foam, the platform is extremely inexpensive, but the tasks it can solve are seemingly

limited to self-assembly.

The Guardians project studied the deployment of sensor-equipped robots

to support firefighters by providing mapping and sensor information that would not

normally be available to the firefighter [Gancet et al., 2010]. Rather than having

the firefighter control the robots, the robots would deploy with the firefighters and

swarm with them, attempting to maintain network connectivity and proximity to

the firefighter. The robots provide a stream of information via a heads-up display

(HUD) constructed of LEDs on the firefighter’s visor, to which the firefighter may

or may not choose to react. Instead of having to control the swarm, the firefighter

acts as they feel is best, using both their own information and that from the swarm

of robots that surrounds them and extends the firefighter’s senses [Penders, Alboul,

Witkowski, Naghsh, Saez-Pons, Herbrechtsmeier, and El-Habbal, 2011].

39

Figure 2.2: Typical top-down RTS view from the game Nuclear Dawn, by Interwave
Studios. The view is of a courtyard and buildings, showing units (highlighted in
red), a picture-in-picture map of the larger area (grey box in lower left corner), and
game controls (yellow boxes in lower right corner) [InterWave Studios, 2013].

Video Game UI Design

There is a general resemblence between many of the overhead-view interfaces for

swarm robot control and the interfaces used in video games for control of multiple

units, especially in the genres of Real Time Strategy (RTS) games, turn-based

strategy games, and Multiplayer Online Battle Arena (MOBA) games. Interestingly,

most multi-unit video games UIs operate using a selection, rather than beacon,

interfaces, according to the classification of interaction methods by Kolling et al.

The influence of user interaction affordances in games with overhead views and

control of multiple units may be a rich area of study for researchers in human-robot

interaction, and especially human-swarm interaction.

Real time strategy games generally have the player playing against mul-

tiple other players, some or all of which may be controlled by the computer. The

40

goal of the game is typically to acquire some form of resources, which are used to

develop military units or units that accelerate the acquisition of further resources.

The military units are then used to attack the other players, with the goal of the

game being to be the only remaining player. Turn-based strategy games are similar

to RTS games, but instead of all players acting simultaneously and asynchronously,

each player’s actions are taken on their turn.

MOBA games have a smaller focus and more rapid play than RTS or

turn-based strategy games. Typically, there are multiple players, but each player is

on one of two sides battling over some set of objectives on the world map. Rather

than controlling multiple units, each player controls a single, powerful unit, and may

be able to influence weaker, semi-autonomous computer-controlled units. There may

be resources as in RTS games, but typically they are far more limited in number,

as the emphasis of the gameplay is on action rather than resource extraction.

MOBA games, RTS games, and turn-based strategy games all have a

similar user interface. The “world” or area of play is depicted as a map, typically

viewed either top-down or an axonometric perspective. The map is where the

main action of the game takes place, and displays the relative position of the

characters and other elements of the game. Around the map are typically displays

and interactive elements such as menus or buttons to interact with the game.

The control of units in the game is done using the mouse to select units

and send commands via mouse clicks, while one hand operates keys, usually on

the left side of the keyboard, for other functions. The use of the left side of the

keyboard is to leave the right hand free to remain on the mouse, but these controls

can be customized for left-handed players. How the keyboard is mapped depends on

the pace of gameplay. For extremely rapid games, such as Defense of The Ancients

(DoTA, a MOBA), there are a small number of key commands that can all be

41

operated without removing the fingers of the left hand from the keyboard. DoTA

in particular uses mouse clicking, combined with the control, shift, and alt keys in

various combinations, to perform all of the actions of gameplay [Gamepedia, 2018].

Age of Empires is a RTS. It is less fast-paced than DoTA, but still

takes place in realtime. Most of the keys of the keyboard are mapped to various

commands, such as locating and selecting different types of units or buildings, or

commanding those units and buildings. Commands to buildings typically cause the

construction of various units, while consuming resources. For example, pressing ‘D’

would find a Dock, and then pressing ‘A’ would command the Dock to start work

on a Fishing boat [Age of Empires Wiki, 2018]

Europa Universalis 4 uses the entire top row of letters on the keyboard to

switch between different map modes, and every other key to activate some feature

of the game, as well as mouse controls for interactions with individual units and

locations [Europa Universalis IV Wiki, 2017]. Europa Universalis gameplay does

not take place in realtime, and the player may speed or slow the game clock, as

well as pausing the game.

Another common feature of MOBA, RTS, and turn-based strategy games

is the “fog of war.” The entire map is normally hidden from the player until they

command their units to enter an area, whereupon the area is revealed. In gameplay,

the intent of fog of war is to prevent players from knowing about the opposing

player’s location without sending sorties. This lack of information is almost identical

to that experienced by a teleoperator of a robot exploring an area with a SLAM

algorithm, with the map being revealed to the operator as the robot moves into the

area.

42

Intel Drone Swarm Interface

Intel has fielded drone fleets of up to 1,200 Shooting Star UAVs [Intel Corp., 2018a].

While the control system for the drones is proprietary, some information about the

user interface can be gleaned from the promotional videos for the controller. The

user interface for the creation of the light show appears to be very similar to those

used in 3D rendering of computer graphics, including a timeline across the bottom

of the screen, a preview in the center, and toolbars along the top and sides for

interaction with the show. Visible tabs on the interface include “Curves/Surfaces”,

“Poly Modeling”, “Sculpting”, “Rigging”, “Animation”, “FX”, “FX Caching”, and

“HEALTH”. These different tabs are likely different ways to configure the shape

of the formation in 3D (Curves, Poly Modeling, and Sculpting), animating the

resulting formation (Rigging, Animation, and FX), and determining the state of

the swarm as a whole (HEALTH).

A screen that is likely part of the health interface is shown in one video

[Intel Corp., 2018b]. The screen has a grid of circles, colored various intensities

of green, yellow, and red, as well as one shade of gray. The intensity may convey

a different quality about the drone than the color, allowing at least two different

dimensions of data per circle. As all the circles are displayed in a grid, an overview

of the swarm health can be obtained by glancing at the display and assessing the

relative balance of green vs. red.

The user interface can import some form of data about the landscape

where the drones will be launched, so the show can be positioned relative to hills

or other obstacles in the area. The interface also supports at least some level of

touch interaction, as users are shown pressing UI element buttons and rotating 3D

renderings in the promotional videos.

43

The interface for the drone light shows allows single users to fly hundreds

to over a thousand drones, but it appears to be designed to create the show in

advance, and execute it under central control. Overall, the interface seems to borrow

from both interface design for 3D CAD, with animation elements and somewhat

natural affordances for rotating and viewing 3D objects, and EID guidelines for

presenting both high-level environmental information at the swarm scale, and

individual unit health at the single drone scale. The readability of the health

monitoring at a glance, by assessing the amount of green and red units is similar to

the ambient monitoring available in Swarmish.

Swarm Software Development Methods

Because the conversion of the specification of desired behavior for the swarm into

individual programs for the swarm member robots is still an open question, it is

necessary to understand the current methods used in the development of programs

for swarm robots. Much of swarm robotic development follows the usual model of

software development. Starting from a desired functionality, the developer writes a

program that they think will provide that functionality. The program is then tested,

in simulation or on real robots, and its behavior is observed. The programmer then

modifies their program to account for any observed difference between the desired

function and the system’s behavior. This loop of coding, testing, and coding again

is repeated until the system behaves as expected, or the programmer graduates

[Cham, 2010].

Because the normal software development model is time-consuming, and

outside of the abilities of many people who might want to use swarm robots, it

is desirable to automate the development of software controllers for robots. One

44

approach to the conversion of the command language to programs for the robots

is to define a transformation from the command language to executable code.

The transformation operation can be codified as a sort of “compiler,” or more

accurately, a code generator that creates programs for the robots. The possibility of

coding for the swarm as an entire system, rather than writing each robot’s program

independently, has given rise to several programming paradigms and domain-specific

languages for robotic swarms.

Another possibility is the composition of preexisting behaviors that each

satisfy part of the user’s desired behavior. Given some library of primitives, the user

could select a sequence of behaviors, or conditions for the execution of behaviors,

to build a complete program. Pheromone robotics provides one possible method of

controlling this composition dynamically.

Still another approach is to allow the user to specify a desired behavior

and evolving controllers to match it. It would be hoped that evolving the controllers

would reduce the complexity of the development task to the definition of a suitable

means of determining the fitness of the resulting program. Unfortunately, even this

reduction does not permit an escape from iterative development.

Amorphous Computing

Amorphous computing (AC), also called spatial computing, is computation using

locally-linked and interacting, asynchronous, unreliable computing elements dis-

persed on a surface or throughout a volume [Abelson, Allen, Coore, Hanson, Homsy,

Knight Jr, Nagpal, Rauch, Sussman, and Weiss, 2000]. The motivation for AC is

that while it may be possible to produce arbitrary quantities of “smart dust,” it is

not possible to ensure that it all works well and is precisely located, especially in

real-world applications. The goal of AC is to get useful work out of such materials,

45

despite uncertainty as to their reliability and location. Smart dusts are also the

limit case, in terms of scale, for swarm robotics. Indeed, most of the volume of

existing swarm robots is motors and batteries, with the computational components

taking far less space. Unfortunately, the technology behind smart dust still does

not exist, but programming methods for it have some applicability to larger swarm

robots [Correll, Dutta, Han, and Pister, 2017].

There are several languages intended to program amorphous computers.

“Proto” is a language for a continuous plane spatial computer that maps from

behavior of regions at the global level to programs for discrete points at the level of

individual devices [Beal and Bachrach, 2006]. Because devices have a size in the real

world, and space between them, the devices cannot not have a one-to-one mapping

with the space, but instead perform an approximation of the desired behavior.

Proto also has considerable appeal as a programming language for swarm control

development because of the layering in its structure. If user interface interactions

can be interpreted as indications of desired behaviors displayed over spatial regions,

then conversion of those behaviors into programs in Proto may be amenable to

automation. Proto’s layered structure also has a clear relationship to the hierarchical

structure of EID, with the programming language serving as a user interface at the

highest abstraction level of the interface design, but providing a smooth transition

to the lower abstraction levels.

Growing Point Language (GPL) allows the specification of topological pat-

terns in an amorphous computer, and so can also be used to specify the distribution

of swarm robots, or behaviors of the swarm robots, in a space [Nagpal and Mamei,

2004]. GPL is inspired by the morphogenic controls present in biological organisms,

which use gradients of chemicals called morphogens to dictate the development

of cells [Turing, 1952]. The name GPL arises from one of the language’s main

46

abstractions, the growing point. The growing point is the location of activity within

the amorphous medium, at which local agents are changing their state. Growing

points move through the medium, affecting the state of the computational points

they pass, and emitting pheromones into the medium which control the motion of

growing points.

Importantly, GPL does not make any prior assumptions on the location

of the particles in the system, or robots in the swarm, aside from that they are

sufficiently dense in the medium. For swarm robotics, this is an important quality,

as precise localization may not be available. Initially, all agents have the same state

and program, with a few exceptions that serve as seeds for the growth to begin. If the

pattern is not required to be fixed at a particular location, even the seeds could be

undetermined initially, and elect themselves via a method such as lateral inhibition.

During the execution of the GPL program, each agent chooses its state based on

the presence of pheromones, which are morphogens with limited range. Range

limitation on morphogens propagating between robots is set using a TTL (Time

To Live) counter that propagates with the morphogen, and is decremented with

each hop in the communication network. When the TTL hits zero, the morphogen

message is no longer propagated. By controlling the production or propagation of

morphogens within the amorphous medium, complex patterns can be developed.

Pheromone Approaches

Pheromone robotics is a metaphor used in developing control software for swarm

robots. Some social animals, especially insects, use chemical signals called pheromones

to communicate with each other. For example, wasps inside their nest react to the

scent of wasp venom by travelling to the outer surface of the nest and attacking

nearby moving targets [Jeanne, 1981]. Ants leave trails of pheromones for other

47

ants to follow to food sources. Each individual ant’s contribution to the trail can

be modulated by the quality of the food source, which allows the reaction of the

other ants to the trail to cause an emergent distribution of the foraging work force

that favors higher-quality food sources [Sumpter and Beekman, 2003]. Because

pheromones are chemicals with spatial locations, it would be possible to combine the

use of pheromones with reaction diffusion equations to structure activity within a

space or to converge to patterns of activity over time [Turing, 1952]. Assuming even

diffusion of the robots in space, the global map of the pheromone concentrations can

be represented over the network by the locally-computed concentrations computed

by each robot.

In pheromone robotics, the pheromones are usually simulated or “virtual”

pheromones, rather than real chemicals that are detected by chemical sensors

(for an exception, see [Hayes, Martinoli, and Goodman, 2001]). Each pheromone

can have properties such as diffusion and evaporation rates that result in the

pheromone spreading in space or gradually disappearing. For example, a robot may

emit a pheromone that diffuses into the environment and evaporates quickly, so

distance from the robot can be determined by the strength of the pheromone, and

approaching or avoiding the robot may be accomplished by moving up or down the

gradient of pheromone strength. If the swarm is engaged in a search, each searching

robot may emit a “search marker” pheromone that lingers in the area after the

robot leaves. Other robots, on entering the area, would detect the pheromone

and know that searching this area again would be fruitless. If the object of the

search can move, the marker pheromone could diminish as a function of time, so

areas that have not been searched for a long time become unmarked and may be

searched again. Once the target is found, the robot may stop and emit a “discovery

pheromone”, which diffuses into the environment, attracts other robots, and causes

48

them to also emit a discovery pheromone. As a result, once any robot discovers the

target, all of the robots quickly converge on its location.

The addition of directional communication for the messages that con-

vey virtual pheromone information allows easy determination of the direction of

pheromone gradients [Payton, Daily, Hoff, Howard, and Lee, 2001]. Rather than

directly diffusing in the space as a chemical would, hop counts in the network of

robots simulate diffusion. Because routes may be of different length, the message

with the lowest hop count is assumed to be the truest indication of minimal dis-

tance within the network. Rather than modelling the world based on the incoming

messages, the content of the pheromone messages and the network behavior as a

whole serves as a model of the world, mapped 1:1 onto the real environment. While

it is possible to build a set of behavioral primitives out of pheromone signaling and

associated behaviors, controlling the swarm to perform a task with these primitives

is still done by hand [Payton, Estkowski, and Howard, 2003].

In all of these examples, the sensing of the pheromones is assumed to be

local to the robot, at least metaphorically. To actually maintain pheromones in

the environment without robots being present to transmit them requires, again, a

global representation of the task space that the robots can refer to when needed.

However, if some degradation in performance is acceptable, the robots can maintain

a shared tuple space that lists information such as pheromone gradients and share

it through local connections [Pinciroli, Lee-Brown, and Beltrame, 2016].

Use of pheromones to guide swarm robots for simulated search and patrol

tasks has been demonstrated, with the assumption that there is a central controller

maintaining the concentration of pheromones on the map, and informing the swarm

members [Coppin and Legras, 2012]. In a real implementation, some robots could

remain stationary and only act as transponders, computing and transmitting the

49

local pheromone information for a given area [Hoff, Sagoff, Wood, and Nagpal,

2010]. Another possible approach to enable pheromones in space is to operate the

robots in an area that is illuminated by a projector. The projector can then color

the area with light that the robots can sense, and modulate the intensity of the

light to indicate the intensity of the pheromone [Arvin, Krajńık, Turgut, and Yue,

2015a; Diaz-Mercado et al., 2017]. However, even if the robots are limited to only

the pheromones they can directly perceive and emit at the present instant, some

emergent behaviors are still possible.

It has been demonstrated that a swarm can perform construction tasks

using only local sensing and no communication [Wawerla, Sukhatme, and Mataric,

2002; Bowyer, 2000]. However, the addition of communication between systems

and memory of the state of the world will improve the efficiency of the system.

Pheromone approaches can guide the construction of objects, even if the individual

swarm members have no memory and only local perception [Mason, 2003]. The

agents engaged in the construction move at random, and take actions governed

by their individual perception of environment at present time. The agents can

release and react to pheromones in the environment, and so there is an implicit

communication via stigmurgy, but no explicit agent-to-agent communication. The

set of rules that govern the mapping of sensor precepts to actions must be such

that no point in the construction of the building can be mistaken for another, as

that could result in loops or skipping parts of the building sequence. The TERMES

project created a compiler that translates desired final structures into rules to guide

the construction of those structures by cooperating agents [Werfel, Petersen, and

Nagpal, 2014].

50

Vector Fields

Both global vector fields and the global and local blending of vector fields in co-

fields can be viewed as subsets of pheromone robotics that use a global spatial

representation. The vector field represents the space the robots are operating in as a

continuous vector field with the magnitude and direction of the vector at each point

in the field controlled by some system of equations. By altering the specification

of the field, the user can change the actions of the robots within that field. One

approach to a control UI for a remotely-located swarm is a multi-touch interface

for specifying a vector field [Kato et al., 2009]. Because the user interface design

focuses on the vector field rather than individual robots, the same control interface

can scale to an arbitrarily large collection of robots. Vector field paths can have

loops, which do not exist in waypoint-based paths. Waypoint paths have explicit

ends, unless an additional command is added to join beginning and ending points.

Vector field paths have substantial limitations. Because the vectors are

bound to a 2-D plane, the paths they create cannot cross each other. Instead, they

flow together. A 2-D vector field is also not a useful metaphor for controlling UAVs.

The vector field could be possibly extended into three dimensions, to control UAVs

as well as ground vehicles, but there would have to be some form of discontinuity

in the field to prevent assignment of UAVs to ground vehicle paths and vice versa.

The vector field can be viewed as an abstraction of pheromone control, or even

implemented in terms of the presence or absence of virtual pheromones, but it

has some limitations that pure pheromone control does not have. For instance,

pheromones permit the presence of multiple pheromones at one point, with multiple

meanings, but the vector field has one value for each point. Attempting to solve

this problem by proposing multiple fields raises the question of how to combine the

51

influences of each field, and if a universal combination function applies at all points

in the field, it raises the question of why they were not combined in a single field

under that combination equation.

The vector field is also not very intuitive to users. Kato et al. indicates

that in order to use the vector field well, the users had to anticipate and project

the future motions of the robots. Interface changes, such as showing particles on

the vector field, could improve usability, but these approaches would have the same

scaling problems that the robot representation does. When the view is zoomed out

very far, individual whirls and eddies in the field may not be visible to the user.

Using a vector field for the interface does not directly map to programs

on the robots. Instead, the vector field describes how a robot located at a specific

point should move. The central computer maintains the vector field representation

and commands the individual robots. Because the vector field describes motions,

rather than tasks, conversion from a task-based user command to a vector field,

the task would have to be converted into a series of changes to the field at specific

locations. Since the robots may not have accurate localization within the task space,

it may not be possible to guide the robots by relating their position to a global

vector field.

The use of co-fields may provide a way to move the vector field repre-

sentation from the central computer to the swarm, or allow the swarm to act for

some time without constant updates from a central controller [Mamei, Zambonelli,

and Leonardi, 2003]. Co-fields distribute the data within a space, which may be

physical or may be abstract. Agents react to gradients in field, and spread their

own fields over local communication networks. The overall vector space created

by the user (the UI vector space) could be propagated to the robots periodically,

and combined with their own internal vector fields to generate movement based on

52

both the user’s desires and the local rules operating on each robot. As with general

vector fields, knowing which areas of the UI vector space are relevant to each robot

may require global localization, and so only be available for swarms operating in

conditions that permit global localization.

Compositional Approaches

Rather than developing a novel control program for each robot automatically, it

may be possible to compose programs from behavioral primitives, such that some

combination of the primitives results in the emergence of the desired behavior. A

compositional approach to program generation requires the definition of primitives

out of which programs can be composed, and some degree of assurance that these

primitives can cover the space of possible tasks required from the robot. One possible

list of primitives is disperse (no other nodes within distance d), general disperse (no

more than n nodes within distance d), clump/cluster, attract to location, swarm in

a direction, and scan area [Evans, 2000]. Another proposed catalog of behaviors for

swarm control bases the simple behaviors on pheromones or chemical sensing in

single cells [Nagpal, 2004]. The proposed behaviors are the use of gradient sensing

for position and direction information, local inhibition and competition, lateral

inhibition for spatial information, local monitoring, quorum sensing for timing and

counting, checkpoint and consensus sensing, and random exploration. While these

behaviors are themselves expressed in terms of pheromones, the composition of the

primitives into complete programs is not dictated by a pheromone-based system.

Furthermore, compositional approaches have been proposed in control-theoretic

terms as well as pheromone-based terms, so the process of composition of primitives

can be viewed as a metastrategy for the creation of programs, rather than a process

specific to pheromone robotics [Belta, Bicchi, Egerstedt, Frazzoli, Klavins, and

53

Pappas, 2007].

Another compositional method for programming robots proposes that the

behaviors can be separated into classes, such as motion, orientation, and so forth

[McLurkin, 2004]. Among these behaviors are “primitives” such as several forms

of clustering, which other, later works have treated as an emergent behavior itself,

arising from more atomic primitives. The variable granularity of the primitives

available to compose swarm control programs seems to point to a hierarchy of

control elements, with perhaps single motor operations at the bottom, and an

increasing composition of elements to create more and more complex behaviors.

Swarm control programs would then call multiple primitive behaviors, providing

them with parameters such as degrees of bearing and centimeters of proximity. The

behaviors ideally run concurrently, and some of them respond to sensor inputs.

The output of behaviors is whether they are running, translational and rotational

velocity for the robot, and LED configuration. Because multiple behaviors might

specify differing outputs, subsumption and summation are used to arbitrate between

behaviors of differing priorities.

These emergent approaches do not have the robots perform all of their

available actions all of the time. Instead, it is assumed that the behavior of each

robot is controlled by its reaction to the environment around it, and possibly to

signals from other robots, so that actions are only performed when they are required.

As a result, user programs compiled from a higher-level representation could be

a table consisting of possible values for the sensors, and the actions to undertake

when those values are met. Guarded Command Programming with Rates (GCPR)

provides a formal framework for the analysis of this type of compositional program

[Napp and Klavins, 2011]. Robots are assumed to only have local sensing. The

guards of GCPR are conditions on the environment. When a condition is met, the

54

robot performs actions at a given rate. In the concurrent case, this is modeled as

each action happening one at a time, but in random order. On a real swarm, the

actions would take place in parallel, but the concurrent model is more amenable

to analysis. To determine if a set of actions will be successful, it is required to

ensure that for all orderings of all actions, the final state space of the swarm is the

desired final state. Correct programs are those that reach the target state with

probability 1.0, even when composed with bounded failures. Once the target state

is reached, the program is assumed to halt, so while the final state may be reached

very slowly, once it is reached, it is not left. In the GCPR models, the time to

execution of an action is stochastic, but in the real-world case of noisy or imperfect

sensors, the variable time to execution of a guarded behavior would be caused by

the imperfection of the robot’s ability to detect that the guard was satisfied.

Evolutionary Composition

Determining how the behaviors should be composed for an individual swarm robot’s

controller is difficult. Unfortunately, much of the process of composing programs

for swarm robots consists of iterating between composing sets of primitives and

observing the behavior of the system in an ad hoc process, just as with the creation

of control programs by coding [Palmer et al., 2005b]. Rather than removing

iterative software design from the process, it has simply been moved up one layer of

abstraction, from writing code for the robots to composing that code from behavior

primitives.

One possibility is to permit composition to behave like the programming

environment Tierra [Ray, 1991]. In Tierra, there is no such thing as an invalid

program. All sequences of the existent symbols are regarded as executable programs,

although some are more useful than others. The possibility that programs can be

55

ranked by some function creates the possibility that genetic algorithms (GA) can

direct the automated composition of behavioral primitives into programs [Palmer,

Kirschenbaum, and Seiter, 2005a]. A GA expresses the robot program as a genome,

which is translated into the actual program and run on the robot. The result of

running each program is assessed using a fitness function and then the genomes

for the best programs are combined to produce a new generation of genomes. This

cycle of combining and assessing genomes continues until a certain level of quality

is reached, as judged by the fitness function.

Unfortunately, given the time required to iterate over multiple generations

of controllers, genetic approaches are unlikely to be fast enough for interactive

control of robots by a human user. However, it is still useful to examine the

possibility of developing a fitness function as a way of investigating methods for

automatically assessing the behavior of a swarm. Without some way of determining

the “goodness” of a swarm’s behavior, it is difficult to say that one algorithm or

design paradigm is better or worse than another.

In order to determine the quality of the behavior of the swarm, its

behavior must be measured. Harriott et al. propose that metrics for measuring the

interaction of humans and swarms differs significantly from the interaction of humans

and individual robots, and can be broken down into nine classes, summarized below

[Harriott, Seiffert, Hayes, and Adams, 2014].

1. Human attributes - Interaction, trust, intervention frequency

2. Task performance - Ability to accomplish task, speed, accuracy, cost

3. Timing - Command diffusion lag, behavior convergence

4. Status - Battery life, number of functioning members, stragglers

5. Leadership - Interaction between special members of the swarm and others

6. Decisions - Action selection, likelihood that the correct action is chosen

56

7. Communication - Speed, range, network efficiency

8. Micromovements - Relative motion of individual swarm elements

9. Macromovement - Overall swarm motion, flocking, elongation, shape

Task performance is an especially interesting metric, but it is difficult

to automatically extract from the observed behavior of the system an overall

understanding of the progress it is making on the task, and so a value for the output

of the fitness function. Worse, without a time bound on solving a problem or a

way to calculate progress, it is impossible to tell if a program has failed, or has

merely not yet succeeded. For example, assume a program’s intended purpose is

to gather all of the units of a resource at a goal. If the program merely moves the

units stochastically, sometimes they will enter the goal, creating an appearance of

progress. However, it may be vanishingly unlikely that all the units will randomly

happen to be in the goal at once. Counting the units moved to the goal, then,

cannot distinguish between a program that cannot find the goal, and so will never

put any units in it, and a perfect resource-gathering program that just has not

moved any units to the goal yet.

Ideally, it would be possible to recognize and evaluate performance on

sub-problems. It has been proposed that the interactions and emergent behavior

of the system are observable, while the reactions of the agents in the system are

programmable, and so by observing the interactions and emergent behavior, the

developer can receive feedback on how the system is progressing [Palmer et al.,

2005b]. However, all of the proposed observation and hierarchy of reaction and

emergence is intended as a design process, not an automation process. In other

words, while the observation and hierarchical structure may guide the development

of an emergent system, the system is still developed by programmers writing code

and then running it on the robots.

57

In the limit, the swarm could be treated as a gas, and for tasks such as

diffusion over an area, the performance of the swarm would be compared to the

behavior of an ideal gas [Jantz, Doty, Bagnell, and Zapata, 1997]. The addition

of sensors and computation would then allow the robots to outperform a gas at

tasks, and so achieve higher scores on a task-oriented metric than a gas could attain.

Unfortunately, this metric is constrained to tasks that an ideal gas could perform,

which are largely restricted to diffusion and alteration of density in response to

temperature.

Controllers have been evolved to allow robots to move into formation

from random starting positions [Quinn, Smith, Mayley, and Husbands, 2003]. These

controllers use local interactions and minimal sensing to achieve their goals. One

point the authors make, which is not frequently mentioned in other work, is that

while flocking or shoaling behavior is a relatively simple behavior to have emerge

from robots who can detect the distance, position, and velocity of the other nearby

robots, implementing that perception on real robots is quite difficult. Because a

specific behavior was desired, the fitness function used to evolve it was specified

in terms of metrics related to the behavior. Task-specific fitness functions are

also found in later work on evolution of swarm robot behavior, which seems to

indicate that evolution of behaviors in swarm robots may only be a time-complexity

trade-off.

Interestingly, some of the work in evolvable controllers leads to inter-robot

communication as one of the emergent properties of the evolved controller [Quinn,

2001b]. In order to move as a formation, one of the robots must be the leader, but

there is nothing in the fitness function or any of the other code that designates

roles for the robots. Instead, the selection of the leader arises from the evolutionary

development of the controllers, and is present in the controller as a response to a

58

particular series of stimuli. Genomes that did not encode such a symmetry-breaking

reaction never developed a leader-follower distinction, and so failed to move in

formation, and so received low fitness scores. For the follow-the-leader task, genetic

variation among the robots increased fitness more readily than having all robots

share the same genome [Quinn, 2001a]. The condition where all robots shared

the same genes was called “clonal”, while each robot having its own genome was

“aclonal”. Oddly, while one would expect that the aclonal condition would result

in a specialization, with each robot developing a genome that performed either

the leader or follower role well, the aclonal condition developed robots that could

perform both roles. It was hypothesized that while the clonal condition had to

evolve roles and an allocation mechanism simultaneously, the aclonal condition

could specialize the roles during early evolution, and then develop an arbitration

mechanism to select roles.

Genetic algorithims have also been used to develop aggregation behavior

in swarm robots [Bahgeçi and Sahin, 2005; Dorigo, Trianni, Şahin, Groß, Labella,

Baldassarre, Nolfi, Deneubourg, Mondada, Floreano, et al., 2004]. Aggregation was

chosen because it is a preliminary behavior primitive, which the swarm might engage

in prior to doing some other task, such as moving an object or attacking together.

The resulting controllers only control aggregation behavior, so each behavioral

primitive would require its own evolutionary development. Solutions discovered by

genetic algorithms are also prone to overfitting. The swarms described in Dorigo et

al. decreased in performance when the number of robots involved in the swarm was

changed from the values used to evolve the solutions, and when a more accurate

physical model was used in the simulations.

An interesting recent application of genetic algorithms (as well as simple

exhaustive parameter searches) is the development of swarm robots that operate

59

without computation. These robots are generally theoretical, rather than actually

implemented in hardware. They typically have one sensor, which is binary and

detects the presence or absence of an obstacle, and a program consisting of an if

statement that branches according to the output of the sensor. The output of the

program is typically the speed of two wheels in a differential drive arrangement.

Despite the minimalism of the model, by tuning the output parameters of the robot,

they can be configured to form stable circles, and with a few more sensor states, to

aggregate, shepherd “sheep” robots, forage, gather objects, follow walls, and disperse

[Gauci, Chen, Li, Dodd, and Groß, 2014; Johnson and Brown, 2016; Özdemir,

Gauci, and Gross, 2017; Brown, Turner, Hennigh, and Loscalzo, 2018; St-Onge,

Pinciroli, and Beltrame, 2018].

While these abilities of computationless robots actually do cover the

desired tasks from the user experiment in Chapter 4, this approach has some

problems with transition to deployment on real robots, rather than point robots in

simulation. The simulations used in computationless swarming frequently assume a

perfect sensor of infinite range, which is unlikely to exist on a real robot. However,

at least one study was performed with sensor noise that could change the sensor

reading, causing it to give an incorrect value with probability p, and found that

the controller outperformed doing nothing, so long as p was less than 0.5 [Gauci

et al., 2014]. While extensions which admit a sensor that can detect obstacles,

and so avoid them, are no doubt possible, there are more troubling results that

indicate that the general design problem for an computation-free swarm in an

arbitrary environment is NP-complete [Wareham and Vardy, 2018] Further, the

use of evolutionary programs is still prone to long run times for the evolutionary

algorithm itself, and to exploiting errors in the statement of the fitness function. As

a consequence, it is ill-suited to user interaction with users who are not experienced

60

in genetic algorithms.

The common hope of users of genetic algorithms is that they can reduce

the complexity of directly specifying the task to the (hopefully lower) complexity of

describing the results in the fitness function. Rather than describing how to solve a

problem, one simply describes what the solution would look like. Unfortunately,

the reduction in hands-on time spent programming frequently comes at the expense

of time spent waiting for the system to converge, or determining why it converged

on a problematic solution. One attempt to evolve aggregation controllers had a

fitness function that allowed the evolved motion strategy to acquire a high fitness

by spinning in place. The ad hoc iterative process of creating emergent behaviors

is replaced by an ad hoc iterative process of creating fitness functions. As a

result, developing novel behavior in the field by converting user specifications of

the behavior of the swarm into a fitness function for a genetic algorithm is unlikely

to yield results in a timely manner. However, individually evolved primitives could

be saved in a library of primitives for use by a higher-level compositional approach.

Such a library could take advantage of the possible overfitting of GA evolution

by storing primitives intentionally overfitted to specific situations and robots, and

using the best matches. For example, a controller that aggregates small-scale UAVs

outdoors is likely quite different from one that aggregates medium-scale wheeled

robots indoors, even though they are both aggregation controllers.

Domain-Specific Languages for Swarms

Proto and other programming languages for amorphous computers provide abstrac-

tions for computation performed on homogeneous spatially-distributed computing

nodes. Other versions of tuple-space based amorphous computation include motion

of the agents, but do not explicitly support heterogeneity [Viroli, Pianini, and

61

Beal, 2012]. Several programming languages have been developed that are designed

specifically for programming swarm robots.

The Voltron programming language provides what its authors describe

as “team-level programming” for autonomous drones [Mottola, Moretta, White-

house, and Ghezzi, 2014]. This level of programming is distinct from drone-level

programming, where specific instructions are provided to each drone, and swarm

programming, where each drone has the same instructions and operates without

communication with other drones. Voltron programs consist of sensing tasks that are

subject to space and time constraints, so the language does not permit the user to

specify direct interactions between drones. This leaves out activities beyond sensing

that may be useful for swarm robots, such as patrolling an area or collaboratively

moving an object. Additionally, Voltron is based on the assumptions that drones

have global localization, synchronous clocks, and reliable inter-unit communication.

Karma provides a programming framework for micro-aerial vehicles with

minimal localization and no communication in the field [Dantu, Kate, Waterman,

Bailis, and Welsh, 2011]. The framework allows the composition of behaviors

described at the level of individual robots. Rather than each robot performing

a set of behaviors in response to input from its sensors, each robot is tasked by

a central “hive” to perform a single behavior, such as performing a sensor sweep

of an area. The hive collects data from robots as they return to the hive, and

updates a central data store, which includes both the sensor information from the

individual robots and spatial information about the sensor information. The hive

then assigns activities to robots based on rules that use the central data store to

determine which activities should be performed. As a result, while the individual

robots are autonomous and not in communication with the hive while operating,

the hive maintains a central data store that is used to guide the future behaviors of

62

the swarm. This model does permit a form of interaction between swarm members,

in that information from one swarm member can inform the behavior of another

member, but it does not permit dynamic collaboration between swarm members

while they are operating away from the hive.

Meld is a programming language for robot ensembles, which are composed

of individual modular robots [Ashley-Rollman, Goldstein, Lee, Mowry, and Pillai,

2007]. However, many of the problems facing an ensemble of modules are the

same as those facing a swarm, such as determining the overall goal, moving to

proper positions, and detecting when the goal has been acheived. Meld is written

in terms of facts and rules. Facts describe things such as adjacency between robots

and location of robots. Rules are applied to facts, resulting in the generation of

new facts. By including rules that generate facts that describe motor actions, the

application of rules to the known state of the system can create a “to-do list” of

actions for individual members of the system to perform. Rules are said to “prove”

facts, and when no further facts can be proven, the system has arrived in a final

state. Since facts that alter the state of the world can make previous facts false, the

set of facts available must be periodically purged of facts that no longer hold. The

authors of Meld point out that logic programming, of which Meld is an example, is

poor at representing state beyond what can be computed as a consequence of the

base facts. However, it is also claimed that the use of aggregates, which compute

results based on the provable facts, can be used to store state about the system,

avoiding this restriction.

Buzz is a programming language and a virtual machine (VM) to run it on

that is designed for programming swarm robots [Pinciroli, Lee-Brown, and Beltrame,

2015]. Each robot is assumed to be running the same bytecode on the Buzz VM

(BVM). Buzz is also based on the assumption that robots exchange information in

63

a situated manner, with any robot that receives a communication also being able

to estimate the relative location of the source of that communication. In order to

support programming for swarms, Buzz treats the swarm and virtual stigmergy as

first-class objects in the language. Swarms in Buzz provide an abstraction for a

group of robots that allows the programmer to have every robot in the group execute

a function, as well as dynamically create and disband groups. Virtual stigmergy

provides a global, distributed data store for the swarm. The implementation of

the virtual stigmergy structure allows the robots to maintain relatively up-to-date

versions of the values stored in the data store, and to refresh them after recovering

from failures of network connectivity. Buzz also provides a convenient abstraction

of the neighbors of the robot executing the program, which usually consists of all

robots within communication range. Using the neighbors abstraction, the robot

can, for instance, query all its neighbors about the value of a sensor precept at their

location, in order to build a local map of the intensity of the sensed quantity.

The design of a programming language can be considered a user interface,

after a fashion, as it provides an abstraction of an underlying system that a user

can use to control the system in a manner that is ideally easier than less abstract

interfaces. However, both domain specific programming languages and amorphous

computing languages share the same problem: for end users, learning a programming

language in order to command a swarm is an unacceptably high barrier to adoption.

Program Generation from Formal Specification

Controllers for modular robots that allow them to form shapes under stochastic

mixing have been automatically generated from descriptions of the desired shape

[Klavins, 2002]. These controllers are focused on structures and formations that

can be expressed as a tree. They do not relate the structure to any other point in

64

space, but are purely in terms of connectivity between modules.

Other work with modular robots has used sensing to characterize the

environment and decide on the reconfiguration of the robot that will best allow

it to complete the assigned task [Daudelin, Jing, Tosun, Yim, Kress-Gazit, and

Campbell, 2017; Jing, Tosun, Yim, and Kress-Gazit, 2016]. The high-level planner

uses linear temporal logic in a tool called LTLMoP (Linear Temporal Logic MissiOn

Planning) to synthesize a controller for the robot task, and from the behaviors

required from the controller, a sequence of transformations of the robot into forms

that provide those behaviors.

Generation of programs from e.g. linear temporal logic (LTL) descriptions

of the task and environment are promising because they can generate provably

correct controllers. Unfortunately, these approaches to program generation are

prone to extreme conservatism in the face of an unknown environment. Assume

that a robot is placed in a simply-connected maze, with instructions to traverse the

maze. Selecting one wall, either the left or the right, and following it, will result in

the robot finding the exit, or returning to the entrance if there is none. However,

the a priori generation of a motion plan to reach the exit from the entrance is

impossible, as the actual path taken is unknown. LTL and similar logics can only

work on what is known about their environment, and so cannot operate in unknown

environments.

A potential method to extend LTL or other logics to an expanding

environment is to develop what is known about the environment as the robot

explores, and rebuild the controller as new facts are added. When the robot has

explored enough, it will become possible to build a controller that achieves the

desired result, or prove that it is not possible because the entire environment has

been explored without gaining enough information to build the controller. While

65

effective in theory, this approach can run aground on combinatorial problems,

particularly in dynamic environments, as the facts may vary often, and require

reworking of the controller.

One approach to correct-by-construction controller synthesis for dynamic

environments combines an offline LTL-based planner with an online motion planner

for collision avoidance [Alonso-Mora, DeCastro, Raman, Rus, and Kress-Gazit,

2018]. Rather than replanning as the environment changes, the system generates

alternative plans, or explains to the user why no alternative plan satisfies the

requirements. Unfortunately, this controller synthesizer still relies on a known map

of the entire environment (but not of the obstacles in it). For real-world applications

in disaster recovery, the map may not be available, or may be undergoing constant

revision by the disaster. The synthesizer also creates revisions to the assumptions

about the environment, and the number of these revisions grows combinatorially.

Each revision is an assumption about the environment that must hold for the

controller to be correct, such as “There will never be a deadlock if Robot 1 is not

in the hallway when Robot 2 enters the hallway”. The revision can be viewed as

a constraint on the motion of the robots, preventing Robot 1 from entering the

hallway, or Robot 2 from entering the hallway if Robot 1 is in it. With one robot

in a fairly simple map, the paper indicates that 16 revisions are needed. Adding a

second robot increases this to 1306 revisions.

Combinatorial explosions are a frequent problem in synthesis of provably

correct controllers. Mehta et al. presented work that synthesizes not just the

controller, but the entire robot [Mehta, DelPreto, Wong, Hamill, Kress-Gazit, and

Rus, 2018]. In the controller, the sensors are represented by binary propositions

of the controller logic, one for each possible sensed object. For small cases, this is

sufficient, but the number of such propositions is 2|objects|, and so becomes unwieldy

66

for more complex specifications and robots. However, it does pose an interesting

argument for heterogeneity of robots. Rather than changing how a swarm of robots

with a fixed morphology is used to perform a task, robots can be generated as

needed for tasks and added to the swarm. One would expect that once a diverse

enough pool of robots exists, the work of Mehta et al. could be extended to select

combinations of existing robots to perform a task, rather than creating new ones.

It has been suggested that LTL is not the best formalism for the descrip-

tion of desired behavior for robot controllers [Belta et al., 2007]. Belta et al. also

raises some other problems with symbolic control and planning as a paradigm for

robot control. Among others, they point out that the invariance of the dynamics of

the robots to certain transformations, such as rotation around certain axes, permits

symbolic control. However, as pointed out by Rodney Brooks in “Artificial life

and Real Robots,” environment conditions such as carpet nap can change dynam-

ics of the robots in ways that break the symmetry of the dynamics about some

axes [Brooks, 1992]. In addition, the symbolic methods still have problems with

incomplete knowledge, and dynamic worlds (which imply incomplete knowledge,

as things may change without being observed). While valuable for the strength of

the assertions they can make about the generated controllers, symbolic and formal

methods still require some level of reactive or heuristic buffering from the real

world, to present them with the atomic actions and perfect sensors on which their

assertions rely.

Another potential approach to the generation of robot programs for

swarms is the use of Supervisory Control Theory (SCT) [Lopes, Trenkwalder, Leal,

Dodd, and Groß, 2016]. SCT provides a method to formally synthesize controllers

called “supervisors”. Both the possible state transitions of the robot and the control

specification are represented as state transition diagrams, and realized as generators.

67

The generators are then composed into a synchronous automaton, which is the

supervisor. Changes in state are caused by events. Uncontrollable events are

produced by feedback, such as from sensors or timers, and controllable events are

produced by the supervisor to control the robot. The resulting controllers can be

demonstrated to not deadlock, and with probabalistic extension into pSCT, also

not to livelock, while safety can be formally determined by ensuring that there

exists no path in the supervisor leading to a forbidden state [Lopes, Trenkwalder,

Leal, Dodd, and Groß, 2017].

However, SCT alone is not sufficient to automate the generation of robot

programs. The expression of the abilities of the robot and the desired behavior, as

state transitions in some form, is left as an exercise for the swarm developer. SCT

supplies a way of ensuring that the resulting program does what the specification

requires. As noted in [Lopes et al., 2017], a specification that is logically incorrect,

such as including a possiblity to livelock, will generate a program that can be formally

demonstrated to match that specification, and so includes the specification’s errors.

EvoStick and AutoMoDe-Vanilla both provide automatic design of swarm

robot software using a test-and-refine method [Francesca, Brambilla, Brutschy,

Garattoni, Miletitch, Podevijn, Reina, Soleymani, Salvaro, Pinciroli, et al., 2014a].

AutoMoDe creates controllers by combining parameterized modules in a PFSM.

AutoMoDe-Vanilla outperformed EvoStick, which is a typical neural network control

evolution algorithm. It was also able to outperform unconstrained human program-

mers, but not humans using the same set of modules available to AutoMoDe. An

enhanced “flavor” of AutoMoDe, AutoMoDe-Chocolate, outperformed even the

constrained humans [Francesca, Brambilla, Brutschy, Garattoni, Miletitch, Podevijn,

Reina, Soleymani, Salvaro, Pinciroli, et al., 2015]. The goal of using pre-defined

modules is actually to simplify the design space, under the theory that approaches

68

such as evolutionary design of neural network controllers have, essentially, sufficient

representational power to overfit to their test environment [Birattari, Delhaisse,

Francesca, and Kerdoncuff, 2016].

Group Perception of Humans

Because it is desirable to have the user operations remain consistent despite variation

in the size of the swarm, and because such a consistency implies that the user treats

the swarm as a whole, discovery of the factors that result in perception of groups

as a single entity rather than a collection of individuals is of interest. One potential

guide to when users will stop treating robots as individuals and begin treating them

as a group is the numerical point that humans come to regard a collection of other

humans as a collective, instead of individuals. Unfortunately, that point is quite

complex to determine, because humans have vastly more complex social interaction

with each other than they do with robots, and elements of that social interaction

color how humans think of each other.

In perceptual psychology, gestalt perception provides a number of heuris-

tics or principles that can influence whether a set of objects is perceived as a

group.

Proximity principle Objects near each other are perceived as a group.

Common fate principle Objects that move together are perceived as a group.

Similarity principle Objects that are visually similar are grouped together.

There are various other principles, and the order in which they are

assessed or their relative strengths are unclear, so it is difficult to determine how

a complex scene will be parsed. However, these general guidelines do appear to

69

influence how people perceive groups of other people. For example, all of the people

in a line or a parade move together, and so are perceived as a group, separate

from people around them moving in other directions. It has been suggested that

these principles may enhance the intelligibility of the behavior of robotic swarms

[Nagavalli, 2018].

Humans also make some distinction between aggregates and groups

[Wilder, 1978]. Groups have a boundary, such as a common belief or goal, and

sharing that element makes someone a member of the group or not. Aggregates

are random sets of people, who may have nothing in common. The people inside

a church at a given time are likely a group, the people on the sidewalk outside

are more likely an aggregate. This factor, combined with the gestalt common fate

principle, may be useful for encouraging users to think of a swarm as a group. Since

it can be made explicit to the user that the swarm shares common goals, and the

swarm can move together, the user would come to regard it as a group, rather than

a simple aggregate.

Whether a set of people is perceived as a group is referred to as “enti-

tativity.” Groups with high entitativity are expected to have a higher degree of

unity and consistency within the group. The smaller a group is, the more similar

its members are perceived to be, which seems to indicate that smaller groups would

have higher entitativity [Stewart, 2003].

Entitativity is not a binary classification, with groups being either entities

or not. Rather, it is a spectrum, with groups such as families or organizations at

the high entitativity end, and groups such as people in line at the bank on the low

entitativity end. By surveys, some clusters of groups have been elucidated, such

as intimacy groups (family and friends), task groups (co-workers, juries), social

groups (gender, race, class), and loose associations (parade crowds, fans of a music

70

genre) [Lickel, Hamilton, and Sherman, 2001]. In a situation familiar to computer

scientists, the analysis of perception of group entitativity is prone to the curse

of dimensionality: what counts as a group is highly variable along multiple axes

[Lickel, Hamilton, Wieczorkowska, Lewis, Sherman, and Uhles, 2000]. Among the

factors influencing it are differences in the perceiver (level of need to perceive a

group, individualism or collectivism bias), contextual factors (group membership

or opposition), and properties of the group itself (visual or behavioral similarity).

Minorities become higher in entitativity due possibly to the perception of them

as figures distinct from a “ground,” as in the gestalt figure/ground principle, or

because stereotyping increases the perception of similarity within the group. The

perception of similarity within the group may be in turn be related to the gestalt

perception of similarity, and so visually-similar minorities would be expected to

have a higher entitativity than visually dis-similar groups of people.

Research in the influence of group size on effectiveness of persuasion

reveals that the gestalt principle of similarity works on the level of information as

well as visual similarity [Wilder, 1977]. When a person is confronted by a group

attempting to influence them, increase in the size of the opposition beyond about

3-4 people has little effect. Rather than treating each person in the opposing

group as contributing a bit of information that might sway the subject, and so a

large group would contribute many bits, the entire group is lumped together and

contributes one bit of information. The first person from the group who expresses

their opposition may be viewed as a leader, but the rest can then be dismissed as

followers, expressing an opinion no different from the leader’s opinion.

Unfortunately, the study of the entitativity of groups makes it clear that

the factors that humans consider when deciding how strongly an association of other

humans count as a group extend well beyond how many of people are in the group.

71

Human perception of groups has less to do with exact count of people, and far

more to do with common cause, visible similarity, tasks, interpersonal relations, and

so forth. One potential upper bound that is simply numeric is Dunbar’s Number,

a constraint on the understanding of a social network placed by neocortex size

[Dunbar, 1992]. For humans, Dunbar’s number is estimated to be around 150

individuals, and beyond that, people would be expected to begin chunking the

people in their social network into hierarchies or groups in order to keep track of

a reduced number of entities (e.g. one group called “co-workers” instead of every

individual on the team).

Human-Robot Teaming

One area that may have interesting insights into control interfaces for heterogenous

swarms is work on human-robot teams. Typically, human-robot teams involve

robots working along side humans in a team, as peers or subordinates. As a result,

the interface design is primarily for control of the robots, and the return of data to

the humans, rather than in control of the team as a whole. One attempt to unify the

command and control of a human-robot team [Lopez, Kuczynski, and Yanco, 2017]

did so by expanding previous work, which had only commanded robots [Micire et al.,

2009]. The resulting interface allowed the end user to command robots and humans

using the same command modalities, rather than specializing the command set

based on the type of unit being commanded. In user tests, commanders of human

teams, robot teams, and mixed teams had similar performance, and used similar

control strategies. The use of similar control strategies is surprising, because this

includes direct, joystick-like control of human team members, which the researchers

originally thought would be an unusual way to instruct a person to move. The users

72

also mentioned that having an interface that reflects the generally superior mobility

and perception of humans would be an improvement, so while the unspecialized

interface did not appear to hinder users, it may have not taken full advantage of the

team ability. By similar arguments, it could be that an interface for a heterogeneous

swarm should support special operations for robots that can support them, rather

than attempting to treat all robots the same in the interest of interface consistency.

The multi-robot interface is also distinct from a swarm interface, although

there is some overlap. A purely swarm-oriented interface would issue commands

to groups of robots, and not have the ability to command single robots, under

the assumption that tasks assigned through the interface were not possible for a

single robot to complete. A pure multi-robot interface is designed to command

multiple robots as individuals, with their own tasks. The interface described by

Lopez, Kuczynski, and Yanco is somewhat in the overlap area, as it allows group

selection and task assignment as well as individual command, both as “groups”

of one, using similar command interactions to the group commands, and direct,

joystick-like interaction. The interface described by Humphrey et al. is an interface

at the multi-robot end of the spectrum, as it does not appear to provide any faculty

for assigning a task to multiple robots at once. It does, however, encourage the user

to be aware of the functioning of all of the robots.

In this work, the description of the user interface does not position the

robotic swarm as a teammate. Robots can be team members with humans, but they

can also be treated as remotely-operated tools. Teleoperation is a case of treating

the robot as a remotely-operated tool. Rather than taking any initiative itself, the

robot does as commanded, acting as the remote user’s eyes and sometimes hands

in the environment. Indeed, a teleoperated system should be invisible to the user,

with the UI acting as the user’s interface to the remote environment, rather than

73

to the remote robot [Larochelle, Kruijff, Smets, Mioch, and Groenewegen, 2011].

Examination of the work on robotic teammates lists some points about teammates

that the swarm described in this work does not share.

Teammates make decisions during task execution, while considering the

impact of those decisions on their teammates [Shah, Wiken, Williams, and Breazeal,

2011]. The system described in this paper does not have any mechanism for the

system to consider how its decisions will affect the human user. Some of the design

decisions were made by with the impact on the human user in mind, but these

decisions were made by the author, not the system.

Teammates communicate progress and provide support to each other.

This communication can be explicit, or implicit, by doing things like placing

completed components of the task where the other teammates can see them. The

system described in this work can only be viewed as communicating implicitly, by

having the swarm behavior attempt to match the user expectation.

Being a team or not can be viewed as a spectrum, with robots taking

the place of equal peers at one end and remotely-operated tools at the other end.

Safeguards, such as safe-mode teleoperation, where the robot can act to prevent

collisions, are on the spectrum, but more towards the remote tool end. Safeguards

do not permit the robot to assume responsibility for a role or task, which is a

component of team membership [Bruemmer, Few, Boring, Marble, Walton, and

Nielsen, 2005]. Taking initiative combined with assuming responsibility is the

basis of leadership. In a team of equal peers, initiative and responsibility, and so

leadership, can be distributed rather than centralized. The system in this paper has

a central authority, the human user, who commands, but is not commanded by the

system. Humans find it easier to delegate responsibility to more human-like robots

than to non-human-like robots [Hinds, Roberts, and Jones, 2004]. This is in keeping

74

with the spectrum of remote tools versus equal peers. A non-humanoid robot is

easier to perceive as a tool, and a tool is not blamed if its user makes an error. The

difference in perception of humanoid robots can also serve as a design guideline,

indicating that non-human robots are to be preferred if the robots are likely to be

unreliable, as the robot’s form will encourage people to take more responsibility

themselves instead of delegating it to the robot.

On the spectrum between teammates and remotely operated tools, the

swarm described in this work is solidly at the tool end of the spectrum. The user

controls the swarm in a task-based manner, assigning it a job they want done and

then allowing the system to operate. The robots used are non-humanoid, both in

their depiction on the user interface and their physical construction.

75

Chapter 3

Swarm Robot System

Development

Swarm robot platforms tend to fall into one of two groups, from a hardware perspec-

tive. The first group uses microcontrollers and very limited onboard computation,

but is small and relatively cheap. This group includes Alice, Jasmine, AmIR, and

the other tabletop systems. Due to their limited computation, these systems do

not generally support complex algorithms such as vision processing. The second

group use more powerful computers, but at a significant cost in weight, power

consumption, and financial outlay.

The robot described in this work is intended to occupy a theoretical

“sweet spot” at the high end of the tabletop swarms or the low end of the room-scale

swarms, depending on how large of a mobility platform is used. As a result, if it

is configured for tabletop operation, the system can be used with a minimum of

available space. If, on the other hand, it is configured for room-scale operations,

the system can be tested in natural or naturalistic human environments.

76

Figure 3.1: Toys with controller boards and batteries mounted. The spider has a
two-motor holonomic drive, the tank uses differential drive, and the car is Ackerman
drive.

Hardware Platform

The robot swarm developed for this work consists of a hardware module for con-

trolling two motors of a toy, such as a small RC car, for mobility. The reasons for

choosing this hardware design are explained in more detail below, but the overall

intent is to have an inexpensive platform available for swarm research, without

having to rely on any particular group of swarm robotics researchers starting and

maintaining a side business supporting and selling robots. Duplication of software

and other digital artifacts is trivial, so constructing a duplicate of the hardware

becomes the primary difficulty. The use of toys for the mechanical components of

the robots was intended to reduce the difficulty of constructing the hardware. If

researchers are not to be expected to become entrepreneurs, they should also not be

expected to become expert machine tool operators. The hardware resulting from

this work is designed so that it can be duplicated by a researcher using common tools,

and possessed of no more than hobby-level familiarity with electronic hardware.

77

In order to be both heterogeneous and inexpensive, the robots used for

this work were initially designed to be constructed by developing a modular control

hardware platform that can be attached to children’s toys. The controller module

was designed to be used as a replacement for the control electronics of children’s toys,

similar to the Spider-Bots developed by Laird, Price, and Raptis, or Bergbreiter’s

COTSBots [Laird, Price, and Raptis, 2014; Bergbreiter and Pister, 2003]. However,

unlike the Spider-Bots and COTSBots, this platform did not specify a particular

toy chassis to use for mobility. Most children’s toys use either one motor with a

mechanical linkage to cause the toy to turn when the motor is reversed, or two

motors. Two-motor toys frequently use either differential steering or have one

motor provide drive power and the other provide steering. All of these toys can be

controlled by the hardware described in this work.

The robots are intended to be heterogeneous, partly because of the ad-

vantages of heterogeneity in a swarm, and partly because toy supplies are unreliable.

While toys in the general case are expected to remain available, a particular line of

toys might be discontinued or a modified version released.

The mobility platforms used for the existing TinyRobo swarm cost 12-20

dollars in single quantities, putting the total cost for a single robot at $35-45. Where

bulk ordering is available, the cost of 100 mobility platforms is $8 per unit, reducing

the per-unit cost of a 100-member TinyRobo swarm to $20. This is roughly in line

with the parts cost of the Kilobot, which is $15 [Rubenstein et al., 2014a].

However, this should not be taken to mean that the TinyRobo platform is

a competitor with the Kilobots. Kilobots were designed to have scalable interactions,

which is to say that programming, charging, and even turning on the Kilobots does

not take more time as the number of robots increases. To have programming take

constant time, the Kilobots are programmed in parallel using an infrared broadcast

78

Name Value Cost Cost Count Subtotal Subtotal
(1) (100) (1) (100)

Battery 3.7V 3.41 1.50 1 3.41 1.50
C1, C2 4.7uF 0.50 0.20 2 1.00 0.40
C3 0.1uF 0.10 0.02 1 0.10 0.02
C4 10uF 0.19 0.06 1 0.19 0.06
Charge IC MCP73831 0.59 0.44 1 0.59 0.44
Charge LED Green 0.54 0.30 1 0.54 0.30
Diode GF1A 0.51 0.23 1 0.51 0.23
Motor driver DRV8830 2.27 1.64 2 4.54 3.28
Header 6-pin 0.52 0.37 1 0.52 0.37
PCB 3.30 0.79 1 3.30 0.79
R1 470 ohm 0.10 0.02 1 0.10 0.02
R2 2k 0.10 0.02 1 0.10 0.02
R3, R4 0.22 ohm 0.46 0.13 2 0.92 0.26
R5, R8-12 10k 0.10 0.01 6 0.60 0.06
R6, R7 1k 0.10 0.01 2 0.20 0.02
Switch 410-2016 0.91 0.72 1 0.91 0.72
Thermal Fuse 0ZB0050FF2G1 0.13 0.10 1 0.13 0.10
V Regulator MIC5265 1.40 1.06 1 1.40 1.06
Wifi ESP-8266-03 4.32 2.25 1 4.32 2.25
Total Cost for One Robot 23.38 11.9

Table 3.1: Prices in US Dollars for TinyRobo components.

79

device that illuminates the entire swarm at once. To charge together, the Kilobots

have one charging contact on their legs, and the other on a leaf spring on their tops.

By sandwiching the robots between two conductive plates, the entire swarm can be

charged at once. Finally, to all be turned on quickly, the Kilobots never turn off.

Instead, they enter a low power sleep mode, and wake occasionally to check for an

infrared signal to become fully active. This last attribute makes it very difficult to

have a robot that has both wifi and a very low power sleep mode. The wifi module

used in the TinyRobo platform consumes 15mA in its highest-power sleep mode,

and 20µA in its lowest power mode. Unfortunately, only the highest power sleep

mode can remain connected to an access point and receive a wake-up command,

and so it will deplete the 750mAH battery used in the TinyRobos in just over two

days. In contrast, a Kilobot can sleep for 3 months.

The processor of the controller is an ESP-8266 wifi module. The ESP-

8266 costs approximately $3-5, and contains both a wireless interface and a micro

controller that can be programmed from a variety of programming environments

and languages, including Lua and the Arduino variant of C/C++. The ESP-8266

module is based on the ESP-8266 IC, made by Expressif Systems. The IC itself

has an 80Mhz Tensilica Xtensa L106 processor with 64kB of instruction memory

and 96kB of data RAM. The modules come equipped with 512kB to 16MB of flash

memory for program storage, and some combination of the 16 GPIO lines of the IC

available for use. The ESP-8266 is available in several form factors, each designated

by a different suffix. The version selected is the ESP-8266-03, which offers more

GPIO pins than most other versions, and includes an internal antenna.

In addition to 802.11 b/g/n WiFi, the ESP-8266 supports a variety of

serial protocols, including a UART, I2C, SPI. The I2C interface is used on the

board to connect to two DRV8830 motor driver ICs by Texas Instruments. The

80

DRV8830 provides 1A of drive current. Experimental tests with 8 different toys

indicate that small toys draw well under 1A while moving freely, and peak around

2A when the motors are stalled. The tested toys include 3 insect-styled walkers, 3

wheeled vehicles (2 differential drive, 1 Ackerman steering), 1 toy helicopter, and 1

toy quadcopter. The DRV8830 provides overcurrent limiting, so a stall condition or

short circuit of the motor leads will disable the motor drive, but not damage the

DRV8830.

The control module also provides connections for a 3.7V lithium-ion

battery pack, as well as charge control circuitry for the battery. The charge

controller allows the robot to be charged from the same USB connection that is used

to change the programming of the ESP-8266. Reset and entry into programming

mode is controlled by a separate USB-to-serial adapter board, the Sparkfun BOB-

11736. Moving this functionality to the adapter board reduces the size and cost of

the control module.

Toy Compatibility

Children’s toys normally use inexpensive brushed DC motors in their construction.

These motors have not been the subject of extensive study, as they are commodity

parts. However, it is useful to quantify their behavior to some extent, to determine

which kinds of toys can be used with the controller.

Two common types of motors found in children’s toys are the RE and

FA series of motors produced by Mabuchi Motor, or imitations of these motors

produced by other companies. These motors use simple metal brushes and are

constructed to be inexpensive, rather than precise. The intended voltage range of

the motors varies with different winding types, but according to datasheets available

from Mabuchi Motor, the voltage ranges and current draws for motors in this range

81

Model Voltage No Load Current Max Efficiency Stall Current
RE-140RA-2270 1.5-3 0.21A 0.66 2.1A
RE-140RA-18100 1.5-3 0.13A 0.37 1.07A
RE-140RA-12240 3-6 0.05A 0.14 0.39A
FA-130RA-2270 1.5-3 0.2A 0.66 2.2A
FA-130RA-18100 1.5-3 0.15A 0.56 2.1A
FA-130RA-14150 1.5-4.5 0.11A 0.31 0.9A

Table 3.2: Current draw for Mabuchi-branded motors.

Motor number No-Load Current Stall Current (measured)
Hexbug brand mini spider 0.03A 0.13A (see caption)
Hexbug brand 6-legged insect 0.06A 0.25A
Miniature toy RC car 0.21A 0.8A
Miniature toy RC insect 0.19A 1.13A
Miniature toy RC vehicle 0.37A 0.8A
Miniature toy RC vehicle 0.06A 0.74A
Toy helicopter 0.07A 1.12A
Toy quadcopter 0.74A 1.99A

Table 3.3: No-load and stall current for coreless DC micromotors. Measurements
were performed at 3V supply voltage. The Hexbug mini spider includes a slip clutch,
so attempting to stall the motor by holding the toy does not prevent the motor
from turning.

are as shown in Table 3.2.

These motors have a volume of around 2cm3. For smaller toys, coreless

motors are more common. The values in Table 3.3 were measured from six of the

toys used in constructing the swarm. The measurements from the toy helicopter and

toy quadcopter are included for comparison. While the board can supply sufficient

current to control all of these toys, it has not been tested in flying platforms.

Potential for Expansion

The current design for the robots does not include sensors as a cost-saving decision.

However, the communication between the ESP-8266 and the motor drivers uses the

industry standard I2C bus serial interface. Due to the non-proprietary nature of this

82

interface standard, it has been widely adopted, and many sensors are available to

connect to an I2C bus. For example, Vishay Semiconductor makes the VCNL3020,

an infrared proximity sensor with a 200mm range. If greater range is required,

The ST Microelectronics VL53L0X Time-of-flight (ToF) laser ranger and gesture

sensor provides a 2M range and 1D gesture sensing in a 4.4mm x 2.4mm package.

As of this writing, the VCNL3020 is $3.44 and the VL53L0X costs $6.28 in single

quantities. These prices are reduced significantly when buying components in bulk,

but because they increase the cost, size, and power draw of the hardware, they have

not yet been integrated with this platform. Numerous multichannel ADC ICs with

I2C interfaces are also available, which permits the addition of analog sensors to

the platform.

As a thought experiment, the cost of adding a 6-direction IR transmission

and reception board to the TinyRobo platform was explored. This is not a finished

design, but as much of the cost in a device of this type is in the semiconductors and

PCB, it gives an estimate of the cost. The IR receiver selected would have been

the TSOP5700TR, as used in the E-Puck Range and Bearing sensor board, but

it is listed as obsolete by the manufacturer, Vishay Semiconductors. The modern

replacement appears to be the TSMP6000. The IR LED was also selected to match

the E-Puck Range and Bearing board. The AND gate is intended for use as in the

Colias swarm robots [Arvin et al., 2009]. By providing a clock signal gated through

the AND gate by the data signal, the IR LEDs can transmit coded data to other

robots. If coding is not required, as in rangefinding, the clock and data signals can

be varied to turn the LED on and off. Colias implements rangefinding by detecting

the intensity of received IR light from either reflections of IR emitted by the robot,

or the strength of IR messages arriving from other roobts.

Adding a 6-direction range and bearing board to the TinyRobo system

83

Part number Cost (1) Cost(100) Count Subtotal(1) Subtotal (100)
ATMega168 1.40 1.12 1 1.40 1.12
TSMP6000 1.81 1.03 6 10.86 6.18
SFH4255 1.06 0.59 6 6.36 3.54
SN74ACT08DR 0.51 0.32 2 1.02 0.64
PCB 3.30 0.79 1 3.30 0.79
Totals 22.94 12.27

Table 3.4: Semiconductors for a simple IR communication ring, and their prices, in
US Dollars. The PCB is the same size and type as the TinyRobo controller, and so
has the same cost.

could be expected to cost in the neighborhood of $12-22 USD, depending on the

quantity of boards produced.

Firmware

The current version of the robots’ firmware is developed in the open-source Arduino

development environment. Arduino programs are written in a dialect of C++.

Every robot runs the same firmware. The firmware listens for connections

on port 4321 for TCP/IP packets containing one of two types of messages. Messages

starting with a 0x51 byte (ASCII ‘Q’) cause the firmware to respond with a message

containing the ASCII string “TinyRobo”. This function allows automatic detection

of robots on a network by querying all connected systems to determine if they

respond in this way.

Messages starting with a 0x4D byte (ASCII ‘M’) followed by four bytes

are motor speed commands. The firmware interprets the first two bytes as the speed

and direction for the first motor, and the second two bytes as speed and direction

for the second motor. The control bytes are converted to a single byte command

for the DRV8830 motor driver and transmitted over the I2C bus to set the motor

speed.

84

Bit 1 Bit 0 Out 1 Out 2 Function
0 0 Z Z Coast
0 1 L H Reverse
1 0 H L Forward
1 1 H H Brake

Table 3.5: Truth table for DRV8830 drive direction bits. Coast allows the motor to
turn freely. Brake connects the motor leads, resulting in braking using the motor’s
back-EMF. Z indicates the output is in a high-impedance state

7 2 0

Speed Dir

Figure 3.2: Layout of bits in motor command byte for DRV8830

The DRV8830 driver is a voltage-controlled motor driver. It accepts a

single-byte command for each motor. Bits 7-2 of the byte define the output voltage

to be applied to a motor, and the driver attempts to maintain that output voltage.

The valid range of motor voltage commands for the DRV8830 driver is 0x06 to

0x3F, which corresponds to a range of 0.48V to 5.06V in 0.08V increments. Because

the robot battery is nominally 3.7V, the motor command 0x30 is the highest output

available. Bits 1 and 0 of the command byte control the polarity of the output

voltage, and so the direction of the motor, as per Table 3.5.

Once the motor speed is set, the firmware reads the fault bytes from

the DRV8830, and sends the motor command and the fault bytes for each motor

back to the client over WiFi. The client uses the fault bytes to detect overcurrent

conditions in the motor drivers and reduce output power.

The decision to have all of the robots have the same firmware and control

the speed of the motors from ROS was made because different toys have different

control schemes. Toy tanks use differential drive, toy cars have Ackerman steering,

and so forth. By moving the control to the main computer, the firmware can be

kept simple while still allowing researchers to adapt the system to the available

85

toys by modifying the software.

Why Heterogeneity?

Heterogeneity is a good model of many real-world systems where members of a

group have different capabilities. Family groups of pack animals have young and

old members, sometimes ill members, and sometimes infant members that cannot

participate fully in pack activities. In human groups, work is divided according to

ability, so a contractor may hire an electrician, a framing carpenter, and a plumber

to build a house, to much better effect than attempting to do it with a team

consisting entirely of plumbers.

Another use of heterogeneity in swarms is to prevent individual robots

from becoming overly complex by sparing them from having to be capable of

doing everything. The presence of multiple robots with a given ability in a swarm

strikes a compromise between all robots having that ability (and being complex

and expensive) and only one robot having that ability (and so providing a single

point of failure). Perhaps the most impressive recent demonstration of a highly

heterogeneous swarm is the Swarmanoid project’s video “Swarmanoid: The Movie”,

in which three different kinds of medium-sized robots cooperate to retrieve a book

from a shelf [OGrady, Birattari, and Dorigo, 2011]. The movie explicitly mentions

that one sub-team of robots (two mobile robots and one gripper robot) is positioned

as back-up, in case the first sub-team fails.

Beyond the possible utility of robots with multiple abilities, the swarm

design presented in this work was intended to be heterogeneous as a matter of

convenience of implementation. As toys go out of production and are replaced by

others, it may not be possible to continue to operate the swarm on an entirely homo-

geneous mobility platform. Because of this possibility, the software infrastructure

86

tries to keep platform-specific calculations in a single module, and allow the rest of

the system to operate using standard ROS messages. At present, these calculations

only consist of conversion of ROS twist messages, which contain rotational and

angular velocities in 3 axes each, into motor speed commands for the robot, which

consist of a speed and direction for up to two motors.

Handling the motion of the robots in this way means that the hetero-

geneity of the mobility platforms has a minimal impact on the conversion of user

gestures into programs. However, as a direction for future work, it will become

increasingly important to consider mobility as an aspect of program generation. For

example, if the system is extended to include UAVs, and the user directs the robots

to the center of a lake as part of a task, only the UAVs can be reasonably expected

to reach the location undamaged. The system could be extended with some capacity

for reasoning about the task environment, to determine how the capabilities of

the robots interact with that environment. Such an augmented system could then

refuse to direct ground robots into water, and report if there are not a sufficient

number of aerial robots to perform the task over the lake. It could also permute

task assignments based on robot capabilities in order to meet other goals, such as

minimizing the number of robots used or maximizing available robot battery life.

Swarm Robot Software Framework

The individual robots being developed for this research have minimal sensing capacity

and relatively weak processors. The majority of the processing is performed on

a host computer running the ROS software framework. Each robot’s processor is

mostly concerned with controlling the motors of the robot. The structure of the

software framework is such that as available processing power on each individual

87

Figure 3.3: The image on the left shows the swarm arena. The top-down camera is
mounted on the crossbar at the top. The image on the right shows the camera view
before ROS image rectification removes barrel distortion.

robot increases, more of the processing can be handled locally, without changing

the overall design of the system.

The central computer has a top-down camera over the “arena” the robots

are active in. Each robot has an AprilTag on top of it, so that the central computer

can localize them within the arena [Olson, 2011]. The central computer uses the

location information to create “virtual sensors” for each robot. Since the central

computer knows the location of each robot, the relevant information can be sent to

each robot’s control process as if it were coming from a sensor on the robot. For

example, a range and bearing sensor that allows each robot to detect the distance

88

and angle of the nearby robots is simple to implement in software. Range and

bearing sensor functionality is available in hardware on E-pucks and Marxbots,

but since each robot must be equipped with it, the cost scales linearly with the

number of robots to equip. It is possible to calculate the odometry for individual

robots by watching the change in position in their tags over time. The calculated

odometry could then be published as a ROS topic, just like odometry collected from

e.g. wheel encoders. The virtual sensors can also be configured to emulate error

conditions such as noisy sensors, failed sensors, degraded localization, and so forth.

Virtual parameter tweaking allows fine-grained testing of the behavior of algorithms

under imperfect conditions, and the response of human users to unreliability in the

swarm.

Robot 1 Robot 2 Robot 3 Robot N

Control Computer

Motor Driver

Robot
 Firmware

Motor Driver

Robot
 Firmware

Motor Driver

Robot
 Firmware

Motor Driver

Robot
 Firmware

Virtual Sensors

Robot
 Process 1

Robot
 Process 2

Robot
 Process 3

Robot
 Process N

Virtual NetworkWorld Model

WiFi WiFi WiFi WiFi

Overhead
Camera

Figure 3.4: Overview of the software framework. Rectangular nodes are hardware,
oval nodes are software.

Since the robots are reporting to a central server, and the central server

also receives the video from the overhead camera, it may appear that this is a

89

highly centralized system. However, the central computer provides a framework

for implementing a decentralized control scheme on the individual robots. Rather

than controlling each robot, the central computer maintains a separate process

for each robot in the swarm. Each of these robot processes only has access to the

information that would be available to that robot, based on its physical location,

and so acts as a local control program for the robot, but with the full processing

resources of the host computer. As a result, the individual robots can be small,

lightweight, and consume relatively little electrical power, but the system as a whole

gives them significant computing power. When more powerful and lower power

consumption processors become available, more of the processing can be moved

from the virtualized robot processors and onto the actual robots, enabling a smooth

transition from a simulated decentralized system to a real decentralized system.

Virtual Localization

The AprilTag tracking of the robots provides localization of the robots within a

common coordinate frame. It should be stressed that while the central computer

can localize the robots, both relative to each other and by absolute position within

the arena, this information may be withheld from the individual robots, or given to

them if required. The code virtually operating on the robot may be neither aware

of its own position in the world, nor the location of other robots, if the experiment

calls for such a lack of information.

Currently, the AprilTag-based localization is used to implement virtual

laser scanners similar to the Sick or Hokyuo brand laser scanners used on larger

robots. It is also used to limit the range of messages sent between the robots

through a virtual network, and to implement range and bearing sensing between

robots.

90

Range and bearing sensing to other robots is a very important sense for

swarm robots, as indicated by its presence in algorithms and frequent implementation

in swarm robot hardware. As discussed above, Colias and E-Pucks both include

IR-based range and bearing sensing. The parts cost of a Colias-style six-direction

range and bearing sensor is around $12, while the more sophisticated E-Puck range

and bearing extension board is $397. Virtualizing this hardware results in an

immense cost savings.

Virtual Laser Scanners

The AprilTag localizations and the image of the arena are used to provide virtual

laser rangers for each robot. The virtual laser ranger consists of two ROS nodes,

a service and clients for the service. The service is called “laser oracle server”. It

subscribes to the AprilTag detections and the images from the arena overhead

camera.

When a client requests a laser scan, the virtual laser service masks the

modified arena image with a circle with a radius of the laser range, centered on the

robot requesting the scan. This masking removes all of the objects that are out of

range of the laser, and so reduces the time spent calculating the laser scan points.

Each sample of the laser scan is represented as a line segment, located

based on the requested start, stop and inter-measurement angles for the virtual

laser scanner. Each line segment is checked for intersection with the lines defining

the contours of the blue objects in the image. As the virtual laser service receives

images, it draws a blue dot over the location of every robot. This dot provides

the outer edge of each robot in the virtual laser scan. The approach of using blue

objects as obstacles was chosen because if the laser scanner service treats anything

blue as an obstacle, then “walls” can be created in the arena by making lines of

91

blue masking tape on the arena floor. If multiple intersections are found for a line

segment, the intersection closest to the robot is used, as the laser would stop after

reflecting off an object. The service then formats the distances to the intersection

points as a ROS sensor msgs/LaserScan and returns it as the service response to

the requesting client.

The virtual laser clients take the place of the laser driver ROS nodes that

would be used to control a real linear laser scanner. The laser client is initialized

with some parameters, such as the sweep angle and angular resolution of the virtual

laser, and polls the laser service regularly. As it receives laser scans from the service,

it publishes them to a ROS topic in the same manner as a ROS node for a hardware

laser.

The apriltags ros node publishes the detected locations of the tags in

meters, but the computer vision detection of blue objects in the arena camera

image operates in pixels. In order to convert from pixels to real-world distances,

the apriltags ros node was forked and a modified version was created that provides

the locations of the tags in pixel as well as real-world coordinates. The modified

version is available at https://github.com/ab3nd/apriltags ros.

Virtual Networking

If the robots are required to communicate directly with each other, the commu-

nication passes through a virtual network. From the point of view of the robots,

messages sent into the virtual network are delivered to other robots as if the mes-

sages were sent directly from one robot to another. However, all the communication

is taking place between processes running on the central computer. By changing

how the messages are delivered by the central system, the virtual network can

provide full connectivity, range-limited mesh networking, directional beacons, or

92

Virtual Laser Service

Virtual Laser Client

std_msgs/Integer sensor_msgs/LaserScan

Subscriber

sensor_msgs/LaserScan

Arena Camera

sensor_msgs/Image AprilTag Detector

sensor_msgs/Image

apriltags_ros/TagDetections

Figure 3.5: Data flow in the virtual laser service

other forms of networking. The reliability of the network can also be varied, by

dropping some messages or otherwise changing them based on information about

the robots. For example, the likelihood that a message arrives at the robot that it

was transmitted to may depend on the distance between the sender and receiver.

Signals that pass through a virtual wall may have a reduced virtual signal strength

and range.

Swarm Hardware Results

Due to mechanical flaws in the toys used as motion platforms in TinyRobo, the

robots would sometimes not move as commanded (see Figure 3.7). In a single-robot

system, transient failures can sometimes be accommodated by repeated effort or

replanning. However, in a multi-robot system the scale of the system works to

offset the reliability of each individual robot. If robots have an individual mean

time between failures (MTBF), the expected mean time to any failure is the MBTF

93

AprilTag Detector Distance Service
apriltags_ros/TagDetections

Virtual Network Service

Distance

Transmitter

Network Message

Receiver

Robot IDs

Network Message

Arena Camera

sensor_msgs/Image

Figure 3.6: Data flow in the virtual network. The virtual network service can take
the distance between the transmitting robot and the receiving robot into account
when determining if the message is delivered.

divided by the number of robots. For example, if an individual robot can work for

100 hours between failures, it would be reasonable to expect it to work for at least

a day. However, if the swarm consists of 1000 such robots, a failure of at least one

robot can be expected within 6 minutes. Tracking the failure of existing platforms

in the field placed the average MBTF of commercial mobile platforms at 24 hours,

with indoor robots fairing much better than outdoor ones [Carlson, Murphy, and

Nelson, 2004].

This problem was highlighted by the use of inexpensive toys. It is

desirable to have a swarm platform be able to run for extended periods, in order to

acquire data for experiments. Toys, especially cheap ones, are designed for low cost

and an MBTF more compatible with the attention span of children than that of

researchers. The amount of effort devoted to locating and eliminating mechanical

problems relative to the runtime of the system was not acceptable.

94

Figure 3.7: Commanded velocity (lin vel) as opposed to recorded motion (vel). Vel
is always positive because it is measured in terms of euclidian distance moved by
the center of the AprilTag between successive updates of the tag tracking. Note
that while the magnitude of the motion is proportional to the commanded motion,
sometimes the robot did not move at all, and when it did move, the recorded
velocity is quite noisy. Noise may be removed in software, but mechanical failure
cannot.

Calibration

Children’s toys are prone to failure and inaccuracy. In toys, particularly remote

controlled toys, the user acts as a the feedback element of a control system, observing

the behavior of the toy and changing their actions as a result. If an individual

toy, for example, has a bias to turn to the left, the user will learn this and apply

a correcting bias. To extend this to a computerized system requires some form

of calibration. These calibration steps, combined with appropriate control, such

as PID loops, can account for systemic inaccuracies. However, the use of toys

also introduces some failures that are not consistent or linear. For example, the

tanks used in some instances of the TinyRobo platform use motors with high speed,

95

but relatively low torque. As a result, dirt in the drivetrain near the motor can

cause the motor to become difficult to start, but can be removed by the user, or by

operation once the motor does start. Calibration when the dirt is present means

the robot will start very abruptly when the dirt is removed, while calibration when

the dirt is absent means the robot may not start if dirt gets into it later. It is worth

noting, in light of this example, that GritsBots, Kilobots, and mROBerTO all use

nearly-sealed drivetrains, either direct motor drive of the wheels or sealed vibration

motors [Rubenstein et al., 2014a; Pickem et al., 2015; Kim et al., 2016].

An early intent of the author was to have the system learn the control

law for each robot through observation of the relationship between the commanded

motion of the robot and the resulting motion. Due to the overarching concern with

human control of a swarm, such online calibration was decided to be out of scope

for this work. However, a computer-vision-guided calibration technique was used in

the mROBerTO swarm robots to compensate for manufacturing differences between

robots [Kim et al., 2016]. This approach results in learning bad controls if the system

observes the robot during a temporary failure. In a system with minimal failures,

this problem can be minimized, but as discussed earlier, inexpensive children’s toys

are not such a system.

GRITSBots have a calibration step, but the calibration is automated, and

is only performed once for each robot, after which it is assumed that the calibration

variables are constant. Calibration can be automated in a homogenous platform

with reasonably reliable hardware. Non-homogenous platforms require different

calibration for different platforms, which reduces the benefit of automation. Further,

requiring calibration works against transitioning to a new platform by adding an

additional hurdle in the form of developing a new calibration method.

The lack of an automated calibration and control method drove the

96

TinyRobo swarm to use more differential drive vehicles, as they struck a balance

between the fully holonomic drive used in the SpiderBots, which is expensive but

easy to control, and the Ackerman drive used in inexpensive RC cars, which is

less expensive, but has more complex control math [Laird et al., 2014]. It also

increases the difficulty of using a heterogenous system, and so operates against the

advantages of heterogeneity as discussed in Section 3.1.4

Drive Testing

In order to characterize the behavior of the various toy hardware that the TinyRobo

platform could be used on, seven TinyRobos were commanded by a program that

instructed them to move forward until the AprilTag tracking determined that they

had moved a fixed distance, stop, and move again, in a loop. This program was

run until the robot failed to move or ran into the walls of the robot arena.

Each robot was run 5 times, starting from the same location each time.

The robot was power-cycled between runs. Each run was recorded using rosbag,

and the data from the recordings were used to generate visualizations of the robot’s

commanded trajectory from the motion of the center of the robot’s AprilTag.

The robots consisted of three toy tanks from the same manufacturer,

a differential-drive Hexbug-brand robot, a differential-drive toy car with large

wheels, a hexapod bug-like walker, and an Ackerman-drive toy car. The bug-like

walker and the Ackerman-drive car both have different turning kinematics from the

differential drive tanks, but this test only consists of forward drive. It would have

been preferable to have the test include turning, but control of the yaw rotation of

a robot via feedback from the AprilTag system was found to be problematic. As

the number of pixels that an AprilTag takes up on a camera image decreases, the

accuracy of the subpixel estimation used to localize the corners of the tag decreases.

97

Each estimation of the tag location from the ROS AprilTag detection node can

then differ from previous estimations, and so even when the robot remains still,

there is some noise in its detected position. Because it was assumed early on that

the AprilTag fiducial tracking would be sufficiently accurate, the tradeoffs between

camera resolution, tag size, and tracking speed have not been fully explored. In

some configurations, AprilTags can have very solid position and orientation tracking,

but are computationally intensive to detect and localize in typical webcam images.

More tags also leads to longer computation time, increasing the latency of the robot

control loop. Parallelizing the implementation of the AprilTag library could improve

it significantly, but is out of scope for this work. The latency and accuracy problems

with AprilTags could be mitigated in a number of ways. First, the resolution of

the camera can be increased while keeping the tags the same size and the camera

the same distance away. Increasing the image size requires more computational

power to process the larger image, in order to keep the tag detection framerate high

enough to be useful for realtime control. Decreasing the size of the image being

checked for tags increases the speed of tag detection, at the cost of requiring larger

tags in order to have them legible in the lower-resolution image. The update rate

places an upper bound on the ability of the system to respond to the motion of

the robots. The tag size could be increased, either by moving the tags closer to

the camera and increasing their visual size, or by actually making the tags larger.

Moving the camera closer reduces the useful area of the robot arena, and making

the tags larger increases the size and weight of the robots, potentially overbalancing

some of the less nimble robots.

The effect of the noise in subpixel position on the perceived rotation of

the tags is larger than its effect on the perceived rotation of the tags, since rotation

around the center of the tag does not change the position of its center at all. As

98

a consequence, the tags could be detected to be in lateral motion by comparing

the displacement of the center of the tag and checking that it was greater than

the expected noise, but detection of rotational motion and velocity calculation was

sometimes swamped by noise.

The noise was also determined to be unevenly distributed over the robot

arena. Because the arena is wide, a 140◦ wide-angle lens is used to ensure that

the entire arena is visible. ROS provides tools for removing the distortion inherent

in the use of a wide-angle lens, but at the cost of decreased effective resolution at

the edges of the image. This decrease in resolution results in reduction of subpixel

location accuracy, and so increased noise in localization of the tag at the edges of

the arena closest to the edges of the camera image.

Because the desired figure-8 motion could not be performed with the

rotational localization noise present in the system, the robots were instead com-

manded to move forward 0.25m, stop, and repeat that sequence of actions until the

program was stopped. The program was stopped if the robot was about to run into

the wall of the arena, or had entered a state in which it could not move forward

anymore. Acceleration during the movement phases was managed by increasing

the commanded velocity of the robot until the AprilTag tracking detected that the

robot had begun moving. Once the robot began moving, it was not commanded to

change velocity until it had moved at least 0.25m. In the following descriptions of

the motions of the robots, the directions left and right are relative to the direction

of travel of the robot.

The Ackerman-steering toy car (Figure 3.8a) displayed very consistent

mobility. In four out of its five runs, it crossed the arena without incident. In one

run, it started and went a small distance, but then did not start again. However,

the Ackerman-steering toy car has a gearbox that permits backdriving, so when

99

(a) Motion of toy car based robot, showing
long tracks across arena

(b) Motion of big wheel robot, showing no
track due to the loss of tracking as the
robot either did not move, or flipped over

Figure 3.8

commanded to stop, it coasts for a few centimeters. The toy tanks use a worm gear

in their drivetrains, and so do not permit backdriving of the motors by the vehicle’s

inertia. Instead of coasting, they immediately stop when the motor is commanded

to 0 velocity.

The big wheel robot (Figure 3.8b) displayed an unfortunately small

range of commanded velocities between those that caused it to begin moving, and

those that caused it to flip over on its side. In three of its five runs, the big wheel

accelerated quickly and then flipped during the first motion period. In the remaining

two runs, it did not move at all, possibly due to gears jamming.

The Hexbug-branded 6-wheeled bug (Figure 3.9a) displayed an asymmetry

in its motor drive speeds. For three of its five runs, both motors ran, and the

wheels on both sides rotated, but the right side was driven more quickly, and so

the robot made a wide arc to the right and hit the wall of the arena behind the

starting location. In one run, one side did not begin moving at all, causing the

robot to rotate rapidly around that side. In another run, the robot twitched briefly,

remained still, and then accelerated backwards quickly. This was likely caused

100

(a) Motion of 6-wheel bug, showing tight
arcs and spirals caused by different motor
speeds

(b) Motion of green tank, showing one
successful run and four tight spirals due
to a stopped track on one side

Figure 3.9

by the gradual incrementing of the forward velocity eventually causing an integer

overflow, resulting in a large forward velocity command being interpreted as a large

negative velocity.

The green tank, carrying the number 0 AprilTag (Figure 3.9b), experi-

enced problems with one side of its drive train in three of its five runs. One tread

drive did not move, while the other did, resulting in tight turns to the left in two

runs, and to the right in one run. In one of the two remaining runs, the green tank

did not move at all. In the second, the tank alternated movement and stopped

periods until it reached the other side of the arena, which constituted success on

this test.

There are two blue tanks, carrying AprilTags numbered 8 and 18. Tank

number 8 (Figure 3.10a) moved slightly on four of its 5 runs, and did not move

on one of them. At no point did it move the full 0.25m. Tank number 18 (Figure

3.10b) moved much more consistently, but displayed an arc to the right in four of

its 5 runs. In one run, the tank failed to restart after one of the stop phases, and

eventually accelerated quickly in reverse. As with the 6-wheeled bug, this was likely

101

(a) Motion of blue tank #8, showing lack
of motion

(b) Motion of blue tank #18, showing
arc to the right on most runs, and over-
flow leading to sudden reverse (light yellow
track)

Figure 3.10

the failure of the robot to move leading to a long enough delay that incrementing

the commanded acceleration resulted in an integer overflow.

Figure 3.11: Motion of bug robot, showing tendency towards the left and more
erratic path than tracked or wheeled robots

The single-motor Hexbug-branded blue bug (Figure 3.11) moved consis-

tently, but with a heavy bias towards turning to the left. In every run, it started

and stopped, but the curvature of the path to the left caused it to run into the left

side of the arena. During one run, it fell over while moving, due to the somewhat

“bouncy” nature of the toy’s gait.

102

Some of these problems, such as the coasting of the Ackerman-steering

car and the biases towards the left or right of some of the robots when commanded

to move straight, can be overcome by software. For example, assuming the tags

could be used to accurately measure the rotation of the robots, error between the

detected rotational velocity and perceived rotational velocity could be accounted for

in subsequent motion commands. The Ackerman-steering car drift could be reduced

by sending a “brake” command to the motor driver IC to activate its back-EMF

braking mode, rather than simply stopping by reducing the power output to zero.

However, some of the problems are more difficult to alleviate. The tendency of

the big wheel robot to flip over could be mitigated by very gradually increasing

its speed, at the cost of reducing its control responsiveness, or by increasing the

frequency of the feedback loop that checks its speed. Perhaps the blue bug would

not fall over if its height were reduced, or the battery were placed lower on the body

of the robot. However, these mechanical problems could be more easily avoided by

simply not using toys that have them.

3D Printed Robots

Because the toys were demonstrated to be unreliable as motion platforms, a new

design for the motion platform was developed using a 3D printer. For this version

of the TinyRobos, the motor selected was a commercially available miniature

gearmotor. The gearmotor was selected because it was cheap, easily available

from Amazon.com, and used the same voltage that the TinyRobo drive boards

used. The motors used were listed on Amazon as “NW 3pcs 3V Micro Planetary

Reducer Motor High Torque DC Motor DIY Robot Gearbox Motor”. Unfortunately,

these particular motors are from an unknown supplier, and as such, may become

unavailable. However, a number of sellers are offering the same motors, or motors of

103

similar size that could be used as replacements if the 3D print design were altered.

The motors cost $9.69 for a package of three, so $3.23 each or $6.46 for the pair

needed for a robot. Given that the toys being used as mobility platforms cost $8-20,

depending on the volume purchased, even purchasing these motors at retail cost

was a savings over using toys. The motor has a planetary gearbox, and a plastic

output shaft.

The 3D printer used is the Monoprice Maker Select Mini (MPMSM),

which costs approximately $200 at the time of this writing. The MPMSM has a

120mm3 build volume, and can print two robot chassis at the same time, as well

as wheels for them. Wheels were designed to be 3D printed along with the robot,

and glued to the output shaft of the motor. 3D printing provides the flexibility to

change the motor mounts of the robot to accommodate various motors. The 3D

printed components of the robots do not add significantly to the cost of the robots.

Material for 3D printers is generally sold in spools containing 1kg of filament for

$15-35, although some types of material are much more expensive, depending on

the qualities of the material. The robots described were printed in Hatchbox brand

polylactic acid (PLA) filament, which costs $20/kilogram. The resulting prints are

approximately 25g of material, and so contain $0.50 worth of material.

On top of the 3D printed TinyRobo, posts can hold up an LED ring for

color blob tracking, or any kind of trackable code. The LED rings have 12 RGB

LEDs, which can be lit to indicate the robot’s heading to the camera, but can also

convey information to the user. For example, robots could illuminate LEDs based

on the value of a sensor, resulting in a visible map over the swarm of the sensed

quantity at the location of each robot. They could also illuminate a single LED

pointing to the next robot in a chain, and so indicate a path that the user could

follow.

104

Figure 3.12: 3D printed robots, two with LED rings and one with an AprilTag for
tracking. The LED rings are intended to display computer-trackable constellations
and human-readable information.

Because the 3D printed robots all used the same motors, there was no

need to have them use an adaptive velocity control for drive testing as in the drive

test for the toys. Instead, they could be commanded to move at a fixed velocity,

and observed from the camera. However, the low output speed of the geared motors

meant that the thresholds for detecting that the robot had stopped and started had

to be changed. Once the program was adjusted so that it could detect the robot’s

motion or lack thereof correctly, the robots were commanded to move 0.25m, stop,

move 0.25m and so forth until they ran into a wall of the arena. Once the robot

hit a wall, it was reset and run again for 5 attempts. Each 3D printed robot was

tagged with an April tag, numbered 2, 3, and 5.

Robot 2 missed the first stop command on two of its runs, but worked

normally for subsequent stop commands. It stopped and started regularly on the

105

other three runs. Robot 2 made a long arcing path to the left, indicating that one

motor was running slightly faster than the other, or acquiring more traction. This

sort of error can be compensated for by feedback, assuming the robot can detect its

own trajectory.

Robot 3 missed all the stops on its first run and the first stop on its

second run. On its last three runs, it started and stopped as expected. Rather than

arcing left as with Robot 2, Robot 3 arced to the right.

Robot 5 also had an arc to the right. For its first run, it missed the last

stop, but otherwise functioned correctly. On its second run, Robot 5 started and

stopped correctly, but hit something on the floor of the arena that caused it to turn

more sharply right. On its third run, the system incorrectly detected that robot

5 had started after coming to a stop, and so began waiting for it to move 0.25m.

The robot was not actually moving, so this condition would not have resolved. For

run four, Robot 5 stopped during its first move and did not restart. The cause of

this error is unknown, but it is possible that it was erroneously detected as having

started before it did, and so was not sent motion commands to start. On the last

run, Robot 5 started and stopped as commanded until it was nearly at the wall,

and then one wheel got stuck on a bit of wood on the arena floor, causing the robot

to spin around that wheel.

Overall, the 3D printed robots were more reliable than the majority of

the toy bases, in terms of runs completed. However, a direct comparison cannot

be easily made due to the changes that had to be made to accommodate the new

bases. The use of a fixed velocity command for the forward motion is particularly

problematic, as the gear ratio on the 3D printed robot motors is much higher than

the gear ratio on most of the toys. As a result, a command that moves the 3D

printed robots at 3-4cm/sec will set the toy tank bases moving too quickly for the

106

camera to track them. The detection of robot motion also had problems due to the

noise in the April tag detection and the low speed of the robots. The missed stop

commands in the runs of the 3D printed robots were caused by the movement of the

robot between successive updates of the tag tracking being sufficiently small that it

was less than the expected noise of the AprilTag tracking, and so was considered

noise and ignored. As a result, the robot was never detected to be moving, and

so was never commanded to stop. Similarly, when the robot was moving, if its

detected motion was sufficiently slow that it would fall below the noise floor, the

robot was detected as having stopped, and so would not be sent a command to

stop, as the system regarded it as having already stopped. Given more accurate

tracking, the 3D printed robots could be expected to have fewer false starts and

erroneously-detected stops.

Currently, the 3D printed TinyRobo base suffers from a problem also

seen in E-Pucks: the edge of the robot can catch on small obstacles, and so there

is still at least a little work that could be done to improve the shape of the 3D

base. The flexibility of the 3D printed design also opens up possible extension to

hardware with e.g. whegs or other unusual forms of mobility. These directions have

not been explored in any depth. It is unlikely that any single design is best for all

users, but development of various designs using the same control hardware could

produce a library of designs with different features to suit different tasks.

Conclusion and Discussion

One goal of the personal project that this work developed from was to provide

an inexpensive swarm platform that could be used by hobbyists and other non-

traditional researchers to work with swarms. The required reduction in price was

107

intended to be accomplished by combining the diminishing cost and increasing

power of Internet of Things (IoT) networking modules with the ready availability

of toys to create a system that lowers the barrier to development of multi-robot

systems.

The use of toys as a source of drivetrains for swarm robots proved to

be unsatisfactory due to the lack of reliable motion provided by inexpensive toys.

Sensors and networking can be virtualized, as in TinyRobo and GRITSBots, but

no amount of clever programming will compensate for balky motion. The use of

direct drive, as in GRITSBots or mROBerTO, provides a more reliable method of

locomotion, because the resulting drive train will be sealed against foreign matter.

Further, the use of stepper motors in GRITSBots provides some degree of precision

in motion control by directing the motor in steps of known resolution, rather than

commanding a particular speed. If the system requires additional torque, sealed

micro gearmotors can provide increased torque (although with reduction in speed),

and will be more reliable than adapting a drivetrain from a toy.

Adapting drivetrains from toys also adds the expense of purchasing the

toy to the total robot cost. This cost is frequently unnecessary, as the chassis of

the robot can be constructed from the same printed circuit board (PCB) that the

electronics are supported on. Over the scales of forces present in tabletop swarms,

PCB can be considered completely rigid, and electronics solder provides sufficient

mechanical strength for motor mounts. The use of custom mechanical assemblies

(e.g. in Jasmine micro robots) adds complexity to the build process. Where possible,

small robots should be designed to use the PCB instead. Using children’s toys

in TinyRobo was intended to avoid the use of custom parts, but brought with it

additional problems that were outside of the scope of the work to solve, and could

have been avoided with a simpler drivetrain. The use of hobby-level or toy-like

108

platforms for swarms is not certain to be a dead-end, as the UB Swarm and the

Spider-bots demonstrate, but the cost of sufficiently high-quality toys to produce

a sufficiently reliable swarm will drive the overall cost up [Patil, Abukhalil, Patel,

and Sobh, 2016; Price, Laird, and Raptis, 2014].

Ultimately, the resulting swarm hardware platform does demonstrate

that Hypothesis 1, that commodity hardware can enable the construction of an

indoor swarm for under $30 per robot, is correct, assuming parts are purchased

in sufficient quantities. As seen in Table 3.1, the cost of an individual TinyRobo

control board is just under $12, if parts are purchased in quantities for 100 robots,

which is on par with the cost of Kilobots, which cost $14 for parts, if the parts are

purchased in sufficient quantity to produce 1000 robots. The 3D printed chassis

consumes approximately $0.50 worth of material, and the motors add just under $4

in 100-robot quantities. The total price per robot is then $16.50, well under the

$30 target. Unfortunately, in single quantities, the cost of the TinyRobo controller

climbs to $23, and the cost of the motors to $6.96, putting the total cost including

3D printer material at $30.44. This is only slightly over the target cost, and could

likely be reduced by changing the selection of semiconductors in the power regulation

section of the TinyRobo board, or by finding slightly cheaper motors.

109

Chapter 4

User Gesture Collection

Multitouch gestural interfaces, like those found on tablets and smartphones, offer

the possibility of a very direct user experience, especially compared to the Windows,

Icons, Mouse, Pointer (WIMP) interface design. Rather than, for example, using

an arrow key to scroll in a document, the user can drag the document directly, as

though they were sliding a piece of paper on a table.

This directness is a hallmark of what has come to be called Natural User

Interfaces, or NUI. A natural user interface is one that allows the user to re-use

existing skills and natural motions to interact directly with content [Blake, 2010].

In practice, this means that the elements of the interaction are actions such as

pointing and other gestures, drawing with a pen, speech, gaze, and so forth, rather

than computer-specific interface devices. By way of contrast, the command line

interface is defined in terms of typing with some form of keyboard, and the graphic

user interface is (in most cases), defined in terms of mouse actions.

However, as the number of operations the user wishes to perform increases,

the limitations of multitouch screens become more apparent. Screens are flat, and

110

so only afford 2-dimensional gestures, such as dragging, poking, and tapping. Even

if the screen depicts a 2-dimensional projection of a 3-dimensional world, operations

that would make sense in the 3D world, such as grasping, have to be mapped to the

2-dimensional space of operations to be performed. Typically, the gestures used to

perform the available operations are chosen by the interface developer, and the user

is trained to perform them, possibly by a short tutorial program [Wobbrock et al.,

2009; Vanacken, Demeure, Luyten, and Coninx, 2008; Freeman, Benko, Morris,

and Wigdor, 2009].

Unfortunately, the use of screens with interactions inspired by the af-

fordances of physical objects leads to the user having to decide between “natural”

skills and motions, which are used on physical objects, and the skills and actions

used with screens: single-point dragging and clicking. Most users understand that

they are looking at pictures of things on a screen, and so default to single-point

interactions [Vanacken et al., 2008]. Further, tangible UIs, a subset of UIs that

include real, physical objects for the user to interact with, raise a set of possible

interactions that the designer may not forsee, or that the system may not be able

to support [Hornecker, 2012]. Attempting to leverage the affordances of a physical

object by depicting it on a screen adds another gap, where, in addition to failing to

account for all of the affordances of the physical object (e.g. hitting it with another

object), the system also fails to account for the affordances of a picture of an object

(e.g. shrinking or enlarging it, which a real object cannot easily do). Additionally,

even if these affordances are handled, they may not have clear meanings. What

does it mean to use a photograph to hit a text file?

The behavior of users interacting with an NUI device is not solely in-

formed by their intuitions about the physical objects represented on the screen.

Smartphones, tablets, and other multitouch user interface devices, as well as specific

111

types of computer programs, such as CAD and realtime strategy game programs,

also inform the user’s expectations about interactions with new interfaces. Rather

than claiming that the users are untrained, and the gestures are “intuitive,” it would

be more accurate to claim that the users already have a form of training, from

the devices that they use in their daily lives. This work attempts to discover the

gestures that users would choose themselves, based on their own thinking about the

interface and their own past experience with computer technology such as tablets,

smartphones, and video games.

User-defined gestures have advantages in memorability and user preference

over gestures designed by the researcher or interface programmer [Nacenta, Kamber,

Qiang, and Kristensson, 2013]. However, the study that indicated this preference

was for gestures that each user explicitly defined for themselves, rather than a

gesture set that was constructed by eliciting gestures from the users during task

execution [Micire et al., 2009]. By exending the task-oriented gesture collection

from single or small groups of robots to swarms, this work attempts to discover if

the gestures that users select vary with the number of robots available.

Experiment Setup

The multitouch user interface device used in this experiment is a 3M M2265PW

touchscreen. This screen can track up to 20 simultaneous points, but reports only

points, rather than shapes or areas of contact. While the user interacted with the

touch screen, their touches and the positions of their hands were recorded by the

computer connected to the screen and by the video cameras. One video camera was

placed high, looking down at the screen, to track where the user’s hand position

over the screen. The other video camera was placed in front of the screen at a low

112

Figure 4.1: Experiment setup, showing, L to R, the survey computer, microphone,
cameras and multitouch interface device, and an example robot.

angle, in order to observe whether the user’s hands were touching the screen, or

moving above it. In addition to screen contacts and video, users were asked to think

aloud about their actions. A microphone placed near the screen was used to record

everything that the user said.

The software used to record all of this information is ROS, the Robot

Operating System [Quigley, Conley, Gerkey, Faust, Foote, Leibs, Wheeler, and

Ng, 2009]. ROS was developed as a message-passing framework and hardware

abstraction layer for robots. Software using ROS is implemented as “nodes,” which

communicate by passing messages, generally in a publisher/subscriber pattern. The

format of the messages is formally defined, and the generation of the code for

generating messages and handling routing of messages is provided by ROS.

It may seem unusual to use a framework intended for operating robots

as a recording program for collecting experiment data, but ROS provides a utility

called rosbag that records some or all of the messages emitted by ROS nodes in a

113

“bag” file. In this case, the cameras, microphone, and UI application are all recorded

by rosbag. A ROS launch file starts multiple ROS nodes to record image data from

the cameras, audio from the microphone, and touch events and screen updates from

the UI. ROS also provides tools for manipulating bag files, and playing them back.

All of the data in the file is timestamped, so it plays back with the audio, video,

and UI interactions all accurately synchronized. Because all of the data is treated

as standard ROS message types, it is relatively easy to write custom processors

for the recorded data. For example, a node was written that accepts the replayed

UI screen changes and touch events, and renders them as a stream of ROS image

messages showing the contact points overlaid on the UI screen. Ultimately, the

entire data stream was rendered to video, as the rosbag playback does not support

rewinding the playback, and being able to re-view a section conveniently was useful

for coding.

Users were seated in front of the interface and read a script describing

the system and the experiment. The user interface displayed alternating slides of

instructions to the user, such as “Move the robots to area A”, and interface screens

for them to interact with. The interface did not visibly respond to user contact or

move the robots depicted on it. In this regard, it more closely resembles the paper

prototypes of the User-Centered Design process than a fully functional interface

[Ehn and Kyng, 1992].

Some users were initially confused by the interface not responding. It

may be that running this experiment on a computer, rather than a paper prototype,

contributed to the user expectation that the system could react. Paper prototypes,

obviously, do not change in response to the user performing an action, although

the experimenter may show the user new sheets of paper depicting the next state

of the interface. However, most users’ experience with touch screens is that when

114

they touch them, something visible happens nearly immediately. A system that

does not visibly react, as in this experiment, is usually assumed to be broken, or

waiting for further input.

For future work, it may be desirable to structure attempts to elicit user

gestures as in Wobbrock et al. [Wobbrock et al., 2009]. The experiment described

in this section showed the initial situation, and asked the users how they would

make a specific change. Wobbrock et al. showed the change occurring, and then

asked the users what command they would issue to cause that result. Showing the

response before asking for the gesture removes the expectation that the system will

react.

Unfortunately, showing the response of the system may also act as a cue

to the user that suggests a specific solution for gesture selection. For example, if the

system shows a square formation being formed by multiple robots moving directly

to the closest point on the square to their starting location, the paths shown are

multiple direct motions. If instead, the system shows the robots forming a chain

that snakes around the perimeter of the square before coming to a stop, the path

shown is forming the snake, and then traversing the perimeter. The motion in the

first case may suggest that the user make individual gestures to position each robot,

while the gesture suggested in the second case might be more like dragging a lasso

around the group and then a line from the group around the perimeter of the box.

Even for simple cases like moving to a target area, if the robots are shown moving

along a path, it might discourage the user from using waypoints instead of dragging

a path.

115

1 10 100 1000 Unknown
Move to area A x x x x x
Move to area A with a wall x x x x x
Stop the robots x x x x x
Divide around an obstacle x x x x
Orange to B, red to A x x x x x
Orange to A, red to B x x x x x
Orange to A, red to B (mixed) x x x x x
Divide group x x x x x
Merge groups x x x x
Form a line x x x x
Form a square x x x x
Move the crate to area A x x x x x
Move the crate to area A (dispersed) x x x x x
Mark defective robot x x x x
Remove defective robot x x x x
Patrol the screen border x x x x x
Patrol area A x x x x x
Disperse over screen x x x x x

Table 4.1: User tasks per condition.

Experiment Conditions

Each user was assigned to one of five conditions, varying by how many robots were

in each condition. The conditions consisted of 1-2 robots, 10 robots, 100 robots,

1000 robots, or an unknown number of robots. In the unknown number condition,

the area the robots were present in was represented by a cloud. For each condition,

the user was requested to perform a sequence of tasks. The exact number of tasks

varied between conditions due to some tasks not making sense with the number of

robots involved, as shown in Table 4.1.

The individual robot case is lacking the tasks that do not make sense

for a single robot. A single robot cannot, for example, divide around an obstacle

or form a square. The “Merge groups” task was left out of the single robot case

because of the potential for confusion when referring to a single robot as a group.

116

Figure 4.2: Instructional slide and situations for moving around the wall to area A,
in each condition.

117

The unknown number of robots condition has the same tasks as the 10,

100, and 1000 robot cases, except for the “Mark defective robot” and “Remove

defective robot” task. Without UI elements that represent individual robots, the

user cannot take any actions that refer to a specific robot.

Participant Demographics

Participants were recruited through fliers distributed on campus and in the sur-

rounding city. The recruitment process and experiment were approved by the

UMass Lowell institutional review board. The experiment had 50 participants, 10

in each condition. 28 of the participants were male, 22 were female. The average

age of participants was 22.1 years, with a standard deviation of 3.16.

These demographics are representative of the location that the study was

performed, the campus of an American college. It has been suggested that research

in psychology focuses too much on a population that is WEIRD (Western, Educated,

Industrialized, Rich, and Democratic), and that the results of such studies may not

generalize beyond that population [Arnett, 2008]. However, for the purposes of this

study, particularly assessing the influence of smartphone use on expectations of

user interface gestures, it is useful to have a population with significant experience

using smartphones, which are a product of both rich and industrialized societies. It

is not proposed that the results of this work generalize to humanity as a whole.

Analysis

User gestures were coded using a methodology adopted from the social sciences,

Grounded Theory [Glaser and Strauss, 2017]. Grounded Theory is an iterative

process, where the data are first coded at a very fine-grained level, and then the

118

resulting coded elements are compared to each other to try to determine their

qualities, similarities, and differences. Codes can be consolidated or divided until

repeated passes of coding and comparison no longer alter the emerging structure

of the coding scheme. During each iteration of coding and comparison, the coder

makes memos as well, describing the links they see between related coded elements

and higher-level abstractions that relate the elements. These memos are eventually

written up as a social scientific theory that is believed to be grounded in the data

because it arises from the coding process.

Initial Coding Pass

The inital pass used open coding, where the “codes” were essentially free-form text

entry. Rough counts of the open codes for the first 10 participants indicated that

ten of the codes covered 81% of the 580 total coded events. The ten most heavily

used codes are, in order of occurrence: drag, tap, voice command, box select, 2

finger drag, double-tap, lasso, tap and hold, 2 handed drag, reverse pinch, and

parallel hands. This coding pass indicated that a majority of the user actions could

be coded as some form of drag, some form of tap, box or lasso selection, pinch, and

parallel hands.

The most common code was “drag”, which accounts for 37.58% of the

rough coding, or 42.07% if all forms of drag in the top ten codes are considered.

“Drag” is when the user places one finger down, moves it to another location, and

raises it again. Two finger drag is the same, only with two fingers on the same hand

placed on the screen rather than one. Two-handed drag is single-finger drag, but

executed with both hands at the same time.

The second most common code was “tap”, with 20.34% of the rough

coding, or 25.34% if tap, double-tap, and tap and hold are all considered. Tap is

119

when the user places a finger down and then very quickly raises it again. Double-tap

is two taps in the same location in quick succession. Tap and hold is when the user

places their finger on the screen and leaves it in one place for more than a second

before raising it.

Box select consists of a diagonal (relative to the screen edges) drag gesture

over the robots or another object on screen, with the intent to select everything

within the box whose diagonal is represented by the drag. Lasso select is a drag

that ends near where it began, forming a loop, with the intent to select everything

inside the loop.

Pinch and reverse pinch are essentially two-hand drag or two-fingered

drag but with the hands or fingers moving towards (pinch) or away (reverse pinch)

from each other. This gesture is common for zooming in multitouch user interfaces

on smartphones.

Voice command was used to code when a user spoke a command out loud,

rather than using gestures. The high incidence of voice commands (7.07% of all

codes) in the first ten users can be attributed to a single user who issued commands

almost exclusively through voice. The final gesture, “parallel hands” is placement

of the hands, palms facing each other, over some area of the screen. This gesture

was used many times by the same user who issued voice commands, to indicate

where the robots should form a line. Because parallel hands only accounted for

0.69% of the gestures, it was left out of the development of the coding application

for the second stage of coding.

Second Coding Pass

To facilitate coding in the second pass, an application was developed to record

codes. The application has coding functions for the six most common gestures:

120

drag, tap, voice command, box select, lasso select, and pinch. It also includes

coding functions for user interface elements described by the user, such as buttons

or menus, a function to code user gestures not covered by the six most common

gestures, and a function for coders to enter free-form text memos.

A second pass of coding of the first ten user recordings was performed by

two coders. Because the coders were responsible for deciding which user actions to

code, as well as how to code them, it is possible for one coder to miss a gesture that

another coder codes, or to split a single gesture into two coded units instead of one.

For example, one coder initially split spoken commands at conjunctions such as

“and”, resulting in two units both coded as voice commands, while the other coder

coded the entire sentence as a single unit. This leads to the possibility that for a

single task, the coders will produce different length lists of coded units.

Cohen’s κ is a measure of inter-coder reliability for categorical items, but

it assumes that both coders are coding the same number of codable units [Cohen,

1960]. In order to calculate inter-coder reliability in the presence of potentially

missing data, the shorter of the two lists of codes for each task was padded with

a code for “no data”. The codes were then aligned chronologically, with pairs

consisting of an item from each list such that the total time error within the task

was minimized. As a result, the alignment process created pairs of a valid code

and the “no data” code for the codes in the longer list that did not have a good

chronological match in the shorter list. This was based on the assumption that the

source of the error is one coder missing an event that did occur, rather than the

other coder coding an event that did not occur.

The initial pass of coding got poor inter-coder reliability, with the first

10 participants having an average Cohen’s κ of 0.422. Cohen’s κ of over 0.75 is

excellent agreement, 0.4-0.75 is fair, and below 0.4 is poor, so the average κ was

121

barely above the cutoff for fair agreement [Fleiss, Levin, Paik, Shewart, and Wilks,

2003].

Analysis of the data, particularly with confusion matrices, showed several

problems. The simplest was training error in the training of the coders. One coder

had not been instructed that the “UI” code existed, and so had coded user interface

widgets as “tap” events. This was immediately apparent in the confusion matrix

as a very high confusion between UI and tap events. The other main source of

confusion was lasso and box selection actions being coded as drag events, and vice

versa. The actual action performed in a lasso is a drag, in that the user puts their

finger down and drags it in a circle around something before lifting it again, but it

is intended as a selection of the things inside the circle rather than e.g. drawing a

circle shape.

In order to reduce these errors, and ensure consistency in training the

coders, the descriptions for each code were written up in discussion with the coder,

so that questions about interpretations could be answered in advance and recorded.

The codes were box selection, lasso selection, drag, tap, pinch, ui widgets, voice

command, and other. The coding definitions, as presented to the coders, are

documented in Appendix A. Another coder was trained with the code description

document, and coded the first 5 participants. This coder obtained an average

Cohen’s κ of 0.794 with one of the original coders. These values indicate a very

high level of agreement, so the remaining videos were coded by these two coders,

using the description of the codes from the code description document.

The resulting data set had 3,256 individual gestures coded. For analysis,

drags that were used to draw something on the screen were separated from non-

drawing drags. Taps were separated into single, double, and triple taps, plus tap

and hold. Pinch was separated into pinch (where the contact points move towards

122

Gesture Count Percent
Drag 1084 33.29
Draw 761 23.37
Tap 514 15.78
Other 189 5.80
Lasso 184 5.65
Box Select 113 3.47
UI 112 3.43
Double tap 95 2.91
Hold 66 2.02
Reverse Pinch 49 1.50
Voice 44 1.35
Pinch 26 0.79
Triple Tap 19 0.58

Table 4.2: Gestures used by experiment participants, by count and as a percentage
of the total gestures used. This table includes example gestures in the counts, as
defined in appendix A.

each other) and reverse pinch (where the contact points move apart). All of these

divisions were based on modification flags recorded by the coders during the coding

process.

Selection Gestures

One area in which the gestures were expected to change between conditions is the

use of selection gestures. The intuition behind this expectation is that for small

numbers of robots, there is no need for a gesture that selects groups, as the user

can interact directly with each robot. Similarly, in the case where no individual

robots are displayed, the use of group selection gestures would be minimal, as the

group is presented as a single cloud.

Users performed selection of robots in groups by box select, lasso, and

UI interactions. These selections were counted by condition by counting lasso or

box events that had a robot or robots as their targets. Single selections of robots

123

Condition Box Select Lasso Tap Total (condition)
Unknown 0 1 43 44
One 0 3 78 81
Ten 26 105 140 271
Hundred 68 53 35 156
Thousand 18 16 22 56
TOTAL 112 178 318 608

Table 4.3: Per-condition total use of selections

were performed by tapping on the robot. Similarly to the count of group selections,

tap events were counted where the object of the tap event was a robot or robots.

The ten robot case has the most selection gestures for either group or

single selection. As was expected, the unknown number and single robot cases have

very low counts of group selections. Interestingly, the thousand robot case also has

relatively low group and single selection use, especially compared to the ten robot

case.

To determine if these differences were statistically significant, the count

of each user’s gestures per task were normalized by dividing by the total number of

gestures that user used to perform the task. Normalizing in this manner converts

raw gesture counts to a proportion of the total gestures used on that task, preventing

more verbose users from dominating the analysis.

The tasks checked for statistically significant differences between condi-

tions were those that all conditions had in common. These nine common tasks

are ‘move crate’, ‘divide by color (cross)’, ‘divide by color’, ‘move to a’, ‘move to a

(wall)’, ‘patrol a’, ‘patrol screen’, ‘split’, and ‘stop’. Across all the common tasks the

proportions of each gesture were collected per gesture, resulting in, for each gesture,

5 lists, one for each condition. Each list consists of 90 entries, 10 users times 9

common tasks. Each list entry consists of the proportion of that gesture the user

used to complete the task. ANOVAs were performed for each pair of conditions.

124

Unknown One Ten Hundred Thousand
Unknown 0.5622 0.1772 0.0006 0.0193
One 0.0389 0.0030 0.0015
Ten 0.1089 0.2719
Hundred 0.5457
Thousand

Table 4.4: P-values for the use of tap as select between conditions

For uses of tap as selection across the common tasks, the unknown number

condition differs from the hundred (F=7.6964, p=0.0061) and thousand (F=5.5772,

p=0.0193) robot conditions. The one robot condition differs from the ten (F=4.3299,

p=0.0389), hundred (F=13.5889, p=0.0003), and thousand (F=10.4274, p=0.0015)

robot conditions. These differences are summarized in Table 4.4.

For uses of group selection across the common tasks, the unknown number

condition differs from the ten (F=47.635915, p <0.0001), hundred (F=60.435124,

p <0.0001) and thousand (F=10.2346959, p=0.0016) robot conditions. The one

robot condition differs from the ten (F=47.6359, p <0.0001), hundred (F=60.4351,

p <0.0001), and thousand (F=10.2347, p=0.0016) robot conditions. The ten robot

condition differs from the thousand robot condition (F=19.0110, p <0.0001). The

hundred robot condition differs from the thousand robot condition (F=30.2373, p

<0.0001). The identical F and p values for the one and unknown robot conditions

and the various conditions that they differ from are because for the one and unknown

robot conditions, no group selection gestures were used in the common tasks. These

differences are summarized in Table 4.5.

Examining the non-normalized counts of taps as selections and group

selections across both the common tasks and all tasks indicates that heaviest use

of tap selection is in the ten robot case. Heaviest use of group selection is in the

hundred robot case, but the ten robot case only lags it by two uses. The second

heaviest for group selection is the hundred robot case, while the second heaviest for

125

Unknown One Ten Hundred Thousand
Unknown * 0.0000 0.0000 0.0016
One 0.0000 0.0000 0.0016
Ten 0.1808 0.0000
Hundred 0.0000
Thousand

Table 4.5: P-values for the use of group selections between conditions. The ANOVA
between the unknown case and the single robot case was not computable, as no
group selections were used for the unknown case or the single robot case for the
common tasks.

Common Tasks All Tasks
Unknown 0 1
One 0 3
Ten 55 107
Hundred 60 109
Thousand 15 28

Table 4.6: Counts of group selection gestures in the common tasks and all tasks.

Common Tasks All Tasks
Unknown 15 29
One 38 53
Ten 45 108
Hundred 4 29
Thousand 7 18

Table 4.7: Counts of tap selection gestures in the common tasks and all tasks.

126

Sequence Count Mean Length Standard Deviation
Unknown 28 1.0357 0.1856
One 42 1.2619 0.5798
Ten 72 1.5000 1.6499
Hundred 23 1.2609 0.4391
Thousand 17 1.0588 0.2353

Table 4.8: Lengths of sequences of taps within conditions.

tap selection is the single robot case. This seems to indicate that with single robots,

users prefer tap selection, with one hundred robots they prefer group selection, but

with ten robots, either selection method could be viewed as appropriate.

It was surmised that users may have been performing multiple tap

selections in a row to select robots in the ten robot case, but that a 10-robot tap

selection would be condensed by the normalization into the same proportion of the

overall gestures as a single-robot tap selection. To check if users were performing

multiple taps in a row as selections, the lengths of sequences of tap actions were

checked across all cases. As seen in Table 4.8, while the ten robot case does have a

much higher count of sequences of taps, the mean is higher than the other cases,

and the standard deviation is much higher. On examining the data, there was

exactly one case of a 10-tap sequence in the ten robot case. While it is possible

that a user in the ten-robot case might perform a selection by tapping each of the

ten robots, it is not a common occurrence.

Multi-hand Gestures

Multi-hand gestures fall into two different groups. The first group is gestures where

each hand is performing part of a single gesture. Generally, these were pinches

and reverse pinches with one finger on each hand. The other group of multi-hand

gestures consists of a simultaneous pair of different gestures, one performed with

127

Gesture Pair Count
Drag and Drag (Different Objects) 26
Pinch 22
Reverse Pinch 7
Tap and Tap 6
Drag and Ttap 6
Drag (Same Objects) 5
Other and Other 5
Box Select and Box Select 3
Box Select and Tap 1
Box Select and UI 1
TOTAL 82

Table 4.9: Two handed gesture pairs. Note that the total is lower than the actual
count of total gestures, since it counts e.g. two simultaneous drag actions as a single
two-handed drag action.

each hand. For purposes of coding, dragging one object to one place with two

fingers was coded as a single drag with two fingers, while dragging two objects to

two different places was coded as two single-fingered drags at the same time.

There were 82 instances of two-handed gesturing, which makes up 2.519%

of the gestures used. Fifty percent of the users performed at least one two-handed

gesture. This is fewer than in some previous research, but more than might be

expected if users were generalizing from single-point mouse interaction [Micire,

2010; Epps, Lichman, and Wu, 2006]. Epps et al. required users to use a single

hand for over half of the gestures in their study, and they point out that their use of

a Windows desktop as the working environment of the study may have influenced

people towards a single-point interaction style.

Most of the two-handed gestures were simultaneous drags of two different

objects. Simultaneous drags and two handed pinches or reverse pinches account for

58.5% of the two-handed gestures.

Due to the prevalence of smartphone adoption, it is no longer simple

to determine if smartphone use contributes to the use of pinch and reverse pinch

128

Task 2-Handed Gesture Count
Merge 14
Divide 12
Square 12
Divide Color 2 9
Patrol Screen 9
Split 6
Divide Color 1 5
Divide Color Mix 4
Move Wall 4
Line 2
Move a 2
Crate 1
Disperse 1
Stop 1

Table 4.10: Use of two-handed gestures by task.

gestures, because there are almost no smartphone non-users in the population of

this study. Out of 50 subjects, 46 (92%) reported using an Android or iPhone

smartphone daily. Only one user did not report having used an Android or iPhone

at least moderately, and stated that they did not own any touchscreen devices.

Despite not having any touchscreens, even this user made two-handed gestures.

Influence of Video Games

Previous research had indicated that users of Real Time Strategy (RTS) games

would be predisposed to the use of box selection gestures, because many RTS games

use box selection to select areas of the screen or units to control [Micire, 2010]. Nine

users reported playing RTS games, including Age of Empires, League of Legends,

Supreme Commander 2, Civilization, and Europa Universalis. The count of per-task

box selection gestures was collected, and divided between users who had played

RTS games and those who had not. RTS users made 51 box select gestures, while

non-RTS users made 49. While these two totals are quite close, bear in mind that

129

RTS players are less than one fifth of the total population, but used over one half of

the box selection gestures. The mean per-task use of box selection among RTS users

is 0.3828 (std. dev. 0.7408), and the mean use of box selection among non-RTS

users is 0.0748 (std. dev. 0.3392). ANOVA results indicate that the difference is

statistically significant (F=53.8527, p <0.0001). These results persist even if all

games are considered, rather than only RTS games. Thirty-six (72%) of the users

reported playing video games. Non-gamers made 10 box selection gestures, while

gamers made 90. The mean per-task use of box selection is 0.0418 for non-gamers,

and 0.1576 for gamers (F=11.3061, p=0.0008).

The use of user interface elements, such as menus or buttons on the

screen, was also much higher in RTS gamers than non-RTS users. RTS-playing

users made 74 UI gestures, while non-RTS users made 20. The average per-task use

of UI gestures was 0.5781 among RTS users (std. dev. 1.8608) and 0.02932 (std.

dev. 0.1853) among non-RTS users. ANOVA results indicate that the difference

is significant (F=56.2048, p <0.0001). Use of UI elements extends more broadly

to gamers versus non-gamers as well. If all users who reported playing games are

compared to users who reported not playing games, 90 of the user interface gestures

were performed by gamers, and 4 were performed by non-gamers. The per-task

average use of UI elements by gamers was 0.1576, and the per-task average use of

UI elements by non-gamers was 0.0167 (F=5.4502, p=0.0167).

Lasso select does not display a relationship between use of the lasso select

gesture and playing video games. The per-task mean use of lasso selection for

gamers and non-gamers are 0.1821 and 0.1841, respectively, and the difference is

not statistically significant (F = 0.3885, p = 0.5332). Non-gamers made 44 lasso

selections, while gamers made 104. Non-gamers composed 28% of the population,

and made 29.73% of the lasso selection gestures, further indicating that the use of

130

lasso selection was equally likely between gamers and non-gamers.

While previous work was able to determine that pinch gestures were used

by smartphone users more than smartphone non-users, this study is unable to make

such a distinction due to the absence of smartphone non-users in the population.

The same work also determined that RTS gamers did not use pinch gestures. It was

surmised that since almost the entire population of this study used smartphones,

the use of pinch gestures may have become widespread, and would extend to RTS

players. However, this is not the case. Out of 51 non-example pinch or reverse pinch

gestures, all of them were made by users who do not play RTS games. RTS players

made no pinch gestures. This difference is statistically significant (F = 14.5905 p =

0.0001).

Because of the differences in use of box selection, pinch gestures, and

UI widget interactions, it appears that previous user interface experience not only

biases users to expect specific types of interaction, but also to expect the absence

of other types. In the case of RTS gamers, they use an RTS-like interaction style,

with box selection and UI widgets, but they also exclude interactions absent from

RTS games, such as pinch. If an interface were designed to query new users as

to their previous UI experiences and customize the available interaction methods

to anticipate the user’s biases, it may be useful to disable some functionality, in

addition to adding likely expected functions. As a result, the user will not be

confused or surprised by accidentally triggering interaction methods that they do

not expect to exist.

It is also likely that the top-down view and multi-unit control in this

experiment is similar enough to the interfaces presented by RTS games that RTS

users recognized the similarity and so treated it as an RTS game. This idea was

confirmed by a few users, who referred to the interface as being “like Starcraft”.

131

Exploiting these similarities for robot user interfaces may make interface design

easier, because intentionally emulating a specific style of game will cue the user

to use certain interaction styles. For example, a single robot user interface that

displays a full-screen first-person view from the robot would cue the user that the

use of WASD keys to move the robot and mouse motion to pan/tilt the view is the

control scheme for the system, because that is a common control scheme for First

Person Shooter (FPS) video games. Extending this metaphor, the use of mouse

clicks would tell the robot to interact with things in the environment, since that

is the usual “shoot/interact” command in FPS games. Unfortunately, this sort of

emulation and leveraging of previous game experience does not provide any design

heuristics for interfaces that would give similar cues to non-gamers.

This cueing effect is also important to recognize when considering the

results of this study. While the study does allow the development of a set of user

gestures that matches the majority of the user-chosen gestures, those gestures were

selected to operate with a graphic presentation of the swarm robots, in a top-down

view, on a multitouch surface. It is possible that some other interaction modality

would ultimately be more effective, or some other set of gestures would be more

easily discovered and learned by naive users. This set of gestures should not be

understood to be the best or most general set, but the one that users felt best

allowed them to control the given presentation.

Influence of Operating Systems

For the disperse task, 12 users made a gesture that was similar across multiple users,

consisting of placing four or five fingertips on the same hand together on the screen,

and spreading them away from each other. Because a single robot cannot disperse,

this task was only presented to users in the unknown, 10, 100, and 1000 robot

132

cases, so 40 users saw this task. Several users compared the multi-finger scatter to

a gesture to show the desktop or all the windows on a Macintosh computer, and

Apple’s multitouch help indicates that spreading the thumb away from three fingers

on the touchpad of a Macintosh laptop will have this effect [Apple Corp., 2017].

Unfortunately, the possibility that a desktop OS might predispose users

to a certain style of multitouch interaction was not considered, as desktops have

only recently begun to integrate multitouch interaction. As a result, the post-test

survey did not ask users what OS they were familiar with. Of the 12 scatter gesture

users, 8 reported familiarity with other Apple iOS devices, but this should not be

taken to imply that they were familiar with the Mac OS multitouch gestures.

Use of Voice Commands

Twenty percent of the users (10 users) used voice commands. Only one user used

voice commands for all of their interactions. Over all of the tasks, voice commands

were used for the formation tasks, ‘line’ (5 commands) and ‘square’ (4 commands),

more than any other task. This is likely due to a bias inadvertently created by

colloquial use of the verb “tell” in the instructional slides for the formation tasks.

The instructional slides read “Tell the robots to form a line/square”, and some

users read this to mean that they should speak the words “Form a line” or “Form a

square”, addressed to the robots.

The ‘stop’ task also was performed with a voice command by three users.

Users indicated that even if they hadn’t otherwise been using voice commands, they

would use voice commands for the task of stopping the robots. Users stated that

because this task assumes the robots are already moving towards a goal, attempts

to interact with all of the robots by using gestures while the robots are moving

could be difficult.

133

The ‘divide color mix’ task was also performed by voice command by

three users. This task requires some form of selection by color to separate robots

that are in a mixed group, so users would assume that robots knew their color, and

address them with commands such as “red robots, unite”.

Overall, the 20% use of voice commands is much higher than the 1.3%

observed in a previous study [Micire, 2010]. While that study took place as

smartphones were becoming popular (and observed effects related to smartphone ex-

perience), this study was performed after the introduction of Google Now/Assistant

(2012/2016), Microsoft Cortana (2014), Amazon Alexa (2014), and Apple Siri (2011).

Aside from Alexa, these voice assistants are all accessed through smartphones. All

of the users of voice commands reported high familiarity with Android or IPhone

smartphones, but the survey did not ask if they used the voice assistant feature of

their phones. As a result, no conclusion can be drawn about the influence of voice

assistant technology on user interface expectations from this study, but it may be a

topic of interest for further research.

Use of User Interface Widgets

“UI Widgets”, in this case, are interactions with the experiment system where the

user referred to or expressed a desire for user interface elements such as buttons,

menus, or similar controls. Not all users expressed a desire for UI widgets. Of 50

users, 13 used UI widgets. As discussed previously, the desire for UI widgets was

higher among gamers, who likely had previous experience with them in games with

a similar interface to the experiment tasks.

UI widgets were not used in all tasks. However, the only tasks that did

not have at least one user suggest a UI element are the “move” and “move with a

134

Task Interactions UI users
Mark 9 7
Patrol A 10 6
Patrol Screen 12 6
Remove 8 6
Divide Color Mix 7 4
Split 4 4
Square 23 4
Crate 8 3
Crate Dispersed 3 3
Disperse 5 3
Line 3 3
Stop 3 2
Merge 13 1
Divide 2 1
Divide Color 1 1
Divide Color 2 1 1

Table 4.11: Counts of UI widget interactions and of users requesting them, per task.

wall in the way” tasks. Table 4.11 is sorted by how many users expressed a desire

to use UI widgets, as this may indicate which of the gestures seemed most difficult

to do with a gesture and instead should be done via a more conventional UI.

User Strategies

The term “gestures” in this work generally refers to a single interaction with the

multitouch interface device, from when the user’s hands contact the screen to when

they leave the screen. Some tasks could be performed with a single gesture. For

example, many users in the single robot case would perform the “move to A” task

by placing a finger down on the robot, dragging the finger to area A, and then

lifting their finger. However, many tasks were not performed with a single gesture.

For example, to move one group of robots to area A and one group to area B, users

would frequently select the first group with a gesture, move it with a second gesture,

135

select the other group with another gesture, and move it with a fourth gesture. This

sequence of selection, move, selection, move is a strategy for performing the task.

User Strategies for Formations

It was observed during the “form a line” and “form a square” tasks that there were

some gestures used that were ambiguous with gestures that had been previously

used. In the line formation task, many users selected robots and drew a line, or

drew a line starting from the robots. This is the same sequence of gestures used for

simple movement of the robots. Similarly, in the square formation task, many users

simply drew a square. If the square overlapped the robots, this gesture could also

be interpreted as a square-shaped lasso selection of the robots within the square.

As presented in the experiment, this overlap was extremely likely, as the robots in

the square formation task were evenly distributed over the screen, and so there was

very little space to draw a square in that would not include at least one robot. In

order to determine how these strategies they could be disambiguated from other

gestures, the sequences of gestures used by each user were examined and grouped

by the overall strategy employed.

For the square formation task, Table 4.12 shows the counts of each

strategy. “Draw Square” refers to the user simply drawing a square shape on the

screen. “Single Moves” means that the user moved individual robots, usually with

drag or select and drag gestures, until each robot was positioned on the border of

a square region. This strategy was used by 5 users in the 10-robot case and one

user in the unknown case, who treated the corners of the cloud depiction of the

swarm as individual points to be moved. In cases with more robots, single moves

become extremely tedious to perform. “Select and Draw” means the user selected

the robots and then drew the square shape. “Draw Parts” was the strategy of

136

Strategy Count
Draw Square 10
Single Moves 6
Select & Draw 5
Draw Parts 5
Voice & Draw 3
UI 3
Hold & Draw 2
Stretch 2
Screen Edge 1
Voice 1
Writing 1

Table 4.12: Strategies used to form robots into a square formation.

drawing individual parts of the square, such as lines or corners, rather than the

whole square in one gesture. “Voice” and “Voice & Draw” mean that the user

commanded the robots to form a square, and in the latter case, drew a square to

indicate where the square should be formed. “UI” refers to the use of UI widgets,

such as a “form square” or “draw formation” button, possibly prior to indicating a

location for the action to occur in. “Stretch” strategies are where the user treated

the group of robots as an elastic structure, and pushed or pulled it into a square

shape. The “Screen Edge” strategy was used by having the robots press up against

the edges of the visible area of the screen, resulting in lines at each edge of the

space, and then moving the resulting lines towards the center of the screen to form

the square. This strategy would not work in an area without boundaries, or with

non-rectilinear edges. “Writing” refers to a user who selected the robots and then

wrote the characters “SQ” with their finger on the screen to command them.

The most common gesture used was to simply draw the square in the

desired location. However, as mentioned previously, this strategy was ambiguous

when the square overlapped the displayed location of the robots.

Table 4.13 shows the strategies used in forming the line formation. As

137

with the square formation task, the users who used single moves were all in the

10-robot condition. The four users who used single moves all also used single moves

when presented with the square formation task. The strategies that differ from the

square formation case are “Squeeze”, “Voice & Other”, “Tap”, “Sweep/Push”, and

“Select & Tap”. “Squeeze” means the user used a pinching gesture to squeeze the

robots out into a thinner group, as if they were shaping a soft material. Interestingly,

this style of haptic interaction with the shape of a robot swarm has been explored as

a potential user interface method in other work, for a limited set of tasks [McDonald,

Colton, Alder, and Goodrich, 2017]. “Voice & Other” is similar to “Voice & Draw”,

but rather than drawing the line, the user made a chopping gesture with their

hands parallel and slightly separated over the screen to indicate the location. The

“Tap” strategy user suggested double-tapping the robots as a preset command to

form the line, but did not make contact with the screen to indicate where the line

would be formed. The “Sweep/Push” strategy treated the robots as if they were a

collection of small objects that could be pushed around the surface, and pushed

from the edges of the group to move them into a line. To “Select & Tap”, the user

selected all of the robots and then tapped a series of locations in a line to indicate

the desired position. While they did this, the user held one finger down at the

beginning of the line, and indicated that they could just hold the finger down and

draw the line, as with the “Hold & Draw” strategy for the square formation task.

Unfortunately, as with the square formation case, the two most popular

strategies are also the ones that are ambiguous, in this case with the strategy

commonly used to move the robots along a path to a location. In some cases, the

location of the line could be used to disambiguate the user intent. If a line starts

from the robot group and ends elsewhere, it would be a command to follow the line

to its end, whereas a line that starts and ends away from the robot group would be

138

Strategy Count
Draw Line 14
Select & Draw 7
Single Moves 5
Voice & Draw 2
Hold & Draw 2
Voice 2
Stretch 2
Squeeze 2
Select & Tap 1
Sweep/Push 1
Screen Edge 1
Voice & Other 1
Tap 1
UI & Draw 1

Table 4.13: Strategies used to form robots into a line.

a command to form a line formation. However, this means that if the user wants

the robots to form a line from their current location to another location, they first

have to move the robots away from the desired start point of the line.

User Strategies for Manipulation

In this experiment, manipulation refers to two tasks where the user was instructed

to move a crate to a designated area of the screen. In one version of the task,

the robots were located in the lower left of the screen, and in the other they were

dispersed over the screen. Users in the 10, 100, 1000 and unknown number of

robots conditions saw both versions of the task. Because a single robot cannot be

dispersed over the screen, users in the 1 robot case only saw the version where the

robot started in the lower left area of the screen.

“Surround and Move” refers to strategies where the user moved the robots

to surround the crate and then move it to the target area. “Move Crate” means

that the user did not command the robots at all, but performed gestures on the

139

Strategy Count
Surround & Move 18
Move Crate 14
Drag Through 7
UI & Move 3
Surround, No Move 3
Voice 1
Voice & Drag 1
Select & Move 1
Tap Targets 1
Write 1

Table 4.14: Strategies used to move the crate in the non-dispersed condition.

crate, such as dragging from its location to the target area, or tapping the crate

and then the target area. These gestures were the same as the gestures that the

users would use when commanding robots, so these gestures could be read as more

general motion commands, rather than being specific to robot control.

“Drag Through” strategies were gestures where the user selected robots

and then dragged a path for them that passed through the crate towards the target

area, so that the robots would encounter the crate on the way and push it along.

Interestingly, “Drag Through” strategies were more common in the task where the

robots were not dispersed, but instead were in the lower left corner of the screen.

This seems to imply that when the robots are closely grouped, they are viewed as

a single unit that can be dragged through the crate to push it. However, of the

seven “Drag Through” users, three were in the one robot condition, three were in

the unknown condition, and one was in the thousand robot condition. Because six

of the seven users were in conditions where the robot or group are presented as a

single visual object, either a single robot or a single cloud, the idea that the swarm

is treated as a single unit because of being presented individually but in a small

region does not seem very well supported.

140

“UI & Move” strategies combine some elements of user interface widgets,

such as “pick up” or “move object” buttons, combined with movement gestures

such as drags to indicate what was to be picked up or where it was to be moved.

“Surround and No Move” describes strategies where the users used robot positioning

commands to surround the crate, but did not issue commands to move from the crate

to area A. It is possible that the users felt that surrounding the crate adequately

conveyed to the system the desired action. “Voice” strategies used verbal commands,

while “Voice & Drag” supplemented verbal commands with drags to indicate the

desired path of the crate. “Select and Move” means that the user selected the

robots, then dragged the crate.

“Tap Targets” tapped on the crate, then the robots, then the target area.

If user commands are understood to be a grammatical construction, with subjects

being commanded to perform an action, e.g. “These robots, go to this location”,

then this example is syntactically unusual for English, as it would be more like

“This object, be moved by these robots, to this location” instead of “These robots,

move this object to this location”. While examples like this would be possible

to automatically “rephrase” under the assumption that the robots are the only

element of the system that can act, and all other objects are acted upon, it would be

difficult to extend such automated rephrasing to more complex environments. Such

rephrasing would also not be justified in the presence of only one counterexample,

but may be relevant for cultures with different common orderings of subjects, verbs,

and objects. The user who used “Write” drew abbreviations naming the objects.

The full command was “C → A”, indicating that the crate (which was unlabeled,

but starts with “C”) should be moved to the target area (called “Area A” and

labeled with an A).

The strategies used in manipulation did not generally result in the users

141

Strategy Count
Surround & Move 15
Move Crate 13
Clear & Drag 3
Drag Through 2
Surround, No Move 2
UI & Move 1
Voice & Drag 1
Voice 1
Select & Move 1
Write 1

Table 4.15: Strategies used to move the crate in the dispersed condition.

creating novel gestures specifically for manipulation tasks. Instead, they used the

same sort of gestures that they had been using for the other tasks, in sequences to

cause the system to perform the intended task. Most sequences of user gestures

followed a subject-verb or subject-verb-object style of command, such as selecting

a group, then specifying an action for that group, and possibly an object for that

verb to be done to. One user, however, did extend the grammatical structure of the

commands in an interesting way. The user stated that if a path were drawn with

one finger, it meant the robots should follow that path, but if it was drawn with two

fingers, it meant that the robots should follow that path while maintaining their

current formation. This use of an “adverb” in the grammatical structure meant

that the user could form the robots into a scoop around the crate, and then have

them move to area A while staying in the scoop formation that would drag the

crate with them.

The strategies used in the dispersed case were the same as those used in

the non-dispersed case, except for “Clear & Drag”. “Clear & Drag” strategies only

occurred in the dispersed condition. For these strategies, the users made gestures

to clear the robots out of the path between the crate and the target area, and then

142

issued movement gestures to the crate. The robots between the crate and target

area were perceived as being in the way.

In both the dispersed and non-dispersed case, “Move Crate” and “Sur-

round and Move” were the dominant strategies, accounting for over half of the

strategies used. The “Move Crate” strategy does not specify any particular method

for the robots to accomplish the task, but surrounding the crate does. In future work,

it may be useful to ask the users exactly how they imagine the robots performing

the task, as surrounding could be a preliminary step in caging manipulation, or it

could be that the users simply assumed that the robots had to be shown the way

to the crate before they could do anything with it.

Robot Count in Unknown Number Case

In the condition where the exact number of robots was unknown, and the swarm

was depicted as a cloud, participants were asked to say how many robots they felt

the cloud represented. Generally, the participant expectation was that the cloud

represented tens of robots, but simply averaging the responses would not be useful,

as one participant said that it “could be millions”. For those that did answer with

a single number or range, the answers were 10-20, 10-“hundreds”, 12, 7, 10, 2-10,

10-12, 2-“millions’, 5-10, 8, and 50. If the endpoints of ranges are treated as answers,

with “hundreds” and “millions” set to 500 and 5,000,000 respectively, the median

answer is 10, but the mean and standard deviation are not illustrative of the user

responses. Rejecting “hundreds” and “millions” as outliers gives a mean of 11.86,

with a standard deviation of 11.04, which matches the common intuition that the

swarm contains at least 2 members and many have tens, but not likely hundreds, of

robots in it.

143

Figure 4.3: Instructional slides for the unknown number of robots condition, showing
cloud representation of robot swarm.

Participant comments may shed some light on the source of this intuition.

One participant indicated during the study that they interpreted the corners of

the polygonal cloud as possible robot locations, and so drew an idea of the scale of

the swarm from the number of corners. The cloud has 11 corners, 7 convex and 4

concave, which is consistent with the estimated robot count. Another participant

said their estimate was informed by the instructional slides preceding the test,

which depicted a number of robots, the outline around them, and the resulting

cloud, as shown in Figure 4.3. These slides depicted 10 robots, and so may have

biased participants to expect that the cloud had 10 robots in it. However, multiple

participants stated that the cloud represented an unknown number, or estimated

more or less than 10 robots.

Selection Behavior

At the end of the experiment, users were shown an image of a robot swarm, with a

dotted line around it depicting a finger drag path around some of the robots. The

users were told that the intent of this gesture was to select robots, and asked to

indicate which robots in the image were selected, or in the unknown number of

robots case, whether the gesture selected all of the robots or left any out. Users in

the single robot case were shown the selection image with ten robots in it, because

144

Figure 4.4: Images for selection strategy question.

the with one robot, there are not enough robots to have a selection that may exclude

some robots and include others.

In the unknown number of robots case, 7 participants indicated that all

the robots were selected, 3 of the participants indicated that some robots were left

out, and one participant indicated that whether the selection included all of the

robots could depend on the task.

Because the 1 and 10 robot cases saw the same selection image, they

are reported together. Twelve participants indicated that robots that were inside

the selection or touched by the selection line should be considered selected. Two

participants indicated that robots depicted with half or more of the robot inside

the circle should be considered selected. One participant indicated that the robot

145

Condition Completely inside Half or more in Touching line Other
10 0 2 (10%) 12 (60%) 3 (15%)

100 1 (10%) 5 (50%) 3 (30%) 0
1000 2 (20%) 1 (10%) 7 (70%) 0

Totals 3 8 22 2

Table 4.16: User responses for whether robots on the edge of a selection should
be included. The unknown case is omitted because the relationship of individual
robots to the line is not visible in that case.

half out of the circle should not be selected. One participant indicated that robots

on the border should be included or not included in the selection, depending on

the task. One user indicated that only the first robot touched should be selected,

which is consistent with control strategies that move each robot individually. The

remaining three responses were not recorded due to researcher error.

For the hundred robot case, 3 participants indicated that robots inside

or touching the line were selected. Three participants said that robots should be

mostly inside the line to be counted, with one participant stating that robots should

be 80% or more inside the line to count. Two participants indicated that robots

should be more than halfway inside the line to be selected. One participant stated

that only robots completely inside the line should be counted.

In the thousand robot case, 7 participants indicated that robots inside or

touching the line should be selected. Two participants indicated that robots must

be completely inside the line to be selected. One participant indicated that robots

mostly inside the line should be selected.

Overall, participants generally err on the side of inclusion, rather than

exclusion of robots from selection. If a user interface is required to include or

exclude ambiguous elements from a selection, it appears that including ambiguous

elements will satisfy users. User comments also suggested that ways to amend

selections before further commanding the robots would be desirable.

146

It is interesting to note that two participants, one from the unknown

number of robots case, and one from the 10 robot case, said that in cases of

ambiguous selection, the system should add or remove robots from the selection

based on the task. As the system cannot predict the task it is about to be

commanded to perform, it is likely best to err on the side of selecting too many

robots, rather than too few.

NUI Metaphor Failure

During this experiment, there were some cases where the users expectations of

what was possible in the interface indicated a sort of “metaphor failure” in the

user interface. Natural User Interfaces, of which multitouch screens are an example,

are supposed to be able to leverage users’ understanding of the physical world,

and how objects behave in it, to build affordances for objects on the screen. For

example, a volume knob can be displayed as an actual knob, and the screen can

react appropriately to attempts to rotate the knob. However, people know that

the objects on the screen are not knobs, switches, and so on, but pictures of those

things, drawn by the computer. As a result, the affordances are mixed. The knob

may afford turning, but it also affords dragging around the screen or deletion, which

a knob on a real radio does not afford.

In this study, users were tasked with stopping the robots, which had

begun to move around a wall to a target area. One user dragged the wall in front

of the robots, and another user asked if they could move the wall. The wall was

intended to represent an actual wall, which does not afford moving in the physical

world, but it was represented in the experiment as a thick black line. It may be

that the users would have not attempted to move the wall if it was more clearly

147

represented as e.g. a stone or brick wall, and so had connotations of excessive

weight. On the other hand, the users may have regarded it as what it actually was,

an image of a wall on a computer screen, and decided that since images can be

moved around the screen, the wall image can too. Attempting to experimentally

determine if the representation affects how the user interacts with the wall would

require an experiment better designed to examine that affordance, as out of 50

participants, only 2 even mentioned the idea of moving the wall.

148

Chapter 5

UI Design and Implementation

In order to convert the user gestures collected in the gesture collection experiment

into a user interface, a subset of the gestures was selected to support the majority

of the user-defined gestures.

In some cases, the user defined gestures were ambiguous, either across

users, or with a user across tasks. Where design decisions were made to work around

these ambiguities, they are described.

Selection of Gestures for Control of Swarms

For position commands, drag, tap, and “other” would cover 94.8% of the gestures.

Unfortunately, the “other” commands are not a single gesture, but include a diverse

collection of gestures, such as pushing with the side of the finger or making a

picking-up, carrying, and setting-down motion over the screen. As a consequence,

attempting to implement all the gestures in the “other” category would add sig-

nificant complexity to the gesture recognition in order to support gestures that

were rarely used. Many of the “other” gestures were also not recognizable by a

149

Figure 5.1: UI gestures, selection gestures, and position gestures.

150

multitouch surface, such as the user dividing the robots by parting their hands as if

opening a bag in the air above the surface. Since it does not contact the multitouch

surface, such a gesture cannot be recognized without additional hardware. If all

forms of tap are considered the same when used as position commands, taps make

up 14.2% of the position commands, and together with drag, cover 89.2% of the

position commands.

Lasso was used as a position command by one user, who used it to

command the robots to disperse in the “disperse” task. The user noted that the

direction of the lasso disambiguated it from lasso as selection, so lassoing clockwise

would select robots and lassoing counterclockwise would disperse them.

Achieving 90% recognition of the most common UI widgets would include

buttons for special functions, handwriting recognition, voice commands, and other

menus on the screen (totaling 90.8%). However, a successful menu-based UI would

not be composed simply by taking the sum of all of the user interface designs

suggested by users, as there would be significant redundancy in the UI commands,

and in ways of bringing up the UI for interaction. Instead, the tasks that the users

invoked the UI in most often were examined, and the requested UI functions were

considered for inclusion.

Both voice commands and handwritten commands together account for

47.1% of the user interface elements used. While the broad categories make up

nearly half of the UI elements, the individual uses of the gestures did not display a

significant unity within the broad categories. One user used symbols drawn over

the swarm as commands, so a circle drawn within the swarm area meant “patrol”,

and would be followed by an indication of the area to be patrolled. Another user

wrote commands, such as writing out “0.5” to indicate that robots should divide in

half, “SQ” to indicate that they should form a square, or “C → A” to indicate that

151

the crate (C) should be moved to area A. The majority of the drawn commands

were attributable to a single user, but two users drew an ‘X’ over the defective

robot in the “mark defective robot” and “remove defective robot” tasks and two

users used an ‘X’ and an ‘S’ in the “stop the robots” task.

The selection of a set of handwritten commands that would be usable for

a majority of users would be a task at least as difficult as finding a user-defined

set of gestures. In addition to the set of English letters, the interface would have

to consider symbols such as arrows, and apparently decimal numbers as well. The

experiment described in this thesis did not collect sufficient examples of handwritten

commands to extrapolate a useful control scheme from them. Because of this lack

of information, and the fact that most handwritten commands were proposed by

a single user, the resulting interface does not contain support for handwriting

recognition and symbol interpretation.

Interestingly, voice commands were similar to both handwriting, in terms

of distribution of user choice, and gestures, in terms of syntax. One user used voice

commands for all tasks, but ten users also used voice commands for at least once.

The distribution of voice commands is like the handwritten commands, in that

one user used handwritten commands frequently, but a few other users used a few

of them for some tasks. The accidental biasing of users towards use of voice for

formation tasks was discussed earlier. In addition, two users stated that they would

like to have a vocal stop command for the “stop the robots” task, because it could

be issued quickly and without having to accurately touch the moving robots. These

users did not issue other voice commands, as the other tasks were not perceived to

be as urgent as the “stop the robots” task.

The syntactic similarity between the voice commands and the gesture

commands is because the gesture commands frequently take the subject-verb-object

152

Task Voice Commands
Line 5
Square 4
Crate (dispersed) 3
Divide color mix 3
Stop 3
Crate 2
Move to A 2
Disperse 2
Merge 2
Split 2
Patrol A 2
Divide 1
Divide color 1 1
Divide color 2 1
Move wall 1
Remove defective robot 1
Mark defective robot 1
patrol screen 1

Table 5.1: Use of voice commands by task. The use of high numbers of voice
commands for the formation tasks, line and square, was likely biased by the text of
the instructional slides.

153

ordering of spoken sentences. Some parallelism in the structure of spoken commands

and gestures is unsurprising, as in human-to-human communication, vocal expres-

sions and gestures are theorized to arise from the same internal representations

[McNeill, 1985]. For example, selecting the robot group indicates a subject, and

drawing the path indicates the verb (“go this way”). Objects are optional or implied,

as going to a location does not have a clear object that the robots are instructed

to act upon. In some cases, the subject is implied as well. For example, some

users would make gestures intended to move the robot group as a whole by simply

dragging the path, without selecting the subject first. In such a case, the implied

subject was all of the robots. This sort of implication is more complex than simply

assuming that if no robot is selected, all of the robots are the subject. Some users

divided the robots into two groups by drawing a dividing line, and then dragging

two paths, one to one side of the screen and the other to the other side of the screen.

In this case, the implied subject was the half of the robots on the same side of the

dividing line as the drag, but no selection gesture preceded the positioning drag to

indicate this.

Reverse pinch was used as an interface command to zoom in or out of

the view of the robots. This was done in the “mark defective robot” and “remove

defective robot” tasks. The user who made this gesture was in the 1000 robot case,

and stated that they wanted to zoom in because the defective robot was a small

target and close to other robots. There was no explicit zoom or change of viewpoint

task, but users expected the functionality when they had to interact with a small

target.

Tap, lasso, box select, doubletap, drag, hold, and “other” cover a total of

91.9% of the selection gestures. As discussed above, the “other” category is not

practical to implement. If, instead, all forms of tap are considered the same for

154

purposes of selection, they comprise 42.5% of the selection gestures, and together

with lasso and box select, cover 91.3% of the selections.

Drag as a selection gesture refers to the user placing their finger on one

robot, and then dragging it from robot to robot, adding each touched robot to the

selection. It is ambiguous with the position drag, where the user places their finger

on a robot and then drags a path for the robot to follow, although the distinction

could be made by having a path that intersects multiple robots become a selection,

rather than a position command. Unfortunately, this attempt at disambiguation

would itself become a source of problems if the user attempts to move the entire

swarm by placing a finger in the middle of it and dragging to a new location, as it

is likely they would intersect more than one robot as their finger leaves the swarm.

Ambiguities in Gesture Commands

As discussed briefly in the previous section, some combinations of gestures selected

by the users were ambiguous. This is to be expected, as the users did not know

all the tasks in advance, and so might use a gesture in one task that they then

felt was better suited to a later task. The users might also not regard all the tasks

as having to use a consistent and unambiguous representation for each gesture, or

not remember all the gestures they had previously used. However, for automated

conversion into programs, it is important that a sequence of gestures have some

way to be unambiguously recognized.

In the line formation tasks, some users selected the robots and then drew

a line to indicate the location of the line formation. If the line formation started at

the same location as the robots, this gesture sequence is the same as the selection

and drawing a path sequence that was frequently used to indicate that the robots

155

should move as a group along the path. If the line formation started elsewhere, it

could be disambiguated, because motion along a path almost always started on or

near the selected robots. The user drawing a line over a group of robots could be

interpreted a number of ways: as a dividing line, as a box selection, as a path for a

single robot to follow, as a path for a group of robots to follow, and as the location

of a line formation.

Because a number of other, more explicit commands are available for

dividing robots into groups, such as moving one group away from the other, the

division line interpretation was rejected. A line drawn over robots is treated as a box

selection, unless it begins on a single robot. In that case it is interpreted as a path

for that robot to follow. For the purposes of this work, beginning “on” a robot was

defined as the beginning of the line being within 80 pixels of the location of the robot

on the screen. This number of pixels was selected because it is the approximate

width of a human finger on the screen used in this work. Obviously, this distance

will vary with the resolution of the screen, but the mechanism for obtaining the

resolution and physical size of attached screens varies with operating systems, and

is outside of the scope of this work, aside from noting that this parameter may vary.

The selection of parameters like this for an interface intended for real-world, rather

than experimental use, should be guided by understanding of human factors and

UI design principles, such as Fitts’ Law [Fitts, 1954].

Similarly, some users divided the robots into two groups by drawing a

line separating the groups. Typically, this line started outside the group and passed

through it, so it could be disambiguated from instructing the robots to move along

the line. Unfortunately, it would be difficult to separate it from drawing a line for

the robots to move to in order to create a formation.

To command the robots into a square formation, especially in the dis-

156

persed cases, many users simply drew the square formation over the robots. If

a lasso select is also available, some distinction must be made between the lasso

select and the square formation when they are both drawn over the robots, as

they are both closed forms drawn over the robots. One possible method is to look

for peaks in the distance from each point on the perimeter of the gesture to the

centroid of the gesture. A square would have four peaks, while a circle would have

no obvious peaks. However, this sort of recognition means that a square lasso

select, or an arbitrarily-shaped lasso select that happens to have four peaks, would

get misinterpreted as a formation gesture, while a command to get into a circular

formation would be interpreted as a lasso selection. It would be preferable to be

able to make arbitrary formations, and arbitrarily-shaped lasso selections, and have

them be disambiguated by some other method. One method that users proposed

was to have a “draw formation” button, which would then cause the next form

that the user drew to be treated as the perimeter of the formation. Some users also

held one finger down at the start of the formation, while tracing the perimeter with

the other finger. Using a multi-finger gesture has the advantage of not adding UI

elements, but is not easily discoverable by a user examining the UI, and so would

require some form of training.

In order to patrol area A or the screen border, users frequently dragged

the robots as if issuing a basic motion command. Some users indicated that there

would have to be an additional signal to the robots to keep moving on the patrol

route, once it was assigned, but there was not an agreement as to what that

command should be. Of the users who indicated a need to convey that the swarm

keep patrolling, some repeated the patrol route drag multiple times, others ended

the gesture with a tap or triple tap, still others used the direction of the patrol

route drag (clockwise or counterclockwise) to separate following the path once from

157

continuously following it.

Some users reused gestures for different purposes, such as tapping a robot

to select it, but also tapping a robot to remove it. Because 30.2% of the selection

gestures were taps, it was decided that selection, which occurs often, would be

done by tapping, while removal of a robot, which is rare, would be performed by a

different action.

Implicit Selection

The distinction between interpreting a line drawn over robots as a command for

one robot to follow versus a command for multiple robots to follow may depend on

the number of robots present. As seen in Section 4.3 the use of selection gestures

was low in the 1000 robot case, and much higher in the 10 robot case, implying that

with a large robot group, it might make sense to default to using all robots if none

are selected. The interface could even change depending on the number of units

being commanded, with small groups requiring that all robots be selected before

a command can be applied to them, and larger groups defaulting to issuing the

command to all robots if some subset has not already been selected. However, care

must be taken to avoid learning effects. If the user has previously been exposed to

a condition where the system defaults to selecting all robots, they may develop an

expectation that other conditions behave the same, and neglect to select robots,

resulting in incomplete commands (or commands being applied to no robots).

Interestingly, the opposite case, where the user makes a selection of all the robots,

but it is not actually required because it is the default behavior, does not result

in a surprise for the user. Because the failure mode encouraged by a system that

requires explicit selection is less surprising than one that has implicit select-all, the

system was developed to require selection to issue a command to multiple robots.

158

As described above, issuing a command to a single robot may be done without

selecting it first, by beginning the desired path on the robot.

Gesture Complexity

The gestures used by the participants in the experiment could be divided between

selection and position gestures, within which there was a great deal of agreement,

and more complex actions, such as patrol, formations, picking up or moving objects,

removing robots, and selection by color.

For selection, if the system accepts taps (of any form), lasso, and box

select, 91.3% of the user selection gestures are covered. For position, tapping (again,

of any form) to set goals or way points and dragging paths will cover 89.2% of user

position gestures.

Because the more complex tasks had a higher variety of gestures that

could be used to convey the user intent, as well as some users performing the more

complex tasks by repeated selection and position gestures, attempting to handle this

variety of gestures leads to two problems with the discoverability of the interface.

First, since each of the gestures was chosen by a smaller number of the

users, some training must be performed to inform users who would not have chosen

that gesture. This training could be done with a “cheat-sheet” that users could pull

up for reference, or an animated introductory tutorial sequence. These options are

both less desirable than having the system be, as much as it can be, self-explaining.

They separate the training of the user from the user’s interaction with the interface,

rather than having the interface make clear what can be done.

Second, if a large percentage of the gestures for the more complex tasks

were implemented, in order to provide high coverage of the various options that

users chose to perform those tasks, there would be a large set of gestures that have

159

very specific meanings. Increasing the set of gestures that the system recognizes

increases the chances for ambiguities, where the same gesture was selected for

multiple roles by different users, and for errors, where the system misinterprets one

gesture as another. This interferes with discoverability, as the system may react in

different ways to what the user felt were the same actions, confounding the user’s

ability to learn a mapping between their actions and the results that the system

produces.

As a result, the complex tasks were assigned to buttons on the user

interface. The use of buttons is more discoverable, as the button simply says on it

what it does. Buttons do obscure some of the camera view that forms the main

part of the user interface, but this problem is not as severe as it might appear. The

area the robots operate in is either bounded or unbounded. If it is bounded, it

either fits on the screen or does not fit on the screen, and if it is unbounded, it does

not fit on the screen. If the area the robots are in does not fit on the screen, the

user likely views it by panning or zooming in and out, and so can pan or zoom so

that the area covered by the buttons is not an area that they have to interact with

to perform a task. If the area the robots are displayed on and interacted with in

does fit on the screen, it can be shrunk slightly, and the buttons can be placed so

they do not cover the interaction area. In either case, the design of the interface

can accommodate a few buttons without seriously harming the user interaction,

although the unchecked proliferation of buttons could lead to design difficulties.

Termination of Commands

Some of the potential gesture commands, such as selection of a group of robots

followed by tapping waypoints for them to follow, do not have a clear termination,

160

as the system cannot tell if the user is done tapping waypoints, or simply has not

tapped the next one yet. One potential solution to this problem is to attempt

to parse the user command once enough time has elapsed since the last gesture

received. Using a timeout to commit the command was rejected for two reasons.

First, the timeout can result in the system beginning to take an action that the

user did not want. If the timeout is too short, it could result in a program being

transmitted to the robots before the user is done specifying it. If it is too long, it

may never be triggered, and so all of the user’s gestures could be gathered into one,

potentially untranslatable, program. Second, the timeout is could be invisible. From

the user’s perspective, this causes the system to appear to begin acting at random,

which is undesirable. The timeout could be made visible, using a countdown timer,

which may then make the user feel pressured to act.

In order to avoid having the system act prematurely, the system treats a

double tap on open space as an “end of command” signifier, as in Micire [2010]. If

the hardware used in the system were capable of detecting it, the user placing their

hands in their lap or away from the screen could also be used as a signifier that

the user has completed entry of their command. Most users moved back from the

screen slightly and removed their hands from the volume above it once they were

finished issuing their command, and no users were observed to rest their hands on

the screen while not issuing commands. However, this behavior may have been

a consequence of the particular arrangement of the screen and user seating, so

further work would be required to determine if it is a sufficiently robust indication

of command completion.

In addition to double taps, there are limited instances where it is safe for

the system to assume that the user’s command is complete. Because commands are

generally of the form subject-verb-object, a new subject begins a new command.

161

The exception to this rule is tap selections, which some users used to select multiple

robots by sequentially tapping on them. Tap selections are accumulated until a

gesture other than a tap selection is entered. After a non-tap action is entered, a

new selection gesture will begin a new command.

Acceptable Command Sequences

The commands that use buttons are Patrol, Make Formation, Move Object, Remove

Robot, and Select Group. The text of the buttons is written as a verb phrase, as

the buttons take the place of the verb in the subject-verb-object (SVO) structure.

To preserve the SVO ordering, the command parser expects a subject, specified by

a selection gesture, a verb, expressed by a button, and then an object, expressed by

another gesture.

For Patrol and Make Formation, the “sentence” reads somewhat like

“These robots, Patrol/Make Formation, this location/shape”. The selection is

performed, then the button pressed, then the location or shape is specified.

In the Move Object command, the sentence is more complex, as both an

object to be moved and a location to move it to must be specified. The sentence

would read as “These robots, Move Object, this object, to here”. This structure is

somewhat in conflict with the most common user strategy to move the crate, which

was to surround the crate with robots and move the robots, and also in conflict with

the second most common strategy, which was to move the crate, with no reference

to the robots. The decision to differ from these strategies was undertaken for a

number of reasons. The first is that moving the crate with no reference to the

robots implies that the subject of the sentence is all of the robots. As discussed

previously, implicit selection of the entire swarm has a high potential to surprise the

162

user, especially if the behavior changes across swarm sizes, while requiring explicit

selection does not. The second is that unless the system is aware of which objects

in the environment are movable and which are not, there is no way to disambiguate

a command to surround an object, and then leave it to go to another location, from

a command to move the object by surrounding it. This level of knowledge about a

novel environment may not be possible to obtain in real-world situations.

The Select Group and Remove Robots buttons are not commands to the

robots. They are commands to the system. Select Group selects robots by some

common feature (in the user test, common group membership was depicted by

color). Remove Robot instructs the system to mark a robot or robots as not to be

used, and so they are excluded from having commands issued to them. The system

is the implied subject of the sentences “[System], Remove Robot, these robots” and

“[System], Select Group, these robots.” Implying the subject of a command to the

system is acceptable in a way that implying robots as a subject is not, because

there is one control system, and so the subject is not ambiguous. The interface

can be viewed as similar to a desktop computer, where it is generally assumed that

commands invoked through that computer’s UI are for that computer to do.

The commands that are not invoked through buttons are the positioning

commands, to move single robots or groups. The division between buttons and

“pure” gesture commands was made because there was higher agreement between

users on the basic movement commands than on the more complex commands.

Additionally, some users implemented the more complex commands by sequences

of basic motions. This was especially apparent in formation commands with lower

counts of robots, where some users issued individual movement commands to each

robot, which ended at a location within the formation.

Positioning commands consist of a subject and a verb phrase gesture

163

that reads as “These robots, go here.” However, there are a number of ways that

these can be expressed. The selection can be by any of the selection methods. The

position commands can be by tapping a location, or by dragging a path for the

robots to follow. However, this raises the possibility that the dragged path is a

line or loop over other robots, and so resembles a group selection. There are two

possible ways to treat this sequence.

The fact that there is an end-of-command marker, the “period” at the

end of each sentence, means that the user could make a sequence of taps on robots,

lassos, and box selection gestures, ending with either something that could be a

path, a lasso, or a box selection and then the end-of-command marker. The system

would then interpret the last lasso or box selection as a path, and so the whole

command as a sentence with a compound subject, “These robots and this robot

and..., go here”.

The other possibility is having each selection create a new command.

If that is the case, it becomes impossible to patrol an area with robots in it, or

have one robot move through a group of robots, as those gestures are a lasso or

box selection that starts a new command. The exact ambiguity is not between all

selections and path commands, but between group selections and path commands.

Tap selection of single robots is unambiguous, under the assumption that collisions

are bad, and so it is never desirable to command one robot to another robot’s exact

location.

This raises the possibility of a third selection method, where single/tap

selects can be chained to select multiple robots. If tap selections are allowed to

chain, it does create an instance of a selection not terminating an old command

and starting a new one, creating an inconsistency with the rule that starting a new

selection begins a new command, and so implicitly ends any previous command.

164

If tap selections are not allowed to chain at all, then tapping multiple

robots one after another only selects the last one, and results in a sequence of

incomplete programs consisting only of selections. It also eliminates a behavior

that some users did show, selecting a small number of robots by tapping on the

individual robots. Because it admits very detailed multi-selection and supports

a selection style that users chose, tap selections were allowed to chain with each

other, but not with other selections.

Having selections end the previous command and start a new one, com-

bined with the existence of lasso selection and box selection, adds some complexity

to attempts to send the robots on a path that looks like a lasso or box selection.

Determining whether a loop-like gesture or a box-like gesture is intended as a path

in the previous command, or the beginning of the next command, depends on

whether it is immediately followed by an end-of-command gesture. If the resulting

stack of gestures consists of some form of selection, a box or lasso selection, and

then an end-of-command, then the box or lasso selection can be replaced by a path

gesture, and the program becomes valid. However, if the stack contains some form

of selection, a box or lasso selection, and e.g. a path gesture, then the first selection

is an erroneous program consisting only of selection, and can be dumped from the

stack.

Similar heuristic rewriting of the stack could be extended to remove

erroneous waypoints resulting from triple-tapping instead of double-tapping to end

gestures, but adding these sorts of heuristics poses something of a threat. There

exists some rewriting of the user input that will eventually result in an acceptable

sequence of gestures, even if it is a complete replacement of all of the user input.

However, at some point, the meaning of the rewritten stack will deviate from

what the user intended. While using such a stack of commands will result in the

165

generation of a program for the robots, it will not be a correct program, from the

user’s point of view. In such a case, it would be better to have the parsing of the

user input fail. The determination of what level of alteration of the user input is

acceptable is not the core subject of this research, but is an interesting question.

Simultaneous Actions

Expecting a sentence-like form for commands does not take as much advantage

as it of simultaneous actions possibly could. The multitouch surface used in this

work can track 20 points at once, and some surfaces can track even more. As a

result, the hardware will allow users to, for example, perform selections with both

hands at the same time and then draw a path with each hand. Sentences, on the

other hand, are generally spoken serially, instead of in parallel, so the analogy to

language does not provide a convenient heuristic for determining which subjects go

with which verbs. While two selections performed at the same time will overlap,

one is almost certain to finish before the other, and so could be interpreted as a

selection following another selection. Even if overlapping selections result in two

groups both being selected independently, if the user then taps two goal points and

ends the command, the result is ambiguous. If the two goals were tapped one after

the other, they could each be a goal for one selected group, or a sequence for both

selected groups to visit. If the two goals were tapped at the same time, perhaps

they are each a goal for one group, but which group should go to which goal is

unspecified. While there are heuristics that could be used to guess user intention in

these cases, such as always dispatching the closest selected group to a given goal,

the system does not have the information to properly guess the user’s intent.

However, two-handed gestures accounted for only 2.52% of the gestures

166

used. As a consequence, the loss of the ability to perform simultaneous gestures,

in a single-user context, does not result in a large loss of functionality. In a multi-

user context, it would be desirable to have users be able to perform interactions

simultaneously, but such an extension would also require additional information to

associate contact points on the multitouch surface with particular users.

Abandoning the use of simultaneous gestures also allows the unambiguous

use of the scatter gesture for triggering dispersion. If simultaneous gestures are

allowed, then performing the scatter gesture over a group of robots is detected by

the system as several simultaneous attempts to drag robots and draw paths at the

same time. If the gesture is performed over open space, it is detected as 4-5 paths

being drawn at the same time. With simultaneous gestures, the command sentence

selects some group of robots and sends them multiple paths to possibly follow, with

no order in which they should be followed. However, without simultaneous gestures,

the multiple contacts can be combined as a single scatter gesture.

Representation Of The Command Language

The command input language can be defined formally, given the constraints above.

The Augmented Backus-Naur Form (ABNF) description of the language is given

below. Using the scatter gesture for dispersion is indicated in ABNF as 4*5(dra-

gRobot—path) to require that there be at least four and at most five fingers used

to make the gesture. An alternate approach would be to have the gesture detection

coalesce paths and robot drags that were close enough in space and overlapping in

time, and present them as a single “scatter” gesture.

167

〈sentence〉 |= 〈cmd〉endCmd (5.1)

〈cmd〉 |= 〈patrol〉 | 〈makeFormation〉 | 〈moveObject〉

| 〈removeRobot〉 | 〈disperse〉 | 〈goHere〉

(5.2)

〈patrol〉 |= 〈selection〉Patrol〈path〉 (5.3)

〈makeFormation〉 |= 〈selection〉Make Formation〈path〉 (5.4)

〈moveObject〉 |= 〈selection〉Move Object〈selection〉〈path〉 (5.5)

〈removeRobot〉 |= Remove Robot〈selection〉 (5.6)

〈disperse〉 |= 〈selection〉〈scatter〉 (5.7)

〈scatter〉 |= 4 ∗ 5(dragRobot | path) (5.8)

〈goHere〉 |= 〈selection〉〈path〉 | dragRobot (5.9)

〈path〉 |= tapWaypoint+ | dragPath (5.10)

〈groupSelect〉 |= “Select Group”tapSelect (5.11)

〈gestureSelect〉 |= tapSelect+ | boxSelect | lassoSelect (5.12)

〈selection〉 |= 〈gestureSelect〉 | 〈groupSelect〉 (5.13)

The terminals of the language are the gestures recognized by the system,

that is to say selection by tapping, box, or lasso, waypoint tapping, dragging a

robot along a path, dragging a path, dispersion, the buttons and double-tapping

to end a command. The terminals in italics in the ABNF representation are the

names of the buttons.

168

Chapter 6

UI Design for Trained Users

The work on which this study is built was motivated in part by the idea of using

robots in search and rescue (SAR) operations, to explore damaged buildings, enter

unsafe areas, and provide additional sensor data and coverage while reducing risk to

first responders. First responders are trained on the equipment they use, but such

training may be infrequent, and as a result, complex control systems may not be

remembered when the time comes to use the equipment [Micire, 2010]. Because a

SAR situation may develop rapidly, there is little or no time available for retraining,

and so an interface for use by first responders would prioritize easy learning of the

interface and use with minimal training over richness of the possible commands.

However, SAR is not the only domain in which swarm robots might

be used, and so considering only the gestures which maximize the ability of un-

trained users ignores domains where it is possible to train the users extensively.

In such a context, adding complexity to the gesture set could allow for additional

expressiveness in the interface.

One such high-training environment is the space program. Many SAR

169

responders are not primarily SAR professionals, but work primarily in other capaci-

ties. NASA astronauts’ primary job is service as an astronaut, and they spend a

significant amount of time in training for missions, including using mock-ups of

the interfaces of systems that they will use during their missions. For example,

operation of the remote manipulator on the International Space Station (ISS) begins

with 30 hours of “Generic Robotics Training” in a virtual environment, which is

used to qualify them for future, more specialized, training on the specific arm used

on the ISS [Liu, Oman, Galvan, and Natapoff, 2013]. Some astronauts do not pass

this test, and as a result, are not qualified to use the manipulator. NASA has

developed the TLX (Task Load indeX), which is a widely accepted subjective metric

for the physical and cognitive workload imposed on the human operator during a

task [Hart, 2006]. As a consequence, NASA is a good example of an environment

where highly-trained users could be expected to interact with a more complex

interface, and where interfaces could be evaluated to determine if they reduce or

increase the workload on the user, as in [Fong, Bualat, Edwards, Flückiger, Kunz,

Lee, Park, To, Utz, Ackner, et al., 2006].

On-line Training

Because user experience of video games does have some effect on their use of the

user interface described in this work, it is interesting to examine other aspects of

video games, and how they might be applied to user interface design for swarm

robotics.

It has been argued that the use of game-like user interfaces is inappropriate

for the design of applications, but better suited to training material [Thomas and

Macredie, 1994]. The basis for using a game-like user interface for an application

170

is that games are engaging, and as a result, using a similar interaction paradigm

should yield an engaging application. However, the dissimilarities in user motivation

make this approach less useful. Games are played for the sake of their own play,

rather than to accomplish a task outside of the game. Challenge and complexity

are controlled in the game to make the play more rewarding, but extending this to

applications for external tasks means making the tasks more difficult than they have

to be, which will be a difficult proposition for end users to accept. Additionally,

work and play are strongly divided culturally, and making one like the other will be

resisted by users. Thomas instead proposes that computer-based training materials

are a better target for game-like user interfaces. Like games, training materials

are intended for high involvement over short periods, and are interacted with for

themselves, rather than as part of the completion of an external task.

The majority of the work on video games and learning is centered around

the outcomes of games developed to be educational. However, even games that are

intended to be purely entertaining still educate their users in the use of the game

itself. Modern games frequently include a tutorial level at the beginning of the

game in order to familiarize the user with the controls of the game. The tutorial

level provides instruction for the user in performing game actions, and assesses

whether those actions have been performed, in order to control progression to the

next section of the tutorial. For example, a game that includes horseback riding

as part of gameplay may provide the horse to the player during the tutorial level,

and instruct the user in how to use the controls to mount the horse and direct its

movement. Games do not always provide tutorials, and the lack of tutorial content,

or the low quality of tutorials when present, has been cited as a potential usability

issue in games [Pinelle, Wong, and Stach, 2008].

The tutorial level of video games is usually somewhat separate from

171

the main content of the game, in that actions in the tutorial have limited or no

consequences in future gameplay. This raises a potential issue for implementation

of game-style tutorials in a robot control system. If the system allows untrained

users to control real robots in a tutorial mode, the user may make an error that

does have permanent consequences for the future use of the system, such as causing

a collision between robots. If, instead, the system allows the user to operate a

simulation, the design and development overhead of implementing the tutorial is

quite large, for a component of the system that the user may use very rarely or

never. This dilemma may restrict pre-use tutorials to training the user as to which

gestures the system can recognize, and only permit a sketch of the possible robot

reactions to those gestures.

These forms of training center on the gameplay of a specific video game.

However, as discussed in the section “Video Game UI Design”, there are common-

alities in user interface designs across games, particularly within a given genre of

game, and similarities exist between the top-down views used in Real Time Strategy

(RTS) games, and the top-down swarm view used in this work. Indeed, some users

remarked that the interface was “like Starcraft”, which is an RTS game, and used

Starcraft-like box selection gestures. This sort of similarity has been leveraged to

control the IRobot Packbot using a controller from a Sony Playstation or Microsoft

XBox, rather than the Packbot OCU. The Packbot OCU is large and has a large set

of individual controls for each function of the robot. After significant use, Packbot

operators learn complex tricks to maximize their ability to control the robot [Micire,

Desai, Drury, McCann, Norton, Tsui, and Yanco, 2011]. IRobot developed a method

to control the packbot using a game controller instead, because soldiers already had

practice using it from playing video games [Glaser, 2010].

Rather than including tutorials, the system could be developed with a

172

basic level of functionality based on user elicited gestures, as in this work, and

attempt to recognize certain relatively inefficient patterns of user activity. When

such a pattern is recognized, the system would propose alternatives that extend

beyond the easily-discovered gestures to offer greater finesse or complexity. For

example, in the user experiment, some participants performed the Move to Area A

task in the 10 robot case by selecting each robot in turn and dragging it to area A,

while other participants made a selection gesture and then a single motion gesture.

If the system detects a repeated pattern of single robot interactions, it could display

a hint to the user that selection of multiple robots can be done, and indicate how

to use it. In order to minimize annoyance, the user should be able to dismiss the

notification, or prevent future notifications if they feel that they are sufficiently

proficient in the use of the interface.

The data set collected in the user gesture experiment provides an interest-

ing sample of possible advanced gestures. Rather than being common across a large

percentage of the users, these were gestures that a small number of users selected,

in an attempt to provide additional expressive power. The rest of this chapter

discusses the “long tail” of user gestures, and their possible use as “superuser”

gestures after an appropriate training period.

“Other” Gestures

The “other” gestures are those that did not match any of the other codes as

described in Appendix A. The largest category of other gestures is gestures that

were some form of “sweeping” the robots around, but because of the diversity of

these gestures, there was little agreement from user to user. Some users made

gestures over the screen, as if sinking their fingers into sand or a pile of small objects

173

and dividing the pile, or cupping their hands to bring the pile back together. Others

used the edge of a finger (typically the index finger) or the heel of the flat hand

to push robots, as if they were sweeping them along a countertop. These sorts of

physical gestures are in line with the expectation of Natural User Interfaces (NUI)

that the system can leverage the user’s existing intuition about physical objects to

guide their interaction with the screen.

However, detecting and using these gestures is prone to some degree of

technological difficulty. Gestures made off of the screen, in the space above it,

would require additional sensing to detect, such as a depth camera pointed down

at the screen or towards the user from the front (or both). These gestures could

be mapped back into the space of the screen by flattening them to the areas that

they occur over, but the use of a sensed volume could also provide the path towards

operating a UAV swarm in a direct manner. The user could use free space gestures

to define boundaries for the swarm, or push the swarm around directly. However,

such a user interface does not provide feedback in the same space as the gestures.

In the user interface proposed for the gesture elicitation experiment, the response

to a 2D gesture occurs on a 2D surface, and is a projection of a less-than-3D area

onto that 2D screen. The reason that the area is less than 3D is that while the

terrain may have elevation variation, the robots do not leave the terrain. As a

result, the user does not have to mentally “reproject” the 2D space into 3D in order

to understand the interface. For a swarm of UAVs, the display would have to do

as much of this work as possible, to limit the mental labor performed by the user.

For example, the UAVs could be displayed at a size related to their distance from

the viewport provided by the screen, using perspective to indicate distance. The

viewport might also need to be movable, as the user may wish to view the shape of

the swarm from multiple angles.

174

In addition to the possible issues with gestures in space over the screen,

the technology of the multitouch interface can constrain the available gestures. The

Microsoft Surface tracks contacts as areas with a shape, centroid, and so forth. In

software operating on the Surface, finger contact points are typically approximated

as ovals, and distinguished from larger contact points such as the heel of the user’s

hand, by their size. As a result, if the user extends their fingers and places the edge

of their hand on the screen, and then slides their hand along the screen, the Surface

will report a single oval, much longer than it is wide, moving along the screen.

The multitouch screen used in this work tracks up to 20 contact points,

but it treats them as points, each representing a single pixel location on the screen.

If the user preforms a sweep with the edge of their hand, the screen will report a

large number of individual contacts in the region under the user’s hand, rather than

a single region of contact. As a consequence, gestures that use a region of the hand

other than the fingertip are difficult to recognize on the 3M screen.

Gesture Modification

Participant actions in the formation task provided two interesting gesture commands

that used alterations of previous commands to increase the versatility of formation

commands. The first was indicating that the gesture was intended as a formation

command by holding one finger down on the robots while drawing the formation

with the other hand. This gesture arose from one participant’s initial use of a

single-finger drag to move the robots in the initial “Move the robots to area A” task.

For the line formation task, the participant initially used the same gesture, placing a

finger on the robots and then dragging the line on the screen. The participant then

recognized that a simple drag was ambiguous with the motion command, and so

175

placed one finger from each hand on the robots, holding one still and dragging the

other one out to indicate the line for the robots to form. The gesture was initially

explained as “pinning” one end of the robots and “stretching” them out along the

line. On the next task, commanding the robots to form a square, the participant

again placed both fingers on the screen, but drew a square rather than a line. This

sequence of removing ambiguity and then extending from the disambiguated gesture

resulted in a set of gestures that seems to compose a “formation” gesture (placing

and holding a finger) with a description of what that formation should be. This

gesture ended up not being used in the gesture set for the robot interface due to

the fact that only one participant chose it, but in a context where training was

available, it would be relatively simple to train users to perform this gesture.

This sort of combined command-and-modification gesture would probably

be easier to remember than sequences of gestures, as the sequence would consist of

a larger count of discrete actions, rather than being experienced by the user as a

single action. Additionally, the fact that the hold-and-draw formation command

has one hand remaining still is likely a good idea from a design perspective. In

the physiological research literature, tasks where each hand performs a different

action are referred to as bimanual coordination tasks. Bimanual tasks interfere

with each other, as in the classic example of patting one’s head with one hand and

rubbing one’s belly with the other. Interference between tasks of differing difficulty

in a bimanual coordination task was seen in the case of aiming, where the hand

making the easier motion was shown to slow to match the hand making the more

difficult motion, rather than the more easily-completed motion being finished first

[Fitts, 1954]. For an overview of the neurological basis of bimanual coordination

and the various factors that influence interference between tasks, see [Swinnen and

Wenderoth, 2004]. Having each hand performing a different gesture is cognitively

176

demanding, compared to having one hand remain still or perform the same gesture

as the other hand, so designs that allow one hand to remain still will be easier to

use than those that require drawing different symbols with each hand, for example.

Another participant gesture that made use of formations was the use

of an adverb in the gesture language as described in the section “User Strategies

for Manipulation”. The participant used one finger to draw paths for the robots

to follow, but specified that if two fingers were used to draw the path, the robots

should follow the path while remaining in their current positions relative to each

other. Modifying path drawing in this way allowed the participant to form the

robots into a scoop-shaped formation, and then to move the scoop to position the

crate in the crate manipulation tasks.

As with the formation command example above, the gesture is an ex-

tension of a previous gesture, but with an addition to disambiguate it. These

signals to the system that the command is being modified point to a commonality

in the participants’ thinking about the design of the gestures. Participants added

additional contacts to a base gesture to indicate an extension of the base gesture

to a special case. Holding one finger still changed path following into formation,

and dragging two fingers changed path following into path following in formation.

This combination of additional fingers with a base gesture suggests that other base

gestures could be similarly extended with additional fingers to activate different,

but related functionality. For example, some of the tasks displayed a mix of orange

and red robots in one area (for an example, see Figure B.18), to attempt to elicit

user gestures for sorting robots. A single-finger selection could select all robots, and

adding fingers could be used as the extension to select each different color of robots

in turn, with e.g. two fingers selecting the red robots and three fingers selecting the

orange robots.

177

Gesture Direction

Another area in which gestures may be treated with finer granularity is the direction

in which the gestures are made. A few participants in the gesture elicitation

experiment made verbal mention of this distinction, or used it in their control

schemes. One participant used a clockwise lasso as a robot selection gesture, but

a counterclockwise selection gesture to indicate dispersion. Another participant

indicated that lasso selection should be done clockwise, while patrol areas were

selected with a counterclockwise closed loop, similar to a lasso. The participant did

not indicate how they would perform a patrol that moved in a clockwise direction

around the patrol area, or if the direction that the gesture was made in was intended

to constrain the patrol to move in the same direction as the gesture.

Box selection also has the potential to be performed in four different

orientations, with the gesture starting from the top left, top right, bottom left,

or bottom right corners of the box. One participant made use of this distinction,

comparing it to the box selection in the Autodesk Solidworks CAD software.

Solidworks has two modes for box selection. If the mouse moves from left to right,

the selection includes only objects that are contained entirely within the box. If

the mouse moves from right to left, the selection includes all objects that the box

overlaps to any degree. The participant used box selections starting from the top

right to separate part of the robots from the others, and box selections starting

from the bottom right to select only robots that had been marked as being in a

particular group. Most other participants only used box selections starting from the

top left of the box area, so for a UI supporting the distinction between the different

forms, starting from the top left should be the basic gesture, and box selections

starting from the other corners of the box would be reserved for more specific forms

178

of selection.

It is worth noting that there are inherent physical limits on the methods

of distinguishing gestures explored so far. Adding more fingers to a gesture is

limited by the multitouch sensing technology and the user’s supply of fingers. Lasso

can only be performed in two different directions, and box select only has four

different corners that the selection gesture can start from.

Gesture Velocity

Another possible distinction between gestures is the speed with which the gesture

is made. One participant in the gesture experiment made a distinction between

dragging a robot, which is performed slowly, and flicking a robot (to remove it),

which is performed rapidly, with the intent of metaphorically tossing the robot off

the edge of the screen. It seems unwise to alter the meaning of a gesture based

on its speed, as in the case of movement becoming deletion if performed quickly,

because a user may accidentally perform a gesture too slowly or too quickly, and

so obtain a different result than they expect. However, the velocity with which a

movement gesture is performed might reasonably be used to convey to the robots

that the motion is to be performed quickly, while a slow gesture might indicate that

the robots should proceed slowly. Research would have to be performed to ensure

that the increase in velocity does not result in a loss of accuracy beyond what the

user is willing to accept.

Scaling of the velocity from the user commands to the robot commands

also presents a possible issue, as the user interaction point may traverse the map

more quickly than robots can traverse the real terrain. In a relatively extreme case,

if a map of the continental United States is displayed on a typical touchscreen, the

179

user could easily swipe their finger from one coast to the other in a few seconds.

No practical mobility platform can be expected to match this velocity. As a result,

the robot speed and user gesture speed may be related in a potentially complex

way by other factors, such as the scale of the map view, leading to difficulty for the

user in understanding how fast the robots are being commanded to move.

Assessment of Training-Oriented Gestures

If the system were developed with this style of gesture set, assessment of the validity

of the design choices would differ from the assessment of a system based on gestures

intended to be useful to untrained users.

In the case of a system intended to be useful to untrained users, the

system’s primary metric of effectiveness would be the ability of untrained users

to complete tasks at all. In the experimental study, some users performed the

formation task by repeating the single-robot motion gesture to move each individual

robot into a position on the formation. This control scheme would allow the user to

complete the task, assuming the single robot motion gesture was supported, but it

is relatively inefficient compared to using a formation command button once. Many

of the other tasks could be performed in this way, as sequences of single robot move

actions, so as long as the user discovered that interaction method, the system could

be used, albeit slowly.

For a system that permits a longer training period, factors such as

efficiency and memorability of the commands would be important, as well as the

length of time to become proficient. Efficiency could be quantified as gestures

required to perform a task, with a lower gesture count indicating a higher efficiency.

To return to the previous formation example, moving ten robots into formation

180

with single robot motions requires ten gestures, while using a formation button

requires a single selection gesture, a button click, and a single gesture to draw the

formation, for a total of three user interface interactions.

Testing the memorability of the system would require testing of the

same user population after training, and again after a period of time not using the

interface, to determine how many of the gestures were learned during the training,

and how well they were retained over the gap of non-interaction time. Memorability

interacts with training time, as it would be expected that a more memorable gesture

set would allow users to become proficient more quickly than one that is difficult

to remember. One factor that may affect the memorability of the instructions is

similarity across modifications of gestures. For example, if a two-finger box select

selects only robots of a specific color, a two-finger lasso selection should also only

select robots of a specific color. As a result, the user can learn that two fingers is the

modification that makes the action color-specific, and combine that modification

with basic gestures to create more precise gestures. To extend that example, use

of two fingers in a formation gesture might indicate that only robots of a specific

color participate in the formation. However, enforcing this kind of consistency may

result in implementation of unneeded gestures that complicate the gesture space.

For example, maintaining consistency may result in commands such as sending only

robots of a specific color to move a box, when the main concern to the user is that

the box be moved, not what color the robots doing the work are.

Missing Gestures

Neither the consideration of “superuser” gestures nor the interface designed from

naive user gestures considered certain types of user interaction. For example, the

181

tasks specified in the experiment did not include gestures intended as commands to

the user interface itself, such as commands to change the viewpoint from which the

user was observing the robots. One participant did suggest the use of reverse pinch

as a zoom gesture, as is frequently used on cell phones, for a task where the user

had to interact with one robot in a group. By zooming in, the user expected to

have that robot cover more of the view, and so be easier to interact with. The user

interface also did not ask the user to alter the color of individual robots, despite

having some situations where the robots were divided into groups by color.

The absence of commands such as viewpoint changes and alteration

of robot colors was intentional, so the user could have a feeling of interacting

directly with the robots, rather than interacting with the interface. Adding a

set of commands that are only to the interface, and not to the robots, creates a

layer of intermediation. Adding a second set of commands also creates additional

opportunities for ambiguity, as the commands to the user interface and to the robots

must be separate, so that the interface can determine which commands influence it,

and which commands are intended to be converted into programs for the robots.

The conversion of user gestures to robot programs was of more interest for this

work, but in the future it would be useful to determine what commands users might

want to issue to the interface, and how they can be separated from commands to

the robots.

The tasks presented in the experiment were intended to have an overlap

with the tasks from [Micire, 2010] for purposes of comparison, but also to have a

reasonable degree of coverage of actions the user might want to have robots perform.

However, there is no task for sensor overwatch, or any other task that requires that

the robots be pointed in a certain direction. As a consequence, the gesture set is

somewhat agnostic to gestures that would allow the user to specify a heading for

182

the robots to face. It could be argued that in this particular experiment, as the user

was told to assume that the robots could execute the task they were given, that the

robots will end up pointing whatever direction they need to point to complete the

task. As a result, if the task was sensor overwatch, the robots would be positioned

such that their sensor fields overlapped the desired area.

This lacuna in the range of gestures elicited by the experiment points to

a more interesting element of the experiment design for future research. Heading is

a quality of an individual robot (although, clearly, a swarm can point to a common

heading), and so heading gestures could be elicited in a single robot case. It may be

useful to consider what actions can be reasonably regarded as single robot actions,

such as facing a direction, turning in place, controlled movements, and so on, and

compare the gestures selected to perform those actions on a single robot with the

same actions, applied to a swarm. In addition to providing a very fine-grained

treatment of control gestures, the extension of the gestures to swarms may reveal

interesting qualities of the participants’ thinking about the swarm. For example,

if a swarm is commanded to rotate in place, do users expect each robot to move

on an arc around the centroid of the swarm, or each robot to rotate in place to a

new heading? In either case, how is the expectation reflected in the gesture used?

Based on the results of this work, particularly in the unknown number of robots or

“cloud” case, the participants’ understanding of the swarm as a single entity would

likely override their thinking of it as a large number of individuals, and so they

would likely expect the swarm to reorient with some robots moving on arcs around

the centroid of the swarm, rather than each robot rotating in place.

183

Gesture Coverage

Related to missing gestures, that is to say, gestures that were not elicited by the

design of the experiment, is the question of gesture coverage. Because there was

no constraint on the gestures the users could choose, all of the users performed

(or described) some form of interaction for each task they were presented with.

There was no case where a user was presented with a task, but could not complete

it because they did not have a gesture available, because any gesture they could

imagine and physically perform was available.

However, once the user gestures were codified into an interface, there is a

limitation on which gestures are acceptable and which are not. As a consequence,

a situation may arise where the available gestures in the interface do not provide

the user with a way to complete the task. In this case, the coverage would be

incomplete: the set of gestures does not cover all the possible tasks.

Determining that all possible tasks are covered by a fixed set of gestures

may not be a useful problem to attempt to solve. Without a method of determining

the likelihood of each situation, and the cost of failing to respond effectively to it

with the given interface, significant effort would be expended on situations that

my simply never arise. For a real-world SAR application, a preferable approach

may be to provide a set of gestures covering a range of abstractnesses, with simple

motion to a point at one end, and more complex behaviors such as formations,

specialized forms of dispersion, and area searches at the other end. By providing

different granularities of control in this manner, the user can use the more complex

behaviors when they recognize a situation in which such behavior is useful, and

attempt to cross gaps in the gesture coverage by combining the simple behaviors.

Some hope for the validity of this approach is to be found in the use of single robot

184

movement gestures, repeated for each robot, to send the robots to formation by

some participants in the 10 robot case. Rather than suggest a “formation” gesture,

these participants combined gestures they had already created for motion to a

point, and used them to perform the formation task. In the case of a gap in the

gesture coverage, similar ingenuity and the availability of relatively fine-grained

basic actions may allow users to complete the task despite the lack of coverage.

However, some care must be taken to ensure that the basic actions scale well with

the swarm size. The use of single robot moves to enter formation is possible with

more than ten robots, but becomes prohibitively tedious.

185

Chapter 7

Implementation of Swarm Actions

Finally, the commands specified by the user must be conveyed to the swarm. It

is important to include the path specified by the user in the path planning for

members of the swarm. By following the path laid out for it, the behavior of the

swarm is made legible to the human user. Compliance with the requested path

indicates to the user that the swarm is under their control, and allows them to

assess the progress of the system towards the goal. If, instead, the system uses

some other form of path planning, it will initially appear to not be doing what

the user requested, even if the end state does eventually become what the user

intended. What factors contribute to this legibility and how best to balance them

with other operational constraints of the system is beyond the scope of this paper,

but has been examined in the context of manipulation, navigation around people,

and combined in mobile manipulation around people [Beetz, Stulp, Esden-Tempski,

Fedrizzi, Klank, Kresse, Maldonado, and Ruiz, 2010; Kruse, Pandey, Alami, and

Kirsch, 2013; Dragan, Bauman, Forlizzi, and Srinivasa, 2015]. The work on legible

manipulation also distinguishes between predictable motion, which makes sense to

186

observers based on a known goal, and legible motion, which allows observers to

infer an unknown goal. Extension of legibility and the emotive content of motion

to swarm robots has also been recently investigated, but not in relation to human

control of the swarm [Dietz, E, Washington, Kim, and Follmer, 2017].

The user input may also contain information that is not available to

the swarm, but is available to the user. This information may be necessary for

the successful completion of the task, and so is not to be discarded lightly. For

example, the optimal path in terms of minimal travel distance may be blocked by

some transient condition, especially in the case of disaster response, such as fire or

flood, and so the user may direct the robots to take a longer route to the goal. As

such, the user’s path selection can be viewed as an attempt to convey information

about the desirability or utility of a given path to the robot, and so following the

path given by the user is preferable to not following it. Discarding this information

in favor of the shorter path could result in unit loss and mission failure.

All of the valid expressions possible in the command language should be

converted into programs for the robots, or the user must be usefully informed as to

why it was not possible. The synthesized program should result in convergence of

the swarm’s overall behavior to the desired result. Clearly, in a developing situation

in the real world, success may become impossible, and so there is not a practical way

to guarantee that a particular valid command sequence will result in a particular

desired state of the world. However, certain minimum bounds on the problem may

be able to be used to determine if a desired task is certain to fail.

187

Localization

The initial vision for this work was to have minimal sensing and no localization.

Minimal sensing results in a lower cost per robot, as it reduces the amount spent

on sensors. Not relying on localization, especially localization via approaches such

as GPS, which are easily blocked or interfered with, allows the resulting algorithms

to be useful in situations where global localization is not available.

However, a user interface that can display the swarm from an overhead

view assumes that there is some form of localization, at least in terms of relative

distances and bearings between the robots. Without that information, the display

of a group of robots in a way that matches their actual locations in the world is

impossible, and displaying them incorrectly is likely to mislead the user. Even the

unknown number of robots case assumes that the outer bounds of the swarm are at

least approximately known.

Fortunately for this work, there are a number of approaches to creating a

local coordinate frame using robots with relatively simple sensors. A local coordinate

system can be created by communicating agents with a limited, known sensing

range but no other concept of distance [Bachrach, Nagpal, Salib, and Shrobe, 2004].

One agent acts as a seed, and sends messages to its neighbors. The neighbors

propagate those messages, incrementing a hop counter in the message, and ignore

messages with a higher hop count to stop the message from propagating backwards.

As a result, each agent knows that its distance from the seed is at most the

communication radius times the minimum hop count it has received. By using

multiple seeds, each non-seed can calculate its position based on trilateration to

the seeds. Extending this method to use received signal strength as a proxy for

distance, rather than the constant known sensing range, improves the accuracy of the

188

approach. The Kilobot swarm uses a range-only sensor along with communication

to create a local coordinate system [Rubenstein, Cornejo, and Nagpal, 2014b]. A

set of four stationary seed robots act as the origin of the coordinate system. As

robots surround the four known robots, the new robot localizes from them and then

begins broadcasting its own position. Each new robot that joins the group uses

trilateration to localize itself based on the robots that it can communicate with.

In addition to range-only approaches, bearing-only approaches to robot

localization have been created, including an approach that uses the bearings to

landmarks to create a vector field to drive the robot to a goal [Loizou and Kumar,

2007]. This approach is even able to guide an individual robot in the presence

of moving landmarks. It does not, however, produce a coordinate frame that is

shared among the robots, unless they somehow agree on the landmarks to use. A

scale-free coordinate system can also be created using only bearing sensors and

inter-robot communication, to arrive at a coordinate system that is shared among

the robots [Cornejo, Lynch, Fudge, Bilstein, Khabbazian, and McLurkin, 2013].

The addition of scale to such a system requires something beyond only bearing

measurements. One way to do this is to use structure from motion (SfM) to estimate

inter-agent distances, and use the measured distances to determine the scale for the

network of robots [Spica and Giordano, 2016]. Alternatively, a pair of beacons of

known location could provide the scale information required to convert scale-free

coordinates into a metric coordinate system.

Finally, systems that combine range and bearing information are com-

mon in swarm robotics [Caprari et al., 1998; Mondada, Bonani, Raemy, Pugh,

Cianci, Klaptocz, Magnenat, Zufferey, Floreano, and Martinoli, 2009; Arvin et al.,

2009; Farrow, Klingner, Reishus, and Correll, 2014]. Systems with range and

bearing can use trigonometry to calculate relative positions of other robots, and so

189

can bootstrap a coordinate frame by using a method such as spreading inhibition

to elect an origin robot, which then informs its neighbors of their positions in its

coordinate frame. The neighbors can then correct their position estimates based on

communication with each other, as in range-based localization schemes, and inform

their neighbors of their positions, propagating the coordinate system outward from

the origin.

As there already exist a large number of ways for robots to arrive at a

local coordinate system without GPS or sophisticated sensors, the creation of a

coordinate frame was determined to be outside of the scope of this work.

Vector Field Path Following

Once the robots have developed a coordinate frame, the space the robots are in

can be decomposed into a set of cells, and the program for the robots can be

expressed in GCPR as checks on which cell the robot is located in and what the

desired behavior for the robot in that cell is. The desired behavior for each cell is

based on the user input on the interface device. Since the locations of the robots

in the local coordinate system are known, and the location of the visualization

of the robots on the user interface device is based on their positions in the local

coordinate system, the user’s input can be mapped into the local coordinate system

to guide the robots. The combination of the spatial decomposition and the user

input results in, essentially, a discrete vector field. By having the vectors in the

field point towards a user supplied path, or along the path, the robots can follow

the path using only their location in the local coordinate frame to guide them.

The space is decomposed into squares of uniform size. The size can be

varied, but smaller squares result in a longer program for the robots and longer

190

runtime for the decomposition algorithm. To determine the desired vector for a the

cells of the spatial decomposition, a multipass algorithm is used.

The first pass assigns the vectors for those squares containing a point of

the user specified path, or on the line between two points of the user path. Squares

containing a point are assigned a vector pointing to the next point on the path.

Squares between two points are assigned a vector pointing from the square center

to the point closer to the end of the path. After this step, all points on the path

have a vector pointing along the path.

The second pass assigns to all squares neighboring the end point of the

path a vector pointed towards the end point of the path. As a result, the end point

of the path becomes an attractor that robots attempt to reach.

The third pass assigns to all squares that are adjacent to assigned squares

a vector which is the average of all of the values of the assigned neighbors. This

pass broadens the path so that it is greater than a single square wide, and ensures

that the vector field around the path is smooth.

The final pass is repeated until no square is assigned during a repetition.

On each repetition, any square that is not assigned, but has assigned neighbors, is

assigned the average of its neighbors and a vector from the center of the square to

the closest point that is on the path. As a result, squares off the path drive the

robot towards the path via the shortest route. When this pass is complete, every

square of the decomposition of the space has been assigned a vector pointing in the

direction that a robot in that square should move.

The resulting decomposition can then be converted into a GCPR program

by having each guard be a check on the position of the robot, and assignment of

the robot’s desired heading based on the grid square it is in. A GCPR clause tells

robots that are off their desired heading to rotate to that heading, and robots which

191

are on their desired heading to move forward.

Dispersion can be implemented in terms of vector fields as well. In the

case of path following, every robot that was intended to follow the path would be

issued the same decomposition of the space, but would follow different routes, as

they start from different locations. To disperse the robots, each robot receives a

different path, starting from their current location and moving to their new dispersed

location. As described above, the robots can avoid each other while attempting

to reach their new positions, and return to following their assigned paths once

they are clear of each other. In implementation, the new locations were chosen

by uniform random selection of points over the area the robots were in, but other

approaches, such as positioning the robots so that each robot could communicate

with at most two other robots, or on a regular grid in the local coordinate frame,

would be amenable to the same implementation.

These algorithms for path following and dispersion were implemented in

ROS and tested in the ARGoS multi-robot simulator [Pinciroli, Trianni, OGrady,

Pini, Brutschy, Brambilla, Mathews, Ferrante, Di Caro, Ducatelle, et al., 2012]. As

a basic method for driving robots with some form of localization along a path, and

creating a representation of the user input that can be represented in GCPR, a

discrete vector field approach works. However, it is limited in a number of ways

that eventually resulted in this approach being discarded.

Composition with Obstacle Avoidance

Reactive obstacle avoidance was initially added to the vector field program by only

following the desired heading if the robot detects that it is not near any obstacles,

and reacting to avoid the obstacles rather than follow the vector field if an obstacle

192

is detected. This approach does have the weakness that the user can, for example,

draw a path which passes through an obstacle. In a known environment, obstacles

could be surrounded by repelling vectors, but in an unknown environment, this

sort of command will cause the robots to approach the obstacle under vector field

control, turn away from the obstacle until it is no longer visible, return to vector

field control, and return to the obstacle. Even in a known environment, the local

minima caused by “U” or “C” shaped obstacles present a problem for vector field

based navigation.

There exist a family of algorithims, called “bug algorithms”, which provide

complete path planning in a priori unknown environments with minimal sensing,

under reasonable bounds, such as that the number of obstacles is finite and the

goal is reachable. The bug family is large, and some of its members require sensing

which may not hold in all conditions, such as location information or infinite-range

distance sensing, but many do not. I-Bug, in particular, requires only the ability to

detect a gradient which towards the goal and the ability to circumnavigate obstacles

by e.g. wall following [Taylor and LaValle, 2009].

Generally, bug algorithms have two cases, the rules for motion in unob-

structed space, and the rules for moving around obstacles. Rules for motion around

obstacles frequently combine wall following around the perimeter of the obstacle

with a leave condition that causes the robot to stop wall following and return to

moving in open space. In the initial bug algorithm paper, the leave condition for

Bug1 is to depart the obstacle from the point closest to the target, which requires

circumnavigating the obstacle once to find that point [Lumelsky and Stepanov,

1987].

However, simply applying a bug algorithm to the movement of each robot

in the swarm may result in undesirable behavior in a number of ways. First, many

193

bug algorithms rely on wall following to pass around obstacles. If the other obstacle

is another robot, operating under the same algorithm, the robots may begin to

circumnavigate each other. If the leave condition for the circumnavigation is never

met, this behavior would persist indefinitely. Under the leave rule discussed for

Bug1, if one of the robots is moving slightly faster than the other, the resulting path

of the two robots would be a spiral moving in some direction in space. Since Bug1

uses return to the same location to detect circumnavigation, and the spiral would

never return to the same location, the leave condition would never be satisfied.

Unfortunately, composition with a vector field indicating the user-specified

path to the goal with a bug algorithm for obstacle avoidance can break the guarantees

of completeness that make bug algorithms appealing. For example, assume that

the goal is a point with a vector field pointing towards that point from all locations

in the operational area. A tempting bug algorithm for passing around obstacles is

to circumnavigate the obstacle until the vector field points away from it, then leave

and return to vector field control. For a simple polygonal obstacle between the

robot and the goal, this results in reaching the obstacle, navigating some distance

around it, and then departing it again on the side closer to the goal. However, if the

goal is surrounded by a right-handed spiral-shaped obstacle such that any straight

line from the goal intersects the obstacle, the goal becomes unreachable. When a

robot hits the spiral, it will wall follow in some direction. If it uses a right-handed

wall follow, it will reach the outer lip of the spiral and depart the obstacle following

the vector field. It will then hit the obstacle again, since the vector field across the

mouth of the spiral points towards the goal in its center, and begin wall following

again. A left-handed wall follow would reach the goal, but could be defeated by a

left-handed spiral. Changing to randomly-selected left-handed or right-handed wall

following changes the shape of the obstacles that can trap the robot, but does not

194

Figure 7.1: Simple obstacles that result in looping behavior for a bug algorithm
that combines wall following with leaving the obstacle when the vector field points
away from the obstacle.

remove the possibility, so long as the leave condition is simply that the vector field

point away from the obstacle.

Neither of the cases depicted in Figure 7.1 has an unreachable goal, in

that the goal is a member of the same set of points as the open space of the

environment, but attempts at obstacle avoidance preclude the robot reaching it.

Code Generation Refinement

Rather than rejecting bug algorithms because they cannot be usefully combined

with a global vector field, the vector field representation of the space was rejected.

Vector fields have other problems, beyond unsatisfactory composition with complete

motion control planners such as the bug algorithm family. A vector field cannot

represent a path that crosses itself, such as a patrol route that is a loop. In the

continuous case, a vector field is represented by a function that maps all points in

the space to a vector representing the desired robot heading at that point. However,

because a function produces exactly one value, each point can only have one heading,

while the intersection point of a path has two headings, at different points in time.

195

For a vector field broken up into discrete grid cells, the same problem applies, but

to regions rather than points.

One potential solution to this problem with vector fields is to have

multiple vector fields, or multiple values at each point, and allow the robot to

maintain a program counter, which it uses to determine which field or which value

to use at a given point. The counter is incremented on departure from a vector

field grid cell, and then on return to that cell, the new value of the program counter

is used in a guard, which results in the robot using the second value of the heading.

For example, the GCPR statements:

(self.is in((1.74, 1.92), (1.24, 1.42)) and pc is(1), self.set desired heading(2.33), 0.9)

(self.is in((1.74, 1.92), (1.24, 1.42)) and pc is(2), self.set desired heading(1.03), 0.9)

will result in the robot using the heading 2.33 when it passes through the grid region

if the program counter is 1, and 1.03 when it passes through the grid region with

the program counter set to 2 (while, unfortunately, not defining a desired heading

if the program counter is set to some other value).

Using a program counter to select possible headings for a discrete vector

field grid cell has the drawback that the program counter must be incremented

on leaving the cell, as incrementing it while remaining in the cell will cause a

change of heading. As a result, the generated program must have guards on all

cells surrounding the cell, which increment the program counter when triggered.

Further adding to this complexity is the problem of sensor noise. If sensor noise

causes the robot to erroneously detect that it has entered the neighboring cell, then

the program counter could be incremented without the robot actually leaving its

current cell. On the next update of the noisy position sensor, the robot could then

“return” to the current cell, and change direction due to the incorrectly implemented

program counter.

196

As a consequence of the complexity attendant on repairing the inability

of the vector field to represent paths containing loops, the underlying representation

of the conversion of user paths into robot programs was changed to avoid the use of

vector fields.

Approaching a Point

The basic action of the robot is to move from one location to another. Under the

assumption that there exists some form of localization, which must hold in order to

support the type of user interface described in this work, the simplest approach to

navigation to a point is for the robot to rotate to face that point and then move

forwards towards it. Once the point is reached, the robot should stop.

Reaching a point is more complex for swarm robots than it is for single

robots. Some work assumes, for theoretical development, that robots are points,

and as they occupy no area, any number of them may congregate at a mathematical

point. In the real world, while a point may be described precisely, it is usually

sufficient to arrive within some small distance ε of it to say that the robot has

reached the point. However, robots also take up space in the real world, and so as

more and more members of the swarm arrive at the point, the later arrivals may

be precluded from actually approaching to within ε of the point. In this case, it is

desirable to have a definition of arrival that expands to allow robots to approach

the point as closely as they can and stop when that condition is met.

Completeness of Navigation

As described earlier, bug algorithms are complete, in that they navigate the robot

to a point, or determine that the point cannot be reached. A review of eleven bug

197

algorithms can be found in [Ng and Bräunl, 2007]. Bug algorithms also generally

rely on only local sensing and minimal data storage, and so are appealing for use in

swarm control. In this section, the basic bug algorithms are extended to determine

if it is possible to provide local-sensing-based complete algorithms for the tasks

from the user test.

Unfortunately, most of the bug algorithms have the requirement that

the obstacles in the environment are not moving. Indeed, the presence of moving

obstacles results in navigation becoming undecidable without knowledge of the

future movement of the obstacles, as an obstacle can move to occupy the robot’s

goal. Unless it is known whether the obstacle will move off the goal in the future,

it cannot be determined whether the goal is unreachable, or just not currently

reachable.

The TangentBug algorithm has been extended to handle moving obstacles,

given a number of constraints [Kamon, Rimon, and Rivlin, 1998; Tomita and

Yamamoto, 2009]. The main constraint that affects the use of this algorithm is that

the obstacles are constrained to be moving at a velocity that is slower than that of

the robot. This constraint is required because if the robot is circumnavigating the

obstacle, and the obstacle is moving faster than the robot, then in the time that the

robot requires to circumnavigate the perimeter of the obstacle, the obstacle will have

moved a distance greater than its own perimeter is long, and the circumnavigating

robot will have moved with it. As a consequence, the circumnavigating robot might

not return to its own previous path and cross it, which is the condition that Tomita

and Yamamoto use to determine that the robot should leave the obstacle.

At first, this would appear to be a problem for swarm robots, because if

the robots are the same, they will be moving at the same speed. If one moves in a

straight line, and the other attempts to circumnavigate it, the circumnavigating

198

robot will never cross its own path for the reason described above, and so never

leave. However, if the robots are using the same bug algorithm, this trap will not

be sprung, because each robot will attempt to circumnavigate the other. If they

attempt to circumnavigate each other in opposite directions, they will spiral around

each other, leading to at least one of the robots crossing its own previous path, and

triggering the leave condition of the algorithm. If they attempt to circumnavigate

each other in the same direction, they will come to a position side-by-side, as neither

can outpace the other, but neither will pull away from the other because they are

attempting to follow each other’s perimeters. In this case, they are pointed towards

the goal, because in the absence of an obstacle, Tomita and Yamamoto’s modified

TangentBug orients the robot towards the goal, and so before they encountered each

other, the robots were oriented towards the goal. The robots will then approach the

goal, and one will arrive, while the other circumnavigates the first until it detects

that it cannot arrive at the goal.

Tomita and Yamamoto do not deal with the decidability of their modifi-

cation of TangentBug because they constrain the goal point to be not within an

obstacle, and so reachable by the robot. The original TangentBug will navigate the

robot to the goal if it is reachable, or circumnavigate the obstacle, returning to its

starting point, whereupon it detects that the point is unreachable [Kamon et al.,

1998]. Since Tomita and Yamamoto constrain the goal to not be within an obstacle,

the original TangentBug will reach it.

In the case of moving obstacles, if the goal is covered by an obstacle, the

obstacle is either moving or not moving. If the obstacle is not moving, the arriving

robot will circumnavigate the obstacle, return to the hit point, and stop, having

detected that the goal cannot be reached. If the obstacle is moving, the modified

TangentBug will not return to its original hit point, which is either left behind or

199

covered by the obstacle, but will eventually cross itself, and leave the object towards

the goal. If the obstacle is still covering the goal, this process will repeat until the

object is not covering the goal anymore, and the robot will reach the goal.

In the case of swarm robots, as described above, some mechanism may be

needed to determine that the goal is occupied, possibly by other swarm members,

and to stop at a location near the goal. The stopping condition of the original

TangentBug in the case where the goal is unreachable extends naturally to swarm

robots.

If a robot is the first to arrive at the goal, the goal is not occupied, so

the robot occupies it and stops. If a robot is not first to arrive at the goal, the goal

is occupied by a robot, which is stopped. The new arrival treats the stopped robot

as an obstacle, circumnavigates it, returns to the original hit point and so detects

that the goal is unreachable, and stops. If multiple new arrivals get to the stopped

robot(s) at the same time, the conditions above hold, and so they eventually either

cross their own paths while trying to circumnavigate another robot that is also

circumnavigating an obstacle, and so leave and return (and so become later arrivals),

or complete a circumnavigation and return to their own starting point and stop

(becoming part of the obstacle). Unfortunately, this method of handling late arrival

will cause the robot cluster to grow in the direction from which most of the robots

arrive.

If a maximally dense cluster of robots is desired, the unreachability check

of TangentBug can be extended. Once the goal is determined to be unreachable,

the robot performs another circumnavigation of the blocking obstacle to find the

closest point to the goal, and returns to that point. That point has either been

occupied by another robot, in which case the robot repeats this step, or occupies

that point if it is free. Because every iteration of this step fills the point closest to

200

the goal with a robot, the resulting cluster of robots is packed as close to the goal

as possible.

Path Following

As discused previously, it is desirable to have the robots follow user-defined paths

rather than simply determining what the end position of the robots is to be and

heading directly to that point. The reasons for this are twofold:

1. Following the user path makes it clear to the user that the robots are doing

as the user directed.

2. The user path may be chosen as a consequence of information that the user

has and that the robots do not, and so satisfies some property other than

simply arriving at the goal, such as avoiding a dangerous area or providing a

sensor sweep of an unexamined area.

A user path can be followed by a bug algorithm by breaking the user

path into a series of points, and using a bug algorithm to navigate to each point in

turn. Because the bug algorithm is complete, it can either reach the target point,

or determine in finite time that the point is not reachable. Motion to the goal point

is complete, as it is simply TangentBug navigation to a point and TangentBug

navigation has been demonstrated to be complete under reasonable constraints.

Motion to the point prior to the goal point can either reach the prior point, or detect

that it is unreachable. In either case, the algorithm then transitions to attempting

to reach the goal point, which has been demonstrated to be complete. Since motion

to the point before the goal is guaranteed to transition to a complete approach to

the goal, it does not alter the completeness of the algorithm. The same logic holds

201

Start

Obstacle in direction of goal?

Orient towards and move to goal

No

Record hit point

Yes

At goal?

No

Stop

Yes

Follow obstacle edge

Closer to goal than hit point?

Leave obstacle

Yes

Crossed own path?

No

Returned to hit point?

No

Obstacle in direction of goal?

Yes

No

Goal is unreachable

Yes

Is this the last point?

Yes

Next point is new goal

No

No

Follow obstacle edge

Yes

Figure 7.2: The proposed modifications (in green) to the Tomita and Yamamoto
TangentBug algorithm for user path following in cases with multiple robots, some
of which may be treated as moving obstacles. This flow chart does not include the
option for maximally dense packing at the goal described in the text.

202

for each point prior to the attempt to reach the goal point, and so the entire path

following algorithm is complete.

However, the path followed by the robot may miss one or more of the

user-defined points, and in fact may miss all of them, if, for example, the entire user

path happens to be within a previously undiscovered obstacle. The upper bound

on the length of the path that TangentBug will produce is given by

Pmax = ||S −G||+
∑
i

∏
i +

∑
i

∏
i ×#Minimai

where ||S − G|| is the straight line distance from the start to the goal,
∏

i is the

perimeter of the ith object, over all objects i in the disk with radius ||S − G||

centered at the goal, and #Minimai is the count of local minima in distance to

the goal on the perimeter of the ith object. In the case of iterated TangentBug, this

bound is then summed over each goal point. While the perimeters of the objects

are constrained to be finite in order for TangentBug to converge, they may be very

large, and so send the robot far from the user path. Whether this deviation is

acceptable or not depends on factors outside of the scope of a priori algorithm

development, such as the parameters of the mission that the user is sending the

robots on, and so is not amenable to solution here.

Formation

In the user interface tests, the formation task was to cause the robots to form a

formation, but did not involve motion in formation. It was not specified whether

the formation was to be a form of aggregation which constrains the robots to be

within the perimeter of the desired formation, or if the robots were required to be

on the perimeter of the formation, with no robots inside or outside of the formation

203

area.

In the case of robots with localization, the formation can be sent to the

robots as a list of points, similar to how a path would be sent to the robots as a

list of points, and the robots can select points that are either inside that formation

or on its edge, as needed, and then follow paths to those points. However, such a

naive algorithm could result in the loss of the completeness properties of the bug

algorithm if failure to reach the target point is handled poorly. If the robot simply

selects a new point each time its target point is not reachable, and no point in the

formation is reachable, then the algorithm will loop forever.

Instead, the path following behavior can be adapted to generate a path

that will position the robot on the perimeter of the formation, or determine that

such a positioning is impossible. The formation algorithm consists of two phases,

approach to the perimeter and positioning along it. Approaching the perimeter is

done as in path following, with the perimeter points serving as the list of points

on the path. As with path following, the robot will attempt to reach each point

along the perimeter in turn, and if none of them are reachable, the algorithm

will terminate, having determined that the entire perimeter of the formation is

inaccessible. However, once the robot reaches any point on the perimeter, there are

two options for the algorithm. The robot can stop, as it is now on the perimeter

and so “in formation”. Any subsequent robot following the path will then treat

that point on the path as blocked by an obstacle, and proceed to attempt to reach

the next point. As a result, each robot stops at the first unoccupied space on the

path, or fails to find any unoccupied spaces and terminates upon failure to reach

the last point in the path. Alternatively, the robot could stop when it reaches the

last point, or, on failure, backtrack to the last point that it could reach.In either

case, as with basic path following, the algorithm is complete.

204

Interestingly, the Bug2 algorithm from the original work on bug algorithms

is a better choice for the basic bug algorithm used this style of formation than the

modified TangentBug algorithm [Lumelsky and Stepanov, 1987]. While TangentBug

does have a lower bound than Bug2 on the maximum path length, Bug2 uses a

path called the m-line which is the line segment passing between the start point

and the target point. For a polygonal formation expressed as a list of points, the

m-lines between each subsequent set of points form the perimeter of the formation.

As a result, any point which is on an m-line and in free space, rather than within an

obstacle, is a valid point for the robot to stop on and consider itself “in formation”.

The use of bug algorithms as outlined here does not address the problem

of dispersion along the edge of a formation. A reasonable expectation of the behavior

of a swarm commanded to form, for example, a square shaped formation is that

the robots would be approximately evenly distributed along the perimeter of the

square, at least where there were no obstacles to prevent it. Having the robots all

located around one corner of the square or along one edge, while technically on the

perimeter, would be less satisfactory. There are a number of possible approaches

to spacing along the formation perimeter that might be adopted, depending on

the robots’ sensing abilities. Since the basis of this work includes a central user

interface which generates the robot programs and transmits them to the individual

robots, one way to distribute the robots would be to base the decomposition of the

formation perimeter into segments based on the number of robots available, and

have each robot’s final destination be a different point on the formation perimeter.

If the programs followed the entire perimeter as closely as possible before stopping,

they would preferentially take their final path point, and fall back to points along

the formation if their final goal was unavailable.

If the robots can sense each other, they could disperse along the perimeter

205

according to some higher-level rules for setting their own goals, but using bug

algorithms to navigate. For example, if it is known that enough robots exist to cover

the perimeter tightly enough that every robot can see a robot to its left and right,

bounded by some limited sensing radius, robots could move on the perimeter to

keep the distances between the robots to their left and right equal, treating points

where obstacles intersect the perimeter as robots. However, if the unobstructed

perimeter of the formation is greater than the twice the robots’ sensing radius

times the number of robots, gaps in the perimeter will lead to oscillation as robots

attempt to fill them. Lacking a global knowledge of the situation, the robots cannot

determine that the perimeter is unfilled.

Patrol

Patrol is distinct from the other tasks because it has an infinite loop in it by design.

The robots patrol the area, and once they finish the patrol, they begin again. A

complete algorithm is one which will either obtains the correct result, if possible, or

indicates failure. In either case, a complete algorithm terminates, while a patrol

does not. However, the navigation algorithm can simply be the same as the path

algorithm, only looping over the list of goal points rather than passing through

each of them once. While not complete because it does not terminate, each attempt

to reach a point on the patrol path is complete, in the sense that it either reaches

the point, or determines that it cannot be reached. The algorithm moves on to the

next point in either case, rather than terminating.

In a non-dynamic environment, obstacle-free environment, the algorithm

will cause the robot to arrive at every point of the patrol path, since there are no

obstacles to prevent it. Adding obstacles raises the possibility that the robot may

have to deviate from the patrol route to circumnavigate obstacles. As a result, while

206

the robot will attempt to reach all of the points in the patrol loop, it may miss any

or all of them due to obstacles. In this case there needs to be some sort of criterion

for how bad the deviations from the patrol route can be and still be regarded as

a satisfactory patrol. Since this criterion is most likely something related to the

overall goals of the user, such as detecting the approach of some other actor to the

patrol area, the failure of the criterion is unlikely to be detected by the individual

robots. Instead, the detection of failure to reach patrol points should be propagated

back to the user in a way that allows the user to decide if the patrol path is still

acceptable.

Adding dynamism to the environment raises a concern with the modifi-

cations of TangentBug required to allow it to operate in a dynamic environment.

In the modified TangentBug, a robot crossing its own path is caused by a dynamic

obstacle, but in the case of a patrol, the robot constantly crosses its own path.

In order to detect the path crossings, the modified TangentBug of Tomita and

Yamamoto keeps track of its own past locations, and detects the intersection of

its current location and next position with each line segment between each of its

own past locations. However, this problem is not as dire as might be expected.

Because the path following is considered an iterative application of the modified

TangentBug, the buffer of previous path locations is cleared on beginning the next

iteration, which is caused by either arriving at a goal or determining that the goal

is unreachable. This also greatly reduces the storage requirements for the path, as

not all points along the path are required to be stored, and allows the user path to

have loops, which initially motivated the use of modified TangentBug.

207

Dispersion

Unlike formation, the primary concern of dispersion is that the robots be evenly

spread throughout the area, rather than within or along a specific perimeter.

Dispersion can be treated as movement to points, but the selection of points can

be handled in a number of ways. If the robots can communicate and are localized,

they can agree on a dispersion based on the space covered by the swarm and a

desired density. As with formation, each robot could be assigned a target point to

which it should move. However, in the presence of obstacles, attempts to approach

the target points could be thwarted by inter-robot interference. For example, if

many of the dispersion points are within an obstacle, and one is in the only, narrow

corridor into that obstacle, the arrival at its assigned point of a robot assigned to

the point in the corridor will block all the others from arriving at their dispersion

points. Because of this problem, it is preferable to have each robot be able to

determine whether the dispersion is at least locally complete, rather than rely on

simple arrival at a point to regard itself as “dispersed.”

Unfortunately, this change renders dispersion more complex than forma-

tion. While a single robot may have some way to detect that it is “in formation”,

such as being at a point within a polygon, it has no way to detect that it is dispersed,

and indeed, it makes little sense to talk about a single robot being dispersed.

Dispersion is, instead, a state of the swarm as a whole, rather than

the state of a single robot. If the robots can sense each other, it becomes easier,

because they can at least determine if they have neighbors, or possibly how far

their neighbors are away, and so can examine local conditions of dispersion. If all

robots can detect that in their local area, they are well-dispersed, and all robots

act to be locally well-dispersed, then the swarm as a whole will tend towards being

208

well dispersed. For the purposes of further discussion, the definition of “dispersion”

is that for some integer threshold α and some finite sensing radius r, there are

no more than α other robots within r. With α of zero, this is the same as the

dispersion described as a basic behavior by Matari [Matari, 1994]. This definition

has some limitations, such as regarding a single robot “swarm” as permanently

dispersed. For the purposes of this argument, we will assume robots are points,

but aside from some degenerate cases, the argument can be shown to generalize

to robots with area. Point robots raise the problem that if α is allowed to equal

the number of other robots in the swarm, then all of the robots in the swarm are

permitted to be arbitrarily close to each other within r, and so the criterion will

consider a state with all robots occupying the same point to be “dispersed”. This

is counter to the intuitive understanding of dispersal, and so α is constrained to be

less than the number of robots in the swarm, other than the robot measuring α.

It may be that dispersion cannot be performed, for example due to limited

space in the area to be dispersed into. In order to derive a complete local-sensing-

only dispersion algorithm, the algorithm must be shown to move every robot to

a location where the robot can detect using local sensing that it is dispersed, or

determine that such a location does not exist.

For two robots and α = 0, there must exist two points in the space such

that the distance between those points is greater than r. Because the sensing range

of the robots is r, a robot located at a point cannot tell if a point greater than r

distance away is unoccupied, and so the algorithm requires some form of non-local

sensing, either communication with other robots or map building. In fact, in order

to determine that there exists no such pair of points in the space, the robots must

be aware of all the accessible points in the space, which amounts to global, rather

than local knowledge. For two robots, α may not be increased, as it would then

209

violate the constraint that α be less than the number of other robots in the swarm.

If the number of robots in the swarm is increased by one, the number of

points in the space that are required to be greater than r apart increases by one.

If α is increased by one, allowing one robot to be within r of another robot, then

the problem reduces to the two robot case with α = 0 and the third robot able

to be placed anywhere. However, as the two robot case requires global sensing to

determine whether there exist two points that are greater than r apart from each

other, it is still not a complete local-sensing-only algorithm.

For any number of robots M and α < M , split the swarm into a group

of α robots and the remaining M − α robots. Because α robots may be within r

of each other, put them all at the same arbitrarily selected point. The remaining

M − α robots must be placed at points that are more than r from that point, or

else the group of size α will have more than α robots within r of them. As with the

two-robot case, determining that there does not exist an accessible point greater

than r distance from any point in the space requires global information about the

space. As a consequence, a complete local-sensing-only dispersion controller for

point robots does not exist. It either requires global information, in which case it is

not local-only, or it cannot determine that a satisfactory target point does or does

not exist, and so it is not complete.

Making the robots take up space, rather than being points, can result in

the condition that α robots simply cannot fit within the disc of radius r around

one robot (for example, if the robot radius is r), and so even close-packing of the

robots is considered “dispersed”. Leaving aside this degeneracy, if α+ 1 robots can

fit within r of one robot, and α is constrained to be less than M , then the extra

robot is required to be greater than r from the surrounded robot, and the same

argument holds with regard to determining if a point greater than r distance from

210

the surrounded robot exists or not for all possible placements of the surrounded

robot.

Despite the fact that a complete, local-only dispersion controller cannot

be found, there are controllers for dispersion of robots that are proven to converge,

and to operate without localization [Correll, Bachrach, Vickery, and Rus, 2009]. This

style of dispersion does require that the robots be able to detect and communicate

with each other. With non-communicating, non-localized robots that can detect

range to other objects, e.g. via intensity of reflected light, dispersion over an area

can be accomplished by having all robots move to keep all objects that they can

detect within a fixed range. Even simpler, robots could travel towards open space

until they detect no surrounding objects and then stop, or stop if they detect no

open space. Varying the detection range will the density of the swarm, both in

terms of distance from each other and from obstacles.

Swarm Manipulation

One interesting minimum case for transportation is the use of granular convection

to transport an object that is larger than the robots to a goal, without inter-robot

communication or sensing beyond a weak repulsion from the goal [Sugawara, Correll,

and Reishus, 2014]. However, this form of box-pushing has some limitations, such

as the space being enclosed, and the shape of the transported object being such

that it cannot become trapped against the sides of the enclosed space.

Another possible approach is the use of occlusion-based transportation

[Chen, Gauci, Li, Kolling, and Gros, 2015]. The robots push on the object if the

object is between them and the goal, and so occludes their view of it. By adding a

moving goal, as in the case of path following via bug algorithms as discussed earlier,

this transportation method can even cope with environments where the eventual

211

goal is not visible from the starting point. The user-supplied path, expressed as

a sequence of goals, provides information on the obstacle-free route through the

space. Again, this form of transportation is prone to failure in the case of the object

arriving an a position where one face of it is against a wall, and so no robot can

get behind it to push it off the wall. It is also only proven to work for arbitrarily

shaped convex objects. Certain pathological concave objects can actually result in

a net force away from the goal.

The use of simple sensors can be used to coordinate multiple robots to

move a box to an illuminated goal [Kube and Zhang, 1996]. Kube and Hong used

sensors to track a light on the box and distinguish the box from other, unlit boxes,

which were treated as obstacles. If distinguishing obstacles is unnecessary, the robot

could simply use two light sensors, and push forward if the lower one is occluded

by the box and the higher one can see the goal. However, such a simple robot will

push against obstacles that cannot move, and other robots.

It would be good to determine if manipulation in this style, which is to

say simple pushing rather than caging or pulling manipulation, admits a complete

controller as with path following and formation. To be complete, a controller would

have to, in finite time, either move an object to a goal, or determine that it is not

possible to move the object to the goal. In reality, it is possible that the object

cannot be pushed at all, or that constraints on its dynamics render it impossible

to push it to the desired location. For example, it is possible for a human to push

a car with its gearbox in neutral forward or backwards, but not sideways. This

human example is quite illustrative, as there are conditions where it is possible

(car in neutral and human pushing on front or rear of car), and conditions where

it is not possible (car in park, human pushing car sideways, car in neutral but

against a curb). Asserting that the task is not possible would require testing all

212

gears and pushing locations, and failing in each of them. As the complexity of the

environment grows, the space of possible pushing arrangements increases, possibly

in ways the robot cannot detect. Additionally, some attempts may appear initially

successful, but lead to failure states, such as pushing an object into a hole that

it cannot be pushed back out of. Because of the potential explosion of problems

with pushing, the environment must be constrained to one that is simpler to reason

about, and then made more complex gradually to locate the minimal complexity

that causes the creation of a complete, local-sensing-based controller to fail.

For the purposes of this argument, it will be assumed that the object

can be pushed in any direction, and that there are sufficient robots present to push

it. In unlimited free space, it is clearly possible to push such an object to the goal.

The robot must be able to locate the object and goal in some way, but as discussed

by Kube and Zhang, the required sensor precepts may be fairly simple even for real

robots Kube and Zhang [1996].

In bounded free space, there is the possibility that the object can be

placed against the boundary of the space in such a way that no pushing force can

remove it from the wall again. For example, an oblique triangle with one face

against a straight wall is pushed towards the wall by forces normal to its exposed

faces. Of course, under some conditions of friction and pushing forces, the triangle

may rotate away from the wall, but as the length of the wall-facing side grows,

the more normal the forces become to the wall itself, and so at some point the

friction against the wall will exceed the pushing force of the robots on its sides.

Using only local sensing, it is possible to detect this sort of stuck condition, and

indicate that the attempt has failed. If the robot detects that it is pushing the

object, but the robot is not moving, then the object is also not moving. If the

robot then circumnavigates the object and is able to pass from the object to an

213

obstacle and back, then one side of the object is against the wall. Note that this

may require the robot to also circumnavigate the boundary of the space, if the

object is against a wall, which may be large, but so long as the boundary is finite,

such a circumnavigation will take finite time. It also assumes that the robot can

detect its own motion.

In an unbounded space with obstacles, the object may be able to be

pushed to the goal if there is an unoccupied path that the object can pass through

in order to arrive at the goal. While having a clear path is a necessary condition, it

is not sufficient. For example, if a square object is being pushed down a corridor

that is exactly wide enough to admit the square, and has a 90◦ bend in it, the

square will fill the bend and become stuck, as no pushing force on either of its

exposed faces will move it in either direction along the corridor. Nonetheless, the

corridor is wide enough to admit the square, and so even if traversing the corridor

is required to get to the goal, it does not violate the condition that there be an

unoccupied free path that the object can pass through in order to reach the goal.

Further, being able to detect such a path requires being able to check assertions

about distances across sets of points throughout the space and the shape of the

object, and so global, rather than local, sensing or knowledge.

By adding various levels of communication, more complex sensing, and

global planning to the capabilities of the robots, autonomous box pushing can

be performed under different conditions. A review of these techniques is beyond

the scope of this section, but for recent results see [Tuci, Alkilabi, and Akanyeti,

2018; Rahimi, Gibb, Shen, and La, 2018; Alkilabi, Narayan, and Tuci, 2017].

Occlusion-based transportation, on the other hand, is effective with minimal sensing,

and so at an advantage for simple and inexpensive robots. Rather than attempting

to construct a local-sensing based complete path planner, the system can take

214

advantage of the user input as a suggestion of the best path along which to move

the object. Users frequently positioned robots near the object or used a dragging

action of the box itself in the interface, so the path for the robots to follow is

defined as the list of points that the user dragged over. Each individual robot’s

program can be based on a bug-style algorithm, using local sensing information

to determine what the robot should do. However, since determining that the box

can be pushed all the way to the goal or terminating with failure would require

non-local knowledge of the world, this algorithm is not complete. First, the robot

must arrive at the box. Assuming the user has provided the location of the box,

motion to it can be handled as with path following.

Once the robot is at the box, it alternates between two behaviors, edge

following and pushing. It starts with edge following, which has three exit conditions.

If a robot detects that the line from the robot to the goal has gone from not passing

through the object to passing through the object, then the robot stops circling the

object and begins pushing against it. If a robot goes from the surface of the object

to the surface of an obstacle and back while edge following, then the object has

been pushed against an obstacle, and the robot stops because pushing has failed.

If a robot returns to the point from which it started circumnavigating the object,

then the robot detects that the object has stopped and is over the goal, so the robot

stops because the pushing has succeeded.

So in the edge following case, there are three exit conditions, two of which

end in termination of the program. The third exit condition causes the robot to

transition to pushing the object. Pushing has two exit conditions, detection of

stagnation or the m-line no longer pointing into the object. The m-line no longer

pointing into the object is caused by the object being pushed over the goal by the

robots. This is the weakness of this algorithm, as with a small enough collection of

215

robots, such as one robot, the robot will push the object until the robot arrives at

the goal, rather than being stopped by robots pushing from all sides resulting in

the forces on the object being balanced. Once the robot arrives at the goal, the

m-line no longer points into the object, so the robot will circle the object until the

m-line points into the object, push it across the goal, and repeat this process. As a

result, the algorithm becomes more stable and more likely to end with the object

on the goal as the number of robots increases.

Stagnation occurs in one of two cases: either the forces exerted by all

robots are balanced, and so the object is not moving, or the object is against an

obstacle, and so the object is not moving. Stagnation is detected simultaneously

by all robots, under the assumption that the object is rigid. Non-rigid objects

are significantly more complex to manipulate. When stagnation is detected, all

robots begin circling the object. Since the object is not moving, because all robots

have stopped pushing it, the robots will all either detect that the goal is within

the object, as above, and stop with success; detect that the object is against an

obstacle, and stop with failure; or find a point where the m-line transitions and

begin pushing the object again.

If a new robot arrives while the robots are circling, it has no effect, as it

will initially also begin circling the object. Since the other robots began circling

because of stagnation, if there is a point that the m-line transitions, then the

stagnation was caused by an obstacle, and so the new robot will either detect the

obstacle and stop, or push the object against the obstacle as the others had been

doing. If there is no point where the m-line transitions, then the stagnation was

caused by balanced forces, and so the new robot will detect that the goal is inside

the object and stop.

216

Completeness Under Poor or Absent Localization

The majority of the user tests were done with a visual representation of robots

that can localize, and so their locations, at least relative to each other and nearby

objects, could be displayed to the user. The cloud/unknown number of robots

case, however, described robots which are not able to report a location that can

be mapped into a useful display for the user. Unfortunately, lack of localization

implies the lack of a number of other mechanisms. As discussed in Section 7.1, local

coordinate systems can be derived from range sensing, bearing sensing to other

robots, and of course combinations of range and bearing sensing. As a result, robots

that cannot arrive at a local coordinate system also cannot sense each other’s range

or bearing, or they could use that information to derive a local coordinate system.

While the robots could measure distance, using their own odometery, they cannot

know the distance to anything that they haven’t been to already, and cannot store

locations such as hit points, which are used in bug algorithms.

Even if the localization is not absent, bad localization can eventually

become a problem for correctness of bug algorithms. If the localization is assumed to

be noisy, then returning to the hit point while circumnavigating an obstacle becomes

returning to within close enough to the hit point, according to the sensor (assuming

gaussian or similar noise). However, if the threshold is too wide, the robot may get

close enough to the hit point to think that it has completed the circumnavigation,

when it has really almost completed the circumnavigation, but missed a small door

in the obstacle, which is not circular but actually an almost-closed, “C” shape. In

this case, the robot will incorrectly determine that the goal is unreachable. The

robot could also fail to detect returns to the hit point, especially in the presence of

biased noise or localization failures, and so would never leave the object. Sensor

217

noise is, in general, a problem for bug algorithms [Ng and Bräunl, 2007].

Pheromone approaches are tempting, as they use gradients of intensity

rather than actual location to represent information about the location, but they

present a conundrum to the assertion that the robots cannot localize [Taylor and

LaValle, 2009]. If there exists an object in the world that the user can precisely

control and know the position of, such as a pheromone emitter, then why can

the user not just use that to either do the task or bootstrap a coordinate system?

Conversely, if the user cannot accurately place the transmitter or pheromone emitter,

then how can they hope to use it to control the swarm?

However, there is a line of work in robotics that uses non-metric maps,

such as sequences of landmarks, which consist of sensor precepts, possibly classified

into groups, and motions or connections between them [Mataric, 1991; Franz,

Schölkopf, Mallot, and Bülthoff, 1998]. As the available technology has developed,

the landmarks have moved from rings of sonar sensors to include representations

derived from 360◦ photographs [Tapus and Siegwart, 2005; Goedemé, Nuttin, Tuyte-

laars, and Van Gool, 2007]. The integration of such a graph-based representation

with a user interface is a very interesting topic, and one that does not appear to

be discussed in the literature until very recently [Landsiedel, 2018]. The extension

of topological maps to include semantic information allows the robot to operate

under directions that are very intuitive to humans, such as “Take the first left after

the Dunkin’ Donuts,” rather than “Go 32.5 meters, stop, and turn -1.02 radians.”

The robot’s view of the space could be presented to the user in a number of ways,

such as a chronological list of places visited, and attendant images of them, or a

flexible graph of the related images and the topological connections between them.

If the representation of landmarks is such that each robot will derive essentially

the same representation at a given point, then such a graph extends naturally to

218

multi-robot navigation. Each robot builds its own map, but by sharing maps and

finding overlapping landmarks, they may gain the ability to navigate to places that

they have never been, but were visited by other robots.

In the interests of completeness, the next few subsections explore the

possibilities for performing the user experiment tasks under a non-metric map.

While topological maps do represent a form of localization, it is not a form that can

be converted into a representation to a user in the same way that metric localization

would permit. The map represents locations and connections between them, but

not angles and distances.

Motion to a Point

In an interface presented to the user as a graph with the landmark points at the

nodes, return to a known point is planned using graph search over the map, and

executed using visual servoing or known sequences of actions to move from node to

node.

Motion to a point outside of the areas the robot has explored becomes

difficult in a topological map. Indeed, since there are no landmarks in unexplored

area, all unexplored area is the same to the robot. However, there are some methods

of potentially moving to user-commanded areas that have not been explored. If

the robot has come within sensor range of the area, then some sub-segment of a

360◦ image can be used as a representation of the target. When the robot returns

to the area that it saw that image, the matching features in the 360◦ image from

that area provide the heading to move towards the target, and so the robot can,

essentially, servo towards something it has seen before, but did not approach. Even

if the robot has not seen the target, if the user has an image of it, the robot can

explore areas it has not seen before, looking for the target. The topological map

219

gives the robot the ability to recognize areas it has been before, and avoid them

while searching for something that it has not seen before.

This sort of searching assumes that the interface can send a description

of the desired target region. For humans, this kind of navigation is quite common.

To return to the example from before, in the instruction “Take the first left after

the Dunkin’ Donuts,” there is no need for the person issuing the direction to offer

an image of the specific Dunkin’ Donuts that they mean. As long as both people

have enough overlap in their idea of what a “Dunkin’ Donuts” is, the instruction is

understandable.

Path Following

While the user cannot see the exact path taken by the robots, as the map does

not have a metric space for the points of the path to be defined in, the robot can

still follow user-specified paths in the graph. The path could be represented by a

sequence of desired sensor precepts and actions, similar to human directions like

“Go past Mark’s office and turn right after Terry’s office.” As with moving to a

point, motion along a path that goes outside of the map is problematic. Since

unexplored regions do not have a known connectivity, such directions might be

specified incorrectly. To return to the previous example, Terry’s office might not be

past Mark’s office, relative to the position of the robot, and so a route that passes

from the robot’s location, to Mark’s office, and then to Terry’s office does not exist.

In the case of a metric map with possible obstacles, some subgoals might be able to

be dropped so that the system can move on towards a known final goal. The metric

quality of the map allows attempts to move from arbitrary locations to others, by

including information such as direction and distance, but in a sequence of desired

sensor precepts, if one precept is not detected, such as “Terry’s office”, there is no

220

clear method to recover.

Formation and Patrol

As with path following, in a non-metric map, the idea of forming a specific shape,

such as a square, becomes somewhat ill-defined. After all, angles and distances are

defined in a metric space, and so while the robots might be in a square, the map

might not display them that way, and they might not be aware of it themselves.

However, certain formations that could be defined over a non-metric map may still

have some utility. For example, formations topologically equivalent to circles could

be formed by occupying cycles on the map, and so regions of the map could be

segregated from others by an enclosing ring. By looping over such a cycle, the

robots could be said to be patrolling the perimeter of a region, in the sense that

all nodes adjacent to the patrol area would be regularly visited by a patrolling

robot. Similarly, if a “front” has to be guarded, the robots could be commanded

to positions such that they divide the graph, and indeed, choke points could be

detected to optimize the guarding of regions.

Dispersion

Dispersion is one of the more important abilities for robots using a topological

map to have. In order to form the map, the robots would have to move through

the space and explore it. Assuming the robots have some form of range sensing,

as would be used for obstacle avoidance, they could simply scatter stochastically,

choosing random headings and following walls while avoiding locations that they

have seen before. The fact that the robots have the ability to recognize places and so

avoid locations that they have visited before means that they can be quite efficient

at spreading over an area. Assuming the area is closed, a traversal of it can be

221

represented as a tree. The robot breaks any cycles that would appear in the traversal

by refusing to return to nodes that it has visited before, unless it is backtracking

to a node that has areas the robot has not visited before near it. For this sort of

traversal “areas the robot has not visited before” could simply mean areas in a

node/location that were not detected to be occupied by obstacles. While traversing

the area, the robot would enter areas it has not visited before, possibly creating

new nodes/locations, and keeping track of unvisited areas to potentially visit in

future. Such a tree search for a single robot is effectively depth first search, and is

linear in the size of the graph (in this case, the area to be explored). Some bound

such as graph distance from the starting point might be desired, as performing a

depth-first search in an open environment could lead to runaway robots. Adding

other robots that can share maps allows the area to be explored in parallel. As each

robot receives updates to its map from other robots, the areas that they consider

unvisited will be removed by the other robots visiting them. Once such a map is

generated, the robots can disperse over the map either by agreeing on a dispersion,

such that each robot only has some fixed number of robots in adjacent nodes, or

simply moving so that no node of the map is occupied by more than one robot.

Swarm Manipulation

Because a purely topological map does not have metric information, reasoning

about the dimensions available over path to push an object on is not possible. If

the map were enhanced by metric information, even just the narrowest point along

each edge and node, then graph search techniques could be used to determine if

pushing a box along a path were impossible, although not to determine if it were

possible, due to the 90◦ bend problem discussed above. The problem of topological

mapping without localization is somewhat orthogonal to the problem of pushing a

222

box, as the topological map may be able to answer some questions about pushing

an object, but does not provide useful information on the local interactions required

to actually perform the pushing. In the most abstract case, an intangible 360◦

camera with mobility can perform all of the other tasks listed above, with the same

ease as a mobile robot, but clearly cannot push anything, so this kind of mapping

and control does not provide much information to guide swarm manipulation.

However, since the approaches that use 360◦ cameras have the ability

to use the camera information to provide a heading towards a given node, and

the nodes could be chained to provide a path, a combination of information about

which nodes and edges are locally obstacle-free and occlusion-based transportation

could be used to guess at a path that is locally obstacle-free over its length, and

a pushing direction for each segment of the path. Such a controller would not be

complete, particularly in a dynamic environment, nor totally local, as it relies on a

global map, but the task could at least be attempted without metric localization.

223

Chapter 8

Interface Implementation

The user interface for the control system uses the Kivy window management

library. The UI uses ROS for its infrastructure, with the various components

implemented as ROS nodes and communicating using ROS messages. The user

interface layer receives images from the robot arena overhead camera, and displays

them, appropriately overlaid with buttons, to the user. The topmost layer receives

user interactions in the form of contacts, and converts them to ROS touch events.

The multitouch device emits contact points that contain their location on the screen

in cartesian coordinates, as well as identifiers for each contact. Kivy’s multitouch

device handling adds other event information, including whether the contact is

a double or triple tap, when the touch was last updated, and whether the event

has ended (the finger has been lifted), how far the touch has moved since the last

update, and whether the touch is associated with the activation of certain hardware,

such as the mouse scrollwheel. The majority of this metadata is not used. For

process in later layers of the gesture recognizer, only the start, end, and update

times, whether the event is a double or triple tap, the location of the point, and

224

its identifier are passed as a ROS message. Button presses are also converted into

ROS button messages which contain the time of the button press and the name of

the button which was pressed.

The user interface layer publishes touches, which correspond to single

points of contact in both time and space as observed by Kivy. In order to collect

points into strokes, a degree of cleaning of the input is needed. The primary source

of error in strokes is stick-slip motion of the user’s finger on the screen. When the

user’s finger slips, sometimes the screen regards the finger as having left the surface

and returned quickly, breaking the stroke into two separate gestures. The ROS

node destutter.py maintains a dictionary of lists of touches in the order that they

arrived, indexed in the dictionary by the touch ID assigned by the user interface.

As each stroke ends, it is compared to the other ended strokes. If the space in time

and distance between the end of the recently completed stroke and the beginning of

another stroke is small enough, the two strokes are merged into a single stroke. The

parameters for the space and time thresholds for merging were set empirically, by

intentionally causing stuttering contact with the screen and examining the reported

time and distance between the beginnings and ends of contacts. At present, if the

beginning and end of successive strokes overlap by less than 0.01 second, or are less

than 0.15 second apart, they are considered candidates for merging. To be merged,

candidates must also end and begin no more than 80 pixels apart. This value is

approximately the width of a fingertip on the 3M screen, and is greater than the

observed distance between stuttering strokes.

Because a currently-ended stroke might be merged with a stroke that

hasn’t begun yet (that is to say, the user’s finger might be in the air during the

stutter of a stick-slip movement), strokes that have ended are not published unless

there is no in-progress stroke that they could possibly be merged with. Every 0.2

225

seconds, the stroke cleaning node checks all the ended strokes against all the in-

progress strokes. If the ended stroke’s endpoint is closer than the distance threshold

from the beginning of all of the active strokes, it could be merged with the active

stroke. If the ended stroke is close enough to an active stroke’s beginning to be

considered, the time threshold is checked to determine if they could possibly be

merged. If there is no active stroke that the current stroke could possibly be merged

with, once that active stroke ends, then the current stroke could be published. If the

current stroke’s end time is greater than the merge gap threshold in the past, then it

is impossible for a new stroke to begin in time to be merged with the current stroke.

Since there are then no active strokes it could be merged with, and it is impossible

for a stroke to begin in time to merge with it, the stroke is then published.

Gesture Recognition

Strokes are recognized as gestures by a set of separate recognition modules. The

initial design concept had been to have successive layers of recognition modules add

more and more abstract information to the gestures, and arbitrate cases of ambiguity

in gestures, but as the selected gesture set was intended to minimize ambiguity,

this arbitration lead to additional complexity without any real gain in functionality

or ability. It should also not be assumed that these gesture recognizers are the

best method to perform the task, but they were sufficient during development, and

investing significant time in improving them was beyond the scope of this project.

If a gesture has fewer than 10 points or is fewer than 10 pixels across, it

is classified as a tap. This classification is used because the user’s finger distorts

as it presses on the screen, and so can be registered as motion over a very small

distance, even though the user was not dragging their finger. Gestures are classified

226

into taps, lines, arcs, or closed shapes by the angle between the beginning and

end of the gesture around the centroid. The thresholds for the angle around the

centroid were <1 radian to be classified as a circle, <2.5 radians to be classified as

an arc, and 2.5 radians or greater to be classified as a line. This sort of recognizer

has problems with, for example, a circle drawn with a very tight scribble of points

at one end. Placing the centroid in the center of the bounding box of the shape

would result in it being recognized, correctly, as a circle, but the actual centroid as

calculated from the points would be placed close to the dense knot of points at one

end of the line, thus skewing the angle around the centroid.

Gestures are then compared to information about the location of robots

relative to the gesture on the screen to determine the meaning of the gestures. The

gesture detectors are lasso and box selection, paths (lines that are not lasso or box

selection), tap selection, tap as waypoint, and dragging of individual robots.

The lasso gesture detector receives gestures from the gesture classifier and

from the AprilTag detection node. If the gesture starts on a robot, it is considered

a drag, where the user puts their finger on one robot, and drags from that robot

to another location. If the gesture is not a drag, but is a closed shape, and there

are robots located inside it, then it is a lasso selection. The lasso select gesture

recognizer initially attempted to fit an oval to the points of the closed shape, but

this approach was rejected because it does not work well if the user attempts to

draw a concave polygon, such as a banana shape, in order to select some robots and

not select others from a group of robots. Instead of using a fitted oval, the closed

shape is treated as a polygon, and all robots inside the polygon are considered

selected. If there are no robots, it is treated as a path, the generic classification for

gestures with no other classification. If the gesture is not a drag, but is a line, it

could be a box selection or a path. A box selection is a line whose bounding box

227

includes at least one corner of an AprilTag. This requirement for inclusion, rather

than including only AprilTags with their centers, or 3/4 of their points inside the

bounding box, was chosen because the user survey on inclusion in selections that

intersected the robot indicated that erring on the side of including partially-selected

robots was preferable.

If a path begins on a robot, it is the “drag robot” gesture, which is

typically used by experiment participants to move an individual robot. The criteria

for deciding that a path begins on a robot is the same as that used for deciding if a

tap is intended to select a robot, as described below.

Tap gestures are handled separately from strokes. If a tap gesture is

on a robot, it is treated as selection of that robot. Taps that are not on a robot

are treated as potential waypoints. For the purposes of making this distinction,

a tap located within 80px of a robot is considered on the robot. The value of 80

pixels was chosen because it is the approximate width of a fingertip on the interface

device, and so should be adjusted for devices of different resolutions. Alternatively,

the mapping of pixels to real-world dimensions provided by the AprilTags could

be used to calculate a conversion factor between the size of the screen and objects

displayed on it in pixels and real-world meters, and the distance specified in terms

of that conversion factor. Doubletap is the end-of-command gesture, and so is not

treated as a waypoint or as a robot selection gesture.

The gestures are then passed to the robot program generator, which adds

them to a stack as they arrive. When the user terminates the gesture by either

issuing an explict end-of-gesture double-tap, or by issuing a new selection gesture,

which ends the previous command and begins a new one.

228

Translation Into Programs

At the outset of this work, it had been hoped that there existed some form of

transformation from the language defined by creating a formal description of an

unambiguous subset of the user gestures to a potential language of robot behaviors.

While the language of robot behaviors is itself not terribly well-defined, approaches

such as the flavors of AutoMoDe and Supervisory Control Theory hint that the

output language would likely be able to be represented as a DFA or PA, and so the

resulting programs could then be amenable to analysis using a model checker such

as PRISM [Kwiatkowska, Norman, and Parker, 2011].

However, the user gesture language as defined by this work is actually

quite vague, when it comes to commanding a robot to perform the expected actions.

Alan Perlis has been quoted as saying “When someone says ‘I want a programming

language in which I need only say what I wish done,’ give him a lollipop.”, but

regrettably, the user gesture language is just such a language, in part due to the

design of the experiment [Perlis, 1982]. Users were told to assume that the system

was capable of understanding their orders, so they merely had to indicate what they

wanted the system to do, and it would then do it. A system where the computer

does what the user wishes done is more difficult to implement than the recipients

of lollipops expect, because they rely on a large amount of a priori information

shared between the person issuing the command, and the system executing it.

For example, in the box-moving task, the users would frequently move

the robots to surround the box, and then move the robots to the goal area. However,

one might expect that robot control programs would attempt to avoid obstacles.

Without the knowledge that boxes are acceptable to push against, no motion of the

box would occur, because the robots would treat it as an obstacle to be avoided.

229

Even this knowledge shows the limitations of the gesture as a way of conveying a

program to a robot. The user data set does not have clear gestures for conveying

that box-pushing is desirable, how to recognize the presence of a box, how to tell

one box from potential other boxes, or how to convey that any particular object

can be pushed, rather than just boxes. Instead, users assumed that the robots

understood, as the user did, that the box was a thing that could be moved, and so

did not have to be told.

Because the user gestures did not convey all of the information required

to perform tasks, there is not a transformation that could operate purely on the

user input to produce a program as output. Instead, the output program combines

algorithms chosen by the system developer with parameterization from the user

input. Because the system was intended to operate in a potentially unknown

environment, the bug, dispersion, and occlusion-based transportation algorithms

discussed in the previous section were used. If the environment were known, or

communication were assumed to be reliable, other algorithms could be used. Indeed,

the translation layer could be modified to switch algorithms based on the parameters

of the swarm it is creating programs for and their environment.

The development of the translation layer was performed in a manner

similar to a compiler, which permitted the planning and other algorithms to be built

into output programs by the translation layer. The input language was the user

gestures, including which robots were selected and which user-specified paths were

created. These inputs were used to parameterize the chosen algorithms, and the

robots selected were used to determine the distribution of the resulting programs.

As a result, this work does not end up breaking away from iterative hand-coding, it

just moves it from being done as a way of controlling the swarm, to being done as

part of the creation of the control interface. For the motivating example from the

230

introduction, urban search and rescue, this is acceptable, as it does not require the

end user to program the swarm. It is also somewhat risky, as the resulting system

may not have the flexibility that end users require.

Implementation Details

User gestures arriving at the translation layer are stored in a stack until an end-of-

command gesture arrives. The gesture sequence is then translated into a program

that is parsed by the Lark parser library. Lark is an Earley parser, and so can parse

all context-free grammars, although the current gesture language is not sufficiently

complex to actually need this level of power. The resulting parse tree is then walked

to generate GCPR programs that implement the algorithms described in Chapter 7.

Basic movement to points is implemented using the variant of TangentBug.

Path following and formation combines the basic movement to points with a sequence

of GCPR instructions that implement a program counter, and set the goal based

on the program counter. As each point is either reached or determined to be

unreachable, the goal is advanced to the next point. For motion along paths, the

goals are set to points along the path, ending at the final goal. Formation allows

the robot to stop at reachable points on the formation, but not unreachable points.

Patrol also uses modified TangentBug, but instead of terminating when

the program counter, and so the goal, reach the final position, the program counter

and goal are reset to the start point of the patrol. As a consequence, the resulting

program intentionally contains an infinite loop, but it can be interrupted by assigning

a new program to the swarm.

Dispersion is implemented using a minimalistic range sensor. Each robot

can detect if there are other robots within a fixed range. If there are more than

231

two robots in the range, the robot moves forward, avoiding obstacles. If there are

exactly two robots in range, the robot stops. If there are less than two robots in

range, the robot executes a U-turn and drives in a straight line, avoiding obstacles,

until one of the other situations occurs. This algorithm is a GCPR implementation

of the α-algorithm of Winfield et al., and so shares its strengths and weaknesses

[Winfield, Liu, Nembrini, and Martinoli, 2008]. Notably, the algorithm is not certain

to prevent the separation of the swarm into subswarms that are not connected.

More sophisticated programs, possibly using more communication, can prevent these

issues, but since the requirement of the behavior is that the robots disperse, rather

than that they maintain a particular level of network connectivity, there is no need

for this particular implementation to enforce connectivity. Indeed, simply moving

the robots to random locations uniformly selected would “disperse” them. However,

selecting points would require foreknowledge of the area to disperse into. The α-

algorithm was chosen instead because it can operate in a previously unknown area,

and because the resulting distribution looks even, visually. A randomly selected set

of points from a uniform distribution may place two robots right next to each other,

which, while “uniform” in a statistical sense, would appear uneven to the user,

and not satisfy their intuitive understanding of dispersion. If dispersion in swarm

robots continues to be a problem of interest, it is likely worth investigating the

tradeoffs between speed of convergence, quality of dispersion, and user satisfaction

with various methods.

Manipulation was implemented as a simple version of occlusion-directed

transport. If the robot is not near the target object, it attempts to move to the

target object while avoiding obstacles, using the modified TangentBug algorithm.

When the TangentBug algorithm detects that the goal is unreachable, because it is

inside of the mobile object, the program switches to occlusion-based manipulation.

232

The robot wall-follows around the object until a line from the robot to the goal

intersects the object, and then pushes in that direction. While in this mode, the

robot continually updates the direction of the goal, and switches between getting in

position and pushing the object, as needed. As with the original occlusion-based

manipulation, this algorithm is ignorant of obstacles on the opposite side of the

object from the robot, and so can get stuck. However, as the system can accept a

path for the object to be pushed on, the user can attempt to specify a clear path

for the robots to move the object along.

Interpretation of Programs

The robot algorithms were implemented as GCPR programs, and interpreted by a

separate process for each robot.

The GCPR interpreter starts with a single-line GCPR program that halts

the robot, so all robots are stationary until they receive a new program. Programs

are sent to each robot as ROS messages. When a robot receives a program, it

begins executing it immediately. The GCPR interpreter runs at 100Hz, so 100

times per second, it evaluates the guards of each GCPR tuple, makes a list of

all the commands whose guards evaluate to be true, and executes each command.

The GCPR interpreter also implements a number of convenience methods such as

is near front(), which returns true if any of the sensors on the front of the robot

detect an object near them. The convenience methods are boolean, and intended

to be used to create guards by boolean combinations of convenience methods with

each other and with direct assertions about the sensors or other states of the robot.

These methods are regarded as conveniences because they could be implemented

as direct boolean statements about the sensor information of the robot, but the

233

resulting GCPR statements would be extremely verbose.

The interpreter also contains the implementations of the commands for

the GCPR statements. The complexity of a command in GCPR is not limited.

Because the system operates in the real world, at some point commands must result

in changes to the state of physical actuators, and so the most atomic interactions

might be simply the setting or clearing of given digital outputs. However, there is

a trade-off between the complexity of the resulting commands and their utility to

human users for writing programs. Carrying the complexity of the GCPR commands

to the other extreme, the entire program could be implemented as the GCPR tuple

(true, move to goal(), 1.0), which, under any condition, with probability 1.0, calls a

command that moves the robot to the goal location. The resulting GCPR is quite

compact, but the complexity is moved to the command implementation, where it

becomes difficult to evaluate with formal methods.

In seeking a balance between excessive conciseness in the expression of

commands and excessive complexity in their implementation, the current implemen-

tation provides basic motion in lines, arcs, and rotation in place, and turning to face

a given direction. There are also a number of methods to set and clear variables

such as hit points, used in bug algorithms, and program counters, used in a number

of GCPR implementations. All other complexity of the commands is contained in

the GCPR statements which combine and control the motions, rather than in the

motions themselves. For a future system, it may be more interesting to implement

the swarm primitives suggested by McLurikin or Nagpal as commands themselves,

and then allow more complex GCPR programs to use those commands [McLurkin,

2004; Nagpal, 2004]. However, it then becomes incumbent on the implementer to

ensure that the command implementations are correct. Having simple motions as

commands eases correctness checking, as the motion will be performed, under the

234

assumption that the motors are functional and the robot’s path is unobstructed.

If the commands are only outputs, the flow of information within the

GCPR interpreter also becomes somewhat clearer. The sensor data is updated via

callbacks triggered by ROS sensor information messages arriving, and is then used

to evaluate the guards. Depending on which guards are true, commands are called

to produce output. If the commands themselves are required to operate on sensor

precepts, then the result of calling a command can change depending on the sensor

information available when the precept is called. Increasing the complexity of the

commands also increases the time they take to execute, and so may present issues

for operating the GCPR interpretation loop at 100Hz. The current implementation

can very quickly set the desired motor speeds for a given motion and then return

execution to the next command. All of these factors argue in favor of keeping

the GCPR commands close to motor primitives for the robot system, and keeping

complexity in the control program in the GCPR code, rather than the commands.

Interface Testing

In order to test the gesture recognition and translation components of the system,

the recorded participant gestures from the gesture collection experiment were played

back into the gesture interpretation pipeline. There exist two major ways that user

gestures can fail to pass through the pipeline and result in a robot program. The

first is that a gesture can fail to be recognized as what the user intended it to be.

The gesture recognizers do not discard gestures as unrecognizable, but a stroke that

does not meet the criteria for a drag, box selection, lasso, or any kind of tap is

regarded as a path. If a user makes a selection gesture such as a box select, but the

system does not recognize it as a box selection, then any gestures following it will

235

not have a set of robots to be applied to, and so the sequence of gestures will not

be able to be converted into a program. The second failure mode is that the user

gestures are recognized correctly, but do not form a sequence that can be converted

into a program.

The first kind of failure, recognition failures, was detected by replaying the

recorded user gestures and recording the output of the gesture recognizers in response

to those gestures. The recognitions were then compared to the human coding for

the user and task that generated the recorded input. Under the assumption that

the human coding is correct, if the recognizer output differs, it indicates a defect in

the recognizer. However, it is important to note that the participant input gestures

were not used to train the gesture recognizers, and that some participant input

gestures were not implemented in recognizers. For example, sweeping gestures using

the edge of the participant’s hand were not part of the resulting gesture language,

and so no recognizer exists to recognize these gestures. Failure to detect such a

gesture is expected.

Detection of the second kind of failures, invalid gesture sequences, was

detected by recording the reaction of the parser to the sequence of gestures created

by the recognizers. It is possible for a sequence of gestures to create multiple parse

attempts, by having, for example, a selection and path gesture followed by a second

selection and path gesture. The second selection terminates the first command and

begins the second, and so the first parse attempt operates on the first selection

and path, and the second parse attempt operates on the second selection and path.

In cases where a gesture sequence resulted in multiple parse attempts, each parse

attempt was treated as a separate trial, rather than allowing one failure to cause

the entire task to be treated as a failure.

Due to a hardware misconfiguration during the user test, multitouch

236

contact points were only recorded during the first thirty of the human subject tests.

For those thirty tests, any example gestures that the participant made were removed

to prevent failures caused by the participant proposing alternative methods during

a sequence of gestures, and so creating redundant gestures within the sequence. As

discussed above, a gesture to end the command was required in cases where a new

command did not end the previous one, and so each sequence of user gestures had

a end-of-command gesture added to its end. Any end-of-command gestures that

already existed in the gesture set were removed. Removing these gestures allowed

the sequences of recognized gestures to also be passed into the translation layer

without incorrectly terminating the gesture sequence.

Not all of the participants made gestures that would be expected to

be recognized by the gesture recognizers. The implemented recognizers recognize

box selection, lasso selection, tap selection (taps on robots), tap to set waypoints

(taps on empty space), and drawn paths. As discussed above, the other functions

had limited agreement between users, and so were implemented as buttons on

the UI. Because user UI interactions were in various locations around the screen,

they are not able to be directly converted to UI interactions with the interface as

implemented. However, as UI interactions only constitute 3.4% of the recorded

interactions, this is not a large loss.

Tasks where the user interactions fell outside of what the UI would be

expected to recognize serve as negative examples. They are unlikely to be correctly

recognized, and so should not form acceptable sequences of commands. Despite

the fact that this constitutes a failure, it is a desirable result, because if they are

recognized and converted to robot programs, they are unlikely to accurately capture

the user’s intent.

237

Causes of Failed Recognition

The gesture recognition elements of the user interface were not the primary thrust

of this research, and so were primarily implemented in order to be able to provide

gestures to the gesture compiler to attempt to generate programs. The effort to

implement gesture recognition from scratch was undertaken because at the time,

it was felt that collecting, assessing, and potentially training available gesture

recognition systems was likely to take more time than implementing a simple

recognition pipeline. It is difficult to assess the percentages of correct gesture

recognitions as opposed to incorrect ones, as the ground truth data, the coding of

the gesture experiment data by human coders, uses different categories for describing

some of the gestures than the recognition system was developed to target. For

example, a pinch gesture is frequently recognized as two drag gestures. In the single

robot case, for the task of bringing the robots together in a group, two robot drag

gestures would bring the robots together, and so have the desired result. However,

the recognition is still incorrect, as the gesture was a pinch, which the recognizers do

not recognize because it is not a part of the gesture language. Similarly, the coding

does not distinguish between drags starting on a single specific robot and drags

starting within the robot swarm, although their context of other actions frequently

makes the user intent clear. The recognition pipeline does distinguish drags starting

on a robot from drags starting anywhere else, but because of a threshold in how

close the start point has to be to the robots being on it, a drag that visibly does

not start on a robot (and so may be coded as a non-robot drag) could still be

recognized as a robot drag because it was within the threshold. However, despite

these difficulties, some causes of failed gesture recognitions were sufficiently common

to merit description below.

238

Figure 8.1: Result of a failed recognition, showing laddering between strokes and
the system’s guesses at the classes of each gesture.

There are a number of causes of failed recognition of gestures when the

recognizers are provided with recorded participant inputs from the experiment.

One cause is that the gesture made by the user is simply not one that the gesture

recognizers can correctly recognize, and so any recognition they generate is incorrect.

Because the pinch gestures and the 5-fingered scattering motion used to disperse

the swarm by some participants are not implemented in the gesture recognizers, the

pinch gesture is usually recognized as either two separate paths, or as two attempts

to drag robots, or one of each. The 5-finger scatter is similarly recognized as 5

separate gestures, which may be paths if they are not over robots, or gestures to

drag individual robots if they are.

When participants made gestures that had broad contact areas, the

multitouch screen rendered them as ladder-like lines of nearby points. In Figure

8.1, the parallel lines of green points, especially visible on the left side, are points

239

reported by the multitouch screen. They do not, however, represent the location

of the user’s fingers. The user was using two fingers, located close to each other,

to make the two arcing gestures visible in the data. Because the two points were

located too close to each other to be reliably detected as separate points, the screen

reported a single, interpolated location instead of the location of each fingertip.

Also apparent in the output in Figure 8.1 are substantial gaps in the

lines of points constituting the participant’s gestures. These are locations where no

points were recorded, likely due to stick-slip motion of the participant’s finger, or a

very light touch resulting in only intermittent detection of contact. The destuttering

functionality in the earlier stages of the gesture pipeline was intended to eliminate

these gaps, but it has fixed thresholds for how large the gap can be before the

strokes are considered separate. Raising the thresholds so the gaps can be larger,

in space or time, increases the risk that unrelated gestures will be erroneously

combined.

The stutter and interpolation-induced separation of the participant’s

gestures into multiple strokes results in the detection of multiple gestures for a

sequence that the participant intended as one gesture. On the right-hand gesture

of Figure 8.1, the tap selection gesture is followed by a tap-waypoint gesture, even

though they should have been regarded as parts of a common gesture. Tap selection

followed by tapping a waypoint, and then the end-of-command gesture would

constitute a valid program, and so there is a possibility that stutter and laddering

could result in valid, but undesired, input.

In addition to spuriously-detected gestures, stutter can cause gestures

to not be detected. Lasso detection requires that the angle between the two ends

of the gesture around its centroid be relatively small. If a section of the points at

the beginning or end of the gesture is missing, the angle may be too open to be

240

detected correctly as a lasso. Obviously, a missing range of points anywhere else

on the lasso could also break it into two separate arcs, neither of which would be

sufficient to be considered a lasso on its own.

In addition to light touches being regarded as intermittent contacts,

another source of noise in the participant inputs was participants resting their

fingers on the edges of the screen. This behavior was not common, and was

generally coded by human coders as an action that was not intended to be an

interaction with the screen, as if the user had accidentally bumped it. However,

multitouch screens are prone to the Midas Touch problem, first seen in gaze-based

UIs, where any contact on the screen (or any gaze direction) is considered an input

for the computer [Jacob, 1990].

A more subtle Midas Touch problem afflicted participant attempts to use

group selection. There is a possible ambiguity between group selection gestures and

single-robot drag gestures. If a user places their finger on a single robot, and drags

a circle starting at that robot, the gesture is interpreted as a command to have the

robot drive around in a circle. However, if the user draws a circle around a group

of robots, the gesture is interpreted as a lasso selection of that group of robots.

Because the robots might be depicted as small on the screen, and so the user might

not hit them precisely with a fingertip, it is possible to begin a robot drag gesture

approximately a fingertip-width off the robot as well. However, this threshold led

to a great many of the participants’ attempts at box selection being interpreted as

commands to drag a single robot through the group, and attempts at lasso selection

to be interpreted as commands to have a single robot move around the outside of the

group. This error also went the other way, where attempting to draw a figure, such

as a box, in an area where there were already robots, would be recognized as a lasso

selection, rather than a box. Combined with stutter, the problem becomes even

241

worse, as a single box selection could be broken up into multiple drag commands

issued in rapid sequence. As selection finishes one command and begins another,

each of these should be treated by the gesture translator as a complete and valid

program, leaving a trail of chaos through the middle of the swarm.

Similarly, multiple robots could have overlapping areas that would cause

a tap between them to be regarded as a tap on one of them, and so a selection of

that robot. As a result, it may become impossible to command an individual robot

to move to a new position within the swarm, as tapping the target location would

simply select a nearby robot.

To compare the recognized gestures to the data from the user experiment,

the gestures from the user experiment were cleaned of example actions, leaving

only the gestures that the users intended as their primary means of controlling the

robots. A comparison of the counts of the detected gestures and their corresponding

gestures from the coded data can be found in Table 8.1.

UI gestures, “other” gestures, voice commands, and pinch gestures were

not captured by gesture recognizers, and so are not directly comparable to anything

produced by the gesture recognizers. The gesture recognizers detected 2786 total

gestures, while the non-example user gestures only accounted for 1541 gestures.

Stuttering is likely the cause of this drastic increase, as it frequently broke single

gestures into multiple gestures. As an extreme example, the rightmost gesture in

Figure 8.1 shows a single two-finger drag being recognized as a path, three waypoint

taps, and a select tap, for a total of five detected gestures from one real gesture.

The recognizers make a distinction between drags starting on (or near)

a robot, and drags starting in other areas of the screen, which are referred to as

“paths”. The roughly equal proportion of paths and drag robot gestures are likely

caused by stuttering breaking a drag robot gesture into a drag robot gesture at its

242

Detected Gesture Count Coded Gesture Count
Drag Robot 635 Drag 877
Path 685
Tap Waypoint 799 Tap 304
Tap Select 594
Lasso Select 9 Lasso Select 115
Box Select 67 Box Select 55

UI 83
Other 55
Voice command 16
Pinch 36

Total 2786 1541

Table 8.1: Overall comparison of detected gestures versus those from the coding of
the participant data. The gaps on each side are for distinctions that are present
in the coding and absent in the detection, or vice versa, such as the distinction
between tapping waypoints or tapping robots, versus simply making a tapping
gesture.

beginning, and a path near its end, with a gap in the middle caused by stuttering.

As with drags, the recognizers distinguish between taps on or near robots,

and taps elsewhere, while the coded data does not. Because of the stuttering, many

of the detected taps are fragments of paths, which became tap selects if they were

on or near a robot, or waypoints if they were away from a robot.

Of the nine detected lassos, three were correct. The usual cause of an

incorrectly detected lasso was a path around the screen for a patrol, or a path for a

box formation, being detected as a lasso because it contained robots. Missed lasso

detections were the result of three problems. The first is the previously mentioned

tendency of the lasso selection recognizer to regard a lasso which began too close to

a robot to be drag robot gesture, thus reducing the count of lassos while increasing

the count of drag robot gestures. The second problem is, again, stutter, breaking

up lasso selections into drag robots, paths, waypoints, and tap selections. The final

problem is that the lasso gesture was detected based on the angle between the

243

beginning and end of the gesture, with the centroid of the gesture as the vertex. If

a user gesture ended too far from the start, or overlapped the start by too much,

then the angle fell outside of the threshold used for lasso detection, and so was

treated as some other gesture.

Interestingly, box selection showed an increase over the coded data, rather

than a decrease. Of the 67 detected, 17 were detected correctly, and the remaining

50 were spurious, and were not present in the coding. These were usually caused

by stutter creating an incorrect path that included robots in its bounding box, and

so was recognized as a box selection of those robots. In cases where users drew a

cut line to separate the robots for the divide group task, the line was frequently

regarded as a box selection, because the users were careful to begin the cut line

well outside the robot group.

Of the box selections in the coding, 38 were not detected. The main

causes of box selections failing to be detected were stutter causing the gesture to

be recognized as other gestures, or the gesture beginning too close to a robot, and

so being recognized as a drag-robot gesture.

Lest it appear that all of the gesture recognitions were fraught with error,

in some cases the gesture detection worked perfectly and resulted in reasonable

outputs, despite the fact that the participant input was collected well before the

recognizers were written, and much of it was never selected for inclusion in the

eventual gesture pipeline. For example, see Figure 8.2, where eight robot drag

gestures were correctly detected.

In light of the gesture recognition’s sensitivity to context, as well as the

problems with stutter and light touches, this component of the system could be

improved in a number of ways. The problem of combining intermittent contacts

might be approached by searching across a gap in the direction of motion implied

244

Figure 8.2: Successful recognition of all gestures, moving eight of the robots to form
a line with the other two.

by the last few contacts, and allowing an approximate match for points on the

opposite side of the gap, assuming the implied direction of motion was similar, and

the gap crossing time was in approximate agreement with the calculated velocities

between the last few points leading to the gap. Approaches such as this would

require significant tuning of the parameters for the approximate matching, and so

might work better for some users than others, as each user may have a different

style of movement. Also, such approaches require a buffering of user input to allow

the matching, and if the buffering becomes too long, will feel unresponsive or “laggy”

to the user.

Such a buffer might also be useful for deciding between two gestures

that are ambiguous. For example, if a gesture might be a box select or might

be a command to move a single robot from the edge of the swarm across it to

the other edge, and the next command is a gesture from the swarm center to a

245

location away from the swarm, then it is more likely that the intended command

was box selection of the entire swarm and movement to the selected point, than

movement of a single robot and then movement of another single robot to another

point. However, even this is not certain, and so validation testing with users would

be required to determine if making such a decision is always correct.

Incorporating visual feedback to the user, particularly of selection, but

also of what portion of a path was detected and would be used in the resulting

command, may also mitigate these problems. If the user made a gesture intended

as selection, but saw that no robots were selected, they could make an additional

gesture to select before issuing their next command. Indeed, the entire list of

detected gestures could be made visible to the user, perhaps as a stack along one

edge of the screen, and edited by rearranging or deleting gestures before sending

to the swarm. The current system dispatches gestures as they are recognized, and

counts on the interpreter to convert them appropriately, which has some advantages

in terms of responsiveness and simplicity, but disadvantages in terms of flexibility

to the user and ability to undo gestures.

Translation Testing

Translation testing is relatively straightforward. Either a sequence of gestures is in

the order and of the types needed to be a valid “sentence” in the gesture language,

or it is not. The recorded gesture sequences generated by the recognizers from the

recorded participant input were sent to a testing version of the gesture interpreter

to see if they were detected as a valid program, or rejected.

Four hundred forty-nine of the gestures resulting from the participant

input were not accepted by the gesture translator. The primary causes of failure

246

of a gesture set to be regarded as a valid input program for the gesture translator

are the gesture set starting with a path (115 instances) or starting with a waypoint

(81 instances). These problems arise any time that either the user did not begin a

command with a selection, or the selection was misdetected as a path. As discussed

in the previous section, selections could be mis-detected as paths for a number

of reasons, including stutter. Waypoints with no prior selection caused 15 failed

translations, while paths with no prior selection caused 21 failures. In these cases,

rather than the the gesture set starting with the waypoint or path, the waypoint or

path occurs at some point within the gesture set, but has no preceding selection. The

ultimate cause is similar to the cases where the gesture set starts with a waypoint

or path, in that there is a waypoint or path that does not have a “subject” in the

sentence for which the waypoint or path is the “verb”. In total, this class of errors

accounts for 232 of the rejected gesture sets, or approximately 52% of the rejections.

This is not entirely unexpected, as the participants in the study were not required

to perform selection gestures before waypoint or path gestures, and so many did

not. Because the translator expects selection gestures before motion commands,

these were not regarded as valid sequences of gestures. Defaulting to automatically

considering the command to be for all robots, if no robots were selected, would

avoid this problem, while creating the potential for a command to be issued to all

robots accidentally. Using a default select-all in this case was considered in the

design phase, but rejected due to the potential to issue an undesired command to

all robots.

Tap selection was designed to not start new gestures so that tap selections

could be chained to select multiple robots, as discussed in Section 5.4. However, as

a result, alternating tap selections and commands would result in an error, as the

tap selections that did not start the command would result in a translation error.

247

One approach to deal with this issue would be to allow a tap selection

that occurs after an action other than a tap selection to cause the previous gestures

to be passed off to the parser as a command, while leaving the existing tap selection

in the queue. This behavior would be effective, but would require correction of

the misrecognition of waypoints as tap selects noted in the analysis of the gesture

recognizers. Taps near robots are classified as tap selections, so that users would

not have to precisely hit the robots in order to select them. As previously noted,

this can result in erroneous detections of taps intended as waypoints, but located

near a robot, as tap selections. Additionally, stutter could cause a path dragged

over robots to break up into what would be recognized as tap selections. If these

tap selections resulted in the beginning of a new command and the execution of

the previous gestures as a command, it could result in undesired movement of the

robots.

Drag robot operations do not chain, which is to say that while issuing

a single drag robot gesture is accepted, multiple drag robot gestures in a row are

not. It is likely a design oversight that drag robot commands are not treated as

complete commands. After all, in the design language, they constitute both a

selection and a motion command in a single gesture, with an implied subject, as in

the English sentence “Go!”. Were this oversight corrected, it might result in more

of the participant gestures being accepted by the gesture translator.

However, this problem interacts with the misrecognition of lasso and box

selection gestures as drag robot operations. Due to the common misrecognition of

box and lasso selections as drag robot gestures, many of these accepted gestures

would be incorrect, and would result in undesired robot motion. Finally, drag

robot gestures were frequently used with the intent that the entire swarm would

be commanded to move, but the gesture recognizers treated them as intended to

248

send a single robot along the dragged path. This caused some rejections of gesture

sets because what the user intended as a selection and path was interpreted as a

selection and a drag robot gesture, which is not regarded as a valid program because

the selection has no meaning for the subsequent drag gesture.

Thirty-five of the gesture sets had no gestures in them. The lack of

gestures is not an error, and was caused by the participants not touching the screen

during their interaction with the system.

Thirty-seven of the gesture sets produced by running the participant ges-

tures through the gesture detectors were acceptable to the gesture parser. Seventeen

of them consisted of a single robot drag. Eleven of the accepted gesture sets were

a set of tap selections followed by a sequence of waypoints, one more had a path

instead of waypoints. Finally, six gesture sets were treated as disperse gestures,

of which only one was actually intended by the user as a disperse and occurred

in the disperse task. Recognition of the disperse gesture would probably best be

solved by not treating the gestures as a strictly linear sequence, but only detecting

a dispersal if all of the four or five strokes required to cause the detection overlap

significantly. However, this would require implementation of a parser capable of

dealing with simultaneity. The current parser is the Lark library, which is intended

for dealing with typical programming languages, which can be represented as a

linear sequence of symbols [Lark parser developers, 2018]. An alternate approach

would be to include as part of gesture recognition a layer which detects sets of 4-5

overlapping strokes diverging from a central point, and replaces all of the strokes

with a single gesture element, which takes the place of the simultaneous gestures in

a linear representation of the gesture sequence.

Ultimately, dealing with the issues in the gesture recognizers and gesture

translation is an exercise in satisficing. The causes of many of the errors were

249

primarily effects of design decisions made earlier in the development process in order

to support participant behaviors from the user study. For example, the confusion

between box selection and drag robot gestures was caused by the ability to select

a robot by touching near it rather than on it, which was intended to make user

interactions easier. Making the threshold for selection of a robot smaller would

reduce these errors, but at the cost of making robot selection more difficult.

250

Chapter 9

Contributions

Swarm Hardware and Software Platform

A hardware platform for control of small, inexpensive swarm robots was developed.

The fact that swarm hardware across the literature has roughly the same general

layout for the hardware can be viewed as an example of similar needs leading to

similar solutions. Gianpiero et al. describe a reference model that is inspired by

the E-puck [Francesca, Brambilla, Brutschy, Trianni, and Birattari, 2014b]. The

reference model could probably generalize well to other hardware, as the E-puck it

is based on also has a ring of IR sensors and differential drive. The GRITSbots,

Amir, and Colias all have a ring of IR sensors, as do many other designs. Most

swarm robots use differential drive for steering, through either a sealed gearbox or

direct drive. A generalized reference model would also be useful for developing SCT

generators for robot control, as the set of free behavior models is specific to the

robot, and so could be reused for new tasks using the reference system.

TinyRobo aimed to drive the cost of this style of robot down further, by

251

virtualizing the sensors. The TinyRobo ROS modules include the ability to have

configurable virtual laser scanners, range and bearing sensors for inter-robot sensing,

and virtual networks, all of which can be easily customized to allow experimentation

with sensor noise or failure.

The use of children’s toys as a mobility platform does not result in

substantial savings, or even in easier assembly of the platform. Toys also have

reliability problems that offset their possible utility as mobility platforms. However,

if some other drivetrain is used, the power and control module developed in this

work is still cheap, small, and easy to use. During the course of this work, 3D

printers have dropped substantially in price, so the difficulty of producing custom

small mechanical assemblies has been significantly reduced since the time of the

development of e.g. the Jasmine micro-robots. As a consequence, the use of a

3D printed robot chassis and the TinyRobo control modules can produce a very

inexpensive swarm platform.

Resolving the problems that this work ran into with AprilTags would

result in an approach closer to mROBerTO. The motor drive electronics would

remain the same, but either fixed color tags or LEDs as identity indicators would

be used to track the robots. It has been suggested that a ring of addressable LEDs

could be used to convey information from the swarm to the control system, by

changing the color of LEDs on the ring or animating them in patterns. Since such

a display could also be meaningful to the user, this may be an interesting direction

for future research in HSI for co-located swarms.

Because of the modular nature of the system, the ROS stack can be

interfaced with simulations as well as with real robots. The main feature making this

possible is the fact that the communication with the swarm hardware operates using

standard ROS modules as much as possible, and only performs hardware-specific

252

operations where they cannot be avoided. This flexibility enabled an easy transition

to testing in simulation when it became apparent that the toy bases were not going

to become a useful platform.

Multitouch Gesture set for Swarm Control

Gestures were collected from 50 users to define a gesture set for multitouch swarm

control. Analysis of the data showed that there were variations in the uses of certain

gestures as the size of the swarm increased. In particular, the use of selection

gestures increased in the 10 and 100 robot cases, but dropped off for the 1000 robot

swarm. Tap gestures were more likely to be used for selection in the unknown, 1,

and 10 robot cases than the other cases, while group selections were used mainly

in the 10 and 100 robot cases, and less in the 1000 robot case. The 10 robot case

seems to be the transition point where use of group or single tap selections are

equally used.

Showing the area occupied by the swarm as a cloud had very similar use

of selections to the one robot case. Box selection was never used, lasso was used

rarely, and tap selections were the most common selection gesture by far. These

changes to the user’s choices of gesture support the hypothesis that the gesture

selection does change with the user’s perception of the swarm, both the visible

number of robots and whether the swarm is rendered as individual robots or a

coverage area.

There is evidence from the user survey and gesture selection that video

games and other prior experiences with multi-touch interaction devices have an

influence on the gestures used. The interface design used in the experiment was

initially somewhat like the interface of a realtime strategy game, and as a result,

253

seems to have cued users who had played realtime strategy games (RTSs) to use

styles of interaction common to RTSs. Designers of future interfaces can interpret

this as both a strategy and a warning. As a strategy, interfaces can be designed

specifically to include design features from games, and so cue the users that the

interface supports the interactions that are common in the genre of game that the

interface emulates. However, it can also be a warning that if an interface resembles

a game, the users will expect those interaction styles, and may entirely avoid other

interaction styles that do not fit with their expectations. The total absence of pinch

gestures on the part of RTS gaming users is such a missing interaction. At a more

abstract level, designers would be wise to avoid leaning too heavily on game-based

cues in user interface design, unless they are certain that their users are gamers, or

the cue will be missed.

Despite being told that the device is multitouch, most users made very

few two-handed gestures, although half of the users made at least one two-handed

gesture. Voice commands were more common in the data set collected for this

experiment than in previous experiments that allowed users free reign in choice of

their command set. It is speculated that this is due to the rise in functionality and

prevalence of “voice assistant” technologies in smartphones and home appliances

such as Google Home. This transition would be similar to the transition observed

in previous work, where people who had smartphones used pinch gestures far more

than people who did not have experience with smartphones or similar multitouch

devices.

It had been surmised that one possible sign that the user was treating the

robots as a group would be that some parts of the group would be neglected. This

generally did not occur. Instead, the users used selection gestures that included all

robots, and when asked about inclusion in gestures, erred on the side of including

254

more robots.

There were also relatively few gestures treating the robots as a deformable

mass that could be pushed around, like a pile of sand or other small objects. Physical

affordances like this were speculated to be more likely, given the direct interaction

style of the multitouch screen. Their absence could be viewed as highlighting the

users’ understanding of the screen as an image, and so not something that supports

physically-afforded interactions.

In future, it would be interesting to repeat this work with a condition

that does not display the robots in the user interface at all. It is expected that for

conditions such as the “move the crate” tasks, the user would simply indicate the

crate should move to area A, without concern for which robots perform the moving.

However, such an interface would not afford indicating particular robots or groups,

so tasks such as dividing the robots around an obstacle may become impossible to

perform.

Compilation of User Gestures into Robot

Programs

This project shows a basic conversion from user gestures into a set of command

programs to be distributed to the swarm robots. These command programs are

intended to balance desirable formal properties of the programs, such as convergence

within bounded time, use of local-only sensing, and completeness, with reflecting

the user’s intentions in the observable behavior of the swarm.

In attempting to derive complete program frameworks for the tasks

specified in the user studies, it was determined that complete controllers for some

simple tasks may not exist. For example, while it is possible to have a complete

255

controller for motion to a point, it is impossible to have a complete dispersion

controller that relies on only local sensing. In cases where completeness could not be

determined, or was determined to be impossible, the controllers used are developed

to use local-only sensing and if they fail, to do so in a manner that is intelligible to

the user.

The translation between user commands and robot programs in this work

was developed using a method similar to compiler development, where an input

language was defined from the user gesture commands, and an interpreter was

developed to take strings in the language of gestures, and output control programs

in as statements in an implementation of guarded control programming with rates

(GCPR) [Napp and Klavins, 2011]. Previous work in gesture control for small

groups of robots was also able to recognize a grammar of user inputs using a finite

state machine [Micire, 2010]. It had been initially hoped that there would be a

universal abstraction or transformation that could represent the conversion of all

gestures into all robot commands representing those gestures, rather than having

different sets of behaviors, with different properties, which could be constructed

from the user gestures after recognizing those gestures. However, user gestures do

not provide a sufficiently explicit means of designing a program in realtime to allow

for the full automation of the generation of control programs without assuming an

amount of a priori knowledge that is unrealistic in practice. For example, while

there is a gesture for disperse, the gesture itself does not contain information about

how the dispersion should be performed. Similarly, while the gestures used to

indicate that an object should be moved to a location contain information about

what the movement should be, they do not contain information about how the

movement should be accomplished. Because these elements are not present in the

user input, any universal transformation that has them in its output would have to

256

essentially make them up. As a consequence, the translation was implemented in

the way that programming languages are usually implemented, with a developer

supplying the method that the robots would use to fulfill the user’s commands.

There are a number of threads in current swarm robotic research that may

eventually permit the engineering of swarm behavior from high level descriptions,

many of which are discussed in Section 2.3. One that is not discussed in great

depth there is the field of attempts to find mappings between relatively low-

dimensioned swarm macrostates and potentially extremely high-dimensional state

spaces representing each robot individually. While some work has been done in

controlling swarms with controllers operating on macro-level behavior, such as

attractors, there is not yet an engineering discipline that would guide the creation

of arbitrary swarm behaviors under real-world complexity [Brown et al., 2014]. As

this area of swarm robotics develops, user interfaces will have to develop with it, in

order to allow humans to operate these systems in a fluent manner.

257

Chapter 10

Directions for Future Work

The style of experiment described by Wobbrock et al. was not used in this work

because of the possibility that showing how the behavior is performed by the robots

would influence the user’s choice of gesture. For example, if each robot moves in

turn, it would suggest single-robot interactions, rather than group-oriented gestures.

However, participants did seem to expect some level of response or interactivity

from the user interface. Without a reaction from the interface, the participants

appeared uncertain about their first actions, and so made incomplete sequences

of actions. However, since these were actions the user made, they did contribute,

though possibly not significantly, to the total set of user actions. Showing the

behavior of the system might allow the participants to be confident of making a

gesture without the system reacting, since they had, essentially, already seen the

reaction.

Another possible way to prevent these hesitant initial interactions would

be to simply run the experiment with actual paper prototypes, rather than the

prototype interface that participants saw in this experiment. Since the participants

258

would be able to see that the interface was paper, they would not expect it to react

in the way that a computer-based system would. Using paper prototypes would

lose the ability to record participant input in the way that the screen did. However,

as discussed earlier, a technical flaw prevented recording of 20 participant inputs,

and it was not a serious problem for the experiment, as the video recordings were

sufficient to recover the participant interactions. If the precise user contact points

on the interface were required, a top-projected multitouch interface, such as the

Mitsubishi Diamondtouch could be used without projection to record contact points

on the paper.

Another possible confounding element of this study was the size the

robots were depicted on the screen. As can be seen in Appendix B, the size of the

robots was diminished to keep the area of the swarm the same size and fit them

all on the screen. This may have made it easier for users to perform single-robot

interactions with the sizes of robots used in the 1 and 10 robot conditions. If the

robots were all depicted in the same size as the 1000 robot case, this confound

would be removed. The small size of the robots in the 1000 robot case, however,

caused some users to question their ability to move the crate in the tasks requiring

it, as the crate remained the same size. The crate could also be depicted at a size

that seemed more manageable for the robots.

Rather than being concerned with the size of the depicted robots, it

might be interesting to perform an experiment with a UI that does not depict the

swarm location at all. The utility of such a UI is debatable. While it would be

impossible to have user feedback in such a UI, or to easily select some subset of

the swarm, but it might be useful for commanding operation in an area where

the robots are denied localization, or cannot communicate their location to the

command computer due to the presence of hostile actors in the area. It may be

259

that the user gestures would cease to have subjects, and would consist only of the

actions they wanted performed, or changes they wanted to see in the displayed

environment.

In the proposed UI, the communication channel back to the user from

the swarm is implicit. The swarm’s behavior, as displayed to the user, allows the

user to determine whether the team appears to be doing what the user commanded.

Having the swarm follow the path from the user’s input was chosen because it was

expected that it would provide clearer feedback than biased random walks or other

strategies which converge to the desired result, but may not be obvious that they

are doing so. However, this decision was not tested. It may be that users would

find other robot behaviors just as satisfactory, as long as the desired goal state was

reached. Such a test would likely be better done in simulation, as simulation would

allow finer control over the robots’ behavior and reliability than a hardware swarm.

Some of the design decisions made in the process of this work were

reasonable choices when the work began, but more recent work shows alternative

approaches that are also promising for the development of software architectures

for development of swarm robots and programs to control them. One possible

approach is the use of Supervisory Control Theory (SCT), rather than GCPR for

the generation of robot control program. SCT allows the generation of supervisors,

which map uncontrollable events, such as sensor precepts, to controllable events, such

as motor actions of the robot. The “uncontrollable events” are only uncontrollable

in the sense that they are outside of the realm of events that the robot can directly

cause, not necessarily stochastic or otherwise not amenable to any form of control.

SCT has been applied to robotic systems, but without connection to user interfaces

that would permit its use by non-programmers [Lopes, Leal, Dodd, and Groß,

2014; Lopes et al., 2016].

260

Another possible approach is the use of modular swarm robot behaviors,

possibly combined with SCT by using the modular behaviors as the controllable

events of the supervisor. Using modular behaviors would allow easier debugging

than GCPR, as conventional software development techniques could be used to

produce the modules, which could then be reused. This is in line with the design

philosophy of ROS. Recently, CMUSWARM and ROSBuzz were released, which

provide swarm-oriented programming frameworks underpinned by ROS [Arpino,

Morris, Nagavalli, and Sycara, 2018; St-Onge, Varadharajan, Li, Svogor, and

Beltrame, 2017]. These tools were not available at the inception of this work, and

would likely have greatly accelerated the development of the translation layer.

The development of standard software tools for swarm robots would

neatly dovetail with the possible development of a reference implementation for

the hardware of swarm robots, as described in [Francesca et al., 2014a]. The

robots developed as part of this work converged towards the design common to

mROBerTO, Colias, Alice, GRITSBots, Jasmine, Amir, and the E-puck robots.

This common design is a platform with differential drive steering using a sealed

drivetrain or direct-drive. Even the Kilobots can be regarded as differential drive,

although using vibration motors rather than wheels. The platforms are all capable

of rotating in their own footprint, and equipped with omnidirectional sensing and

communication, typically provided by IR sensors. They also all use the PCBs of the

robot as the chassis, or a custom chassis which could be produced by 3D printing.

From this convergent evolution, it could be argued that a reference swarm robot

hardware implementation would have differential drive steering, a sealed drivetrain,

and omnidirectional sensing and communication. These reference implementations

in both hardware and software would allow researchers to focus on the development

of controllers and algorithms for swarms, rather than developing new swarm robots.

261

It is hoped that this work will also allow future researchers to focus their efforts on

fruitful avenues for the development of useful robot swarms.

Literature Cited

H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight Jr, R. Nagpal,
E. Rauch, G. J. Sussman, and R. Weiss. Amorphous computing. Communications
of the ACM, 43(5):74–82, 2000. 2.3.1

Age of Empires Wiki. Age of empires list of hotkeys, 2018. URL http:

//ageofempiresonline.wikia.com/wiki/List_of_Hotkeys. 2.2.6

M. H. M. Alkilabi, A. Narayan, and E. Tuci. Cooperative object transport with a
swarm of e-puck robots: robustness and scalability of evolved collective strategies.
Swarm Intelligence, 11(3-4):185–209, 2017. 7.5.5

J. Alonso-Mora, S. H. Lohaus, P. Leemann, R. Siegwart, and P. Beardsley. Gesture
based human-multi-robot swarm interaction and its application to an interactive
display. In Robotics and Automation (ICRA), 2015 IEEE International Conference
on, pages 5948–5953. IEEE, 2015. 2.2.4

J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit. Reactive
mission and motion planning with deadlock resolution avoiding dynamic obstacles.
Autonomous Robots, 42(4):801–824, 2018. 2.3.7

D. Andreen, P. Jenning, N. Napp, and K. Petersen. Emergent structures assembled
by large swarms of simple robots. 2016. 2.2.5

Apple Corp. Use multi-touch gestures on your mac, 2017. URL https://support.

apple.com/en-us/ht204895. 4.4.2

J. J. Arnett. The neglected 95%: why american psychology needs to become less
american. American Psychologist, 63(7):602, 2008. 4.1.2

G. Arpino, K. Morris, S. Nagavalli, and K. Sycara. Using information invariants
to compare swarm algorithms and general multi-robot algorithms: A technical
report. arXiv preprint arXiv:1802.08995, 2018. 10

F. Arvin, K. Samsudin, and A. R. Ramli. Development of a miniature robot for
swarm robotic application. sensors, 1793:8163, 2009. 2.1.1, 3.1.2, 7.1

262

http://ageofempiresonline.wikia.com/wiki/List_of_Hotkeys
http://ageofempiresonline.wikia.com/wiki/List_of_Hotkeys
https://support.apple.com/en-us/ht204895
https://support.apple.com/en-us/ht204895

263

F. Arvin, J. Murray, C. Zhang, and S. Yue. Colias: An autonomous micro robot for
swarm robotic applications. International Journal of Advanced Robotic Systems,
11(7):113, 2014. doi: 10.5772/58730. URL https://doi.org/10.5772/58730.
2.1.1

F. Arvin, T. Krajńık, A. E. Turgut, and S. Yue. Cosφ: artificial pheromone system
for robotic swarms research. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 407–412. IEEE, 2015a. 2.3.2

F. Arvin, S. Yue, and C. Xiong. Colias-φ: An autonomous micro robot for artificial
pheromone communication. 2015b. 2.1.1

M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and P. Pillai. Meld: A
declarative approach to programming ensembles. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2794–2800. IEEE, 2007. 2.3.6

N. Ayanian, A. Spielberg, M. Arbesfeld, J. Strauss, and D. Rus. Controlling a team
of robots with a single input. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 1755–1762. IEEE, 2014. 1.2.3

J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe. Experimental results for and
theoretical analysis of a self-organizing global coordinate system for ad hoc sensor
networks. Telecommunication Systems, 26(2-4):213–233, 2004. 7.1

E. Bahgeçi and E. Sahin. Evolving aggregation behaviors for swarm robotic systems:
A systematic case study. In Swarm Intelligence Symposium, 2005. SIS 2005.
Proceedings 2005 IEEE, pages 333–340. IEEE, 2005. 2.3.5

J. Beal and J. Bachrach. Infrastructure for engineered emergence on sensor/actuator
networks. Intelligent Systems, IEEE, 21(2):10–19, 2006. 2.3.1

M. Beetz, F. Stulp, P. Esden-Tempski, A. Fedrizzi, U. Klank, I. Kresse, A. Maldon-
ado, and F. Ruiz. Generality and legibility in mobile manipulation. Autonomous
Robots, 28(1):21, 2010. 7

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas.
Symbolic planning and control of robot motion [grand challenges of robotics].
IEEE Robotics & Automation Magazine, 14(1):61–70, 2007. 2.3.4, 2.3.7

S. Bergbreiter and K. S. Pister. Cotsbots: An off-the-shelf platform for distributed
robotics. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, volume 2, pages 1632–1637. IEEE, 2003.
2.1.1, 3.1

M. Birattari, B. Delhaisse, G. Francesca, and Y. Kerdoncuff. Observing the effects
of overdesign in the automatic design of control software for robot swarms. In

https://doi.org/10.5772/58730

264

International Conference on Swarm Intelligence, pages 149–160. Springer, 2016.
2.3.7

J. Blake. Multitouch on Windows. Manning Publications, 5260 Mac Drive, Grand
Forks, ND 58201, 2010. Excerpted on http://nui.joshland.org/2010/03/what-is-
natural-user-interface-book.html. 4

M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier, G. Roulet,
F. Vaussard, H. Bleuler, and F. Mondada. The marxbot, a miniature mobile
robot opening new perspectives for the collective-robotic research. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
4187–4193. IEEE, 2010. 2.1.2

A. Bowyer. Automated construction using co-operating biomimetic robots. Univer-
sity of Bath Department of Mechanical Engineering Technical Report (November
2000), 2000. 2.3.2

R. A. Brooks. Artificial life and real robots. In Proceedings of the First European
Conference on artificial life, pages 3–10, 1992. 2.3.7

D. S. Brown, S. C. Kerman, and M. A. Goodrich. Human-swarm interactions based
on managing attractors. In Proceedings of the 2014 ACM/IEEE international
conference on Human-robot interaction, pages 90–97. ACM, 2014. 2.2.4, 9.3

D. S. Brown, M. A. Goodrich, S.-Y. Jung, and S. C. Kerman. Two invariants of
human swarm interaction. Journal of Human-Robot Interaction, 5(1):1–31, 2015.
2.2.4

D. S. Brown, R. Turner, O. Hennigh, and S. Loscalzo. Discovery and exploration of
novel swarm behaviors given limited robot capabilities. In Distributed Autonomous
Robotic Systems, pages 447–460. Springer, 2018. 2.3.5

D. J. Bruemmer, D. A. Few, R. L. Boring, J. L. Marble, M. C. Walton, and C. W.
Nielsen. Shared understanding for collaborative control. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(4):494–504,
2005. 2.5

G. Caprari, P. Balmer, R. Piguet, and R. Siegwart. The autonomous micro robot
alice: a platform for scientific and commercial applications. In Micromechatron-
ics and Human Science, 1998. MHS’98. Proceedings of the 1998 International
Symposium on, pages 231–235. IEEE, 1998. 2.1.1, 7.1

J. Carlson, R. R. Murphy, and A. Nelson. Follow-up analysis of mobile robot
failures. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 5, pages 4987–4994. IEEE, 2004. 3.3

265

J. Cham. How robotics research keeps... re-inventing the wheel. http://www.

willowgarage.com/blog/2010/04/27/reinventing-wheel, 2010. 2.3

J. Chen, M. Gauci, W. Li, A. Kolling, and R. Gros. Occlusion-based cooperative
transport with a swarm of miniature mobile robots. Robotics, IEEE Transactions
on, 31(2):307–321, 2015. 7.5.5

J. Y. Chen, M. J. Barnes, and M. Harper-Sciarini. Supervisory control of multiple
robots: Human-performance issues and user-interface design. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 41(4):
435–454, 2011. 2.2

J. Cohen. A coefficient of agreement for nominal scales. Educational and psycholog-
ical measurement, 20(1):37–46, 1960. 4.2.2

A. Colot, G. Caprari, and R. Siegwart. Insbot: Design of an autonomous mini
mobile robot able to interact with cockroaches. In Robotics and Automation,
2004. Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 3,
pages 2418–2423. IEEE, 2004. 2.1.1

G. Coppin and F. Legras. Controlling swarms of unmanned vehicles through
user-centered commands. In 2012 AAAI Fall Symposium Series, 2012. 2.2.1,
2.3.2

A. Cornejo, A. J. Lynch, E. Fudge, S. Bilstein, M. Khabbazian, and J. McLurkin.
Scale-free coordinates for multi-robot systems with bearing-only sensors. The
International Journal of Robotics Research, 32(12):1459–1474, 2013. 7.1

N. Correll, J. Bachrach, D. Vickery, and D. Rus. Ad-hoc wireless network coverage
with networked robots that cannot localize. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 3878–3885. IEEE, 2009. 7.5.4

N. Correll, P. Dutta, R. Han, and K. Pister. Wireless robotic materials. In
Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems,
SenSys ’17, pages 24:1–24:6, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-
5459-2. doi: 10.1145/3131672.3131702. URL http://doi.acm.org/10.1145/

3131672.3131702. 2.3.1

V. Costa, M. Duarte, T. Rodrigues, S. M. Oliveira, and A. L. Christensen. Design
and development of an inexpensive aquatic swarm robotics system. In OCEANS
2016-Shanghai, pages 1–7. IEEE, 2016. 2.1.1

M. L. Cummings and P. J. Mitche. Predicting controller capacity in supervisory
control of multiple uavs. Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 38(2):451–460, 2008. 2.2

http://www.willowgarage.com/blog/2010/04/27/reinventing-wheel
http://www.willowgarage.com/blog/2010/04/27/reinventing-wheel
http://doi.acm.org/10.1145/3131672.3131702
http://doi.acm.org/10.1145/3131672.3131702

266

M. Daily, Y. Cho, K. Martin, and D. Payton. World embedded interfaces for
human-robot interaction. In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS’03) - Track 5 - Volume 5, HICSS ’03,
pages 125.2–, Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-
7695-1874-5. URL http://dl.acm.org/citation.cfm?id=820752.821587. 2.2

K. Dantu, B. Kate, J. Waterman, P. Bailis, and M. Welsh. Programming micro-
aerial vehicle swarms with karma. In Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems, pages 121–134. ACM, 2011. 2.3.6

J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Campbell. An
integrated system for perception-driven autonomy with modular robots. arXiv
preprint arXiv:1709.05435, 2017. 2.3.7

J. Derboven, D. De Roeck, and M. Verstraete. Semiotic analysis of multi-touch
interface design: The mutable case study. International Journal of Human-
Computer Studies, 70(10):714–728, 2012. 2.2.3

Y. Diaz-Mercado, S. G. Lee, and M. Egerstedt. Human–swarm interactions via
coverage of time-varying densities. In Trends in Control and Decision-Making for
Human–Robot Collaboration Systems, pages 357–385. Springer, 2017. 2.2.4, 2.3.2

G. Dietz, J. L. E, P. Washington, L. H. Kim, and S. Follmer. Human perception
of swarm robot motion. In Proceedings of the 2017 CHI Conference Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’17, pages 2520–
2527, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4656-6. doi: 10.1145/
3027063.3053220. URL http://doi.acm.org/10.1145/3027063.3053220. 7

M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi,
J.-L. Deneubourg, F. Mondada, D. Floreano, et al. Evolving self-organizing
behaviors for a swarm-bot. Autonomous Robots, 17(2-3):223–245, 2004. 2.3.5

M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura,
M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, et al. Swarmanoid: a novel
concept for the study of heterogeneous robotic swarms. Robotics & Automation
Magazine, IEEE, 20(4):60–71, 2013. 2.1.2

A. D. Dragan, S. Bauman, J. Forlizzi, and S. S. Srinivasa. Effects of robot motion
on human-robot collaboration. In Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction, pages 51–58. ACM, 2015.
7

R. I. Dunbar. Neocortex size as a constraint on group size in primates. Journal of
human evolution, 22(6):469–493, 1992. 2.4

P. Ehn and M. Kyng. Cardboard computers: Mocking-it-up or hands-on the future.
In Design at work, pages 169–196. L. Erlbaum Associates Inc., 1992. 4.1

http://dl.acm.org/citation.cfm?id=820752.821587
http://doi.acm.org/10.1145/3027063.3053220

267

J. Epps, S. Lichman, and M. Wu. A study of hand shape use in tabletop gesture
interaction. In CHI’06 extended abstracts on human factors in computing systems,
pages 748–753. ACM, 2006. 4.4

Europa Universalis IV Wiki. Europa universalis keyboard shortcuts, 2017. URL
https://eu4.paradoxwikis.com/Controls. 2.2.6

D. Evans. Programming the swarm. University of Virginia, 2000. 2.3.4

N. Farrow, J. Klingner, D. Reishus, and N. Correll. Miniature six-channel range and
bearing system: algorithm, analysis and experimental validation. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pages 6180–6185.
IEEE, 2014. 7.1

P. M. Fitts. The information capacity of the human motor system in controlling
the amplitude of movement. Journal of experimental psychology, 47(6):381, 1954.
5.2, 6.3

J. L. Fleiss, B. Levin, M. C. Paik, W. A. Shewart, and S. S. Wilks. John Wiley
and Sons, Inc., 2003. 4.2.2

S. Floyd, C. Pawashe, and M. Sitti. An untethered magnetically actuated micro-
robot capable of motion on arbitrary surfaces. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 419–424. IEEE, 2008. 2.1.1

T. Fong, M. Bualat, L. Edwards, L. Flückiger, C. Kunz, S. Lee, E. Park, V. To,
H. Utz, N. Ackner, et al. Human-robot site survey and sampling for space
exploration. In Space 2006, page 7425. 2006. 6

G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn,
A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, et al. An experiment in automatic
design of robot swarms. In International Conference on Swarm Intelligence, pages
25–37. Springer, 2014a. 2.3.7, 10

G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. Automode:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence, 8(2):89–112, 2014b. 9.1

G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch, G. Podevijn,
A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, et al. Automode-chocolate:
A method for the automatic design of robot swarms that outperforms humans.
Swarm Intelligence, 9(2-3):125–152, 2015. 2.3.7

M. O. Franz, B. Schölkopf, H. A. Mallot, and H. H. Bülthoff. Learning view graphs
for robot navigation. Autonomous robots, 5(1):111–125, 1998. 7.6

https://eu4.paradoxwikis.com/Controls

268

D. Freeman, H. Benko, M. R. Morris, and D. Wigdor. Shadowguides: visualizations
for in-situ learning of multi-touch and whole-hand gestures. In Proceedings of
the ACM International Conference on Interactive Tabletops and Surfaces, pages
165–172. ACM, 2009. 4

Gamepedia. Dota controls, 2018. URL https://dota2.gamepedia.com/Controls.
2.2.6

J. Gancet, E. Motard, A. Naghsh, C. Roast, M. M. Arancon, and L. Marques.
User interfaces for human robot interactions with a swarm of robots in support
to firefighters. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pages 2846–2851. IEEE, 2010. 2.2, 2.2.5

M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß. Self-organized aggregation
without computation. The International Journal of Robotics Research, 33(8):
1145–1161, 2014. 2.3.5

A. Giusti, J. Nagi, L. M. Gambardella, S. Bonardi, and G. A. Di Caro. Human-swarm
interaction through distributed cooperative gesture recognition. In Proceedings
of the seventh annual ACM/IEEE international conference on Human-Robot
Interaction, pages 401–402. ACM, 2012. 2.2.4

B. G. Glaser and A. L. Strauss. Discovery of grounded theory: Strategies for
qualitative research. Routledge, 2017. 4.2

W. R. Glaser. The impact of user-input devices on virtual desktop trainers. Technical
report, NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2010. 6.1

T. Goedemé, M. Nuttin, T. Tuytelaars, and L. Van Gool. Omnidirectional vision
based topological navigation. International Journal of Computer Vision, 74(3):
219–236, 2007. 7.6

M. A. Goodrich, B. Pendleton, P. Sujit, and J. Pinto. Toward human interaction
with bio-inspired robot teams. In Systems, man, and cybernetics (smc), 2011
ieee international conference on, pages 2859–2864. IEEE, 2011. 2.2.4

S. Gross, J. Bardzell, and S. Bardzell. Skeu the evolution: skeuomorphs, style,
and the material of tangible interactions. In Proceedings of the 8th International
Conference on Tangible, Embedded and Embodied Interaction, pages 53–60. ACM,
2014. 2.2.3

Y. Guo, M. Hohil, and S. V. Desai. Bio-inspired motion planning algorithms for
autonomous robots facilitating greater plasticity for security applications. In
Optics/Photonics in Security and Defence, pages 673608–673608. International
Society for Optics and Photonics, 2007. 2.1.2

https://dota2.gamepedia.com/Controls

269

C. E. Harriott, A. E. Seiffert, S. T. Hayes, and J. A. Adams. Biologically-inspired
human-swarm interaction metrics. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 58, pages 1471–1475. SAGE Publi-
cations, 2014. 2.3.5

S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings of the
human factors and ergonomics society annual meeting, volume 50, pages 904–908.
Sage publications Sage CA: Los Angeles, CA, 2006. 6

A. T. Hayes, A. Martinoli, and R. M. Goodman. Swarm robotic odor localization. In
Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, volume 2, pages 1073–1078. IEEE, 2001. 2.3.2

S. T. Hayes, E. R. Hooten, and J. A. Adams. Multi-touch interaction for tasking
robots. In Proceedings of the 5th ACM/IEEE international conference on Human-
robot interaction, pages 97–98. IEEE Press, 2010. 2.2

J. Hilder, A. Horsfield, A. G. Millard, and J. Timmis. The psi swarm: A low-cost
robotics platform and its use in an education setting. In Conference Towards
Autonomous Robotic Systems, pages 158–164. Springer, 2016. 2.1.1

P. J. Hinds, T. L. Roberts, and H. Jones. Whose job is it anyway? a study of
human-robot interaction in a collaborative task. Human-Computer Interaction,
19(1):151–181, 2004. 2.5

A. Hocraffer and C. S. Nam. A meta-analysis of human-system interfaces in
unmanned aerial vehicle (uav) swarm management. Applied ergonomics, 58:66–80,
2017. 2.2

N. R. Hoff, A. Sagoff, R. J. Wood, and R. Nagpal. Two foraging algorithms for
robot swarms using only local communication. In Robotics and Biomimetics
(ROBIO), 2010 IEEE International Conference on, pages 123–130. IEEE, 2010.
2.3.2

E. Hornecker. Beyond affordance: tangibles’ hybrid nature. In Proceedings of the
Sixth International Conference on Tangible, Embedded and Embodied Interaction,
pages 175–182. ACM, 2012. 4

C. M. Humphrey, C. Henk, G. Sewell, B. W. Williams, and J. A. Adams. Assessing
the scalability of a multiple robot interface. In Proceedings of the ACM/IEEE
international conference on Human-robot interaction, pages 239–246. ACM, 2007.
2.2.4

Intel Corp. Drone light shows powered by intel, 2018a. URL
https://www.intel.com/content/www/us/en/technology-innovation/

aerial-technology-light-show.html. 2.2.7

https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html
https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html

270

Intel Corp. Olympic drones tech behind the light show, 2018b.
URL https://www.intel.com/content/www/us/en/technology-innovation/

aerial-technology-light-show.html. 2.2.7

InterWave Studios. Nuclear dawn, 2013. URL https://commons.wikimedia.

org/wiki/File:Nuclear_Dawn_-_Oasis_RTS_02.png#/media/File:

Nuclear_Dawn_-_Oasis_RTS_02.png. 2.2

R. J. Jacob. What you look at is what you get: eye movement-based interaction
techniques. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 11–18. ACM, 1990. 8.5.1

S. Jantz, K. Doty, J. Bagnell, and I. Zapata. Kinetics of robotics: The development
of universal metrics in robotic swarms. In Florida Conference on Recent Advances
in Robotics. Citeseer, 1997. 2.3.5

R. L. Jeanne. Alarm recruitment, attack behavior, and the role of the alarm
pheromone in polybia occidentalis (hymenoptera: Vespidae). Behavioral Ecology
and Sociobiology, 9(2):143–148, 1981. 2.3.2

G. Jing, T. Tosun, M. Yim, and H. Kress-Gazit. An end-to-end system for ac-
complishing tasks with modular robots. In Robotics: Science and Systems, 2016.
2.3.7

M. Johnson and D. Brown. Evolving and controlling perimeter, rendezvous, and
foraging behaviors in a computation-free robot swarm. In Proceedings of the 9th
EAI International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS), pages 311–314. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering), 2016.
2.3.5

D. B. Kaber and M. R. Endsley. Out-of-the-loop performance problems and the
use of intermediate levels of automation for improved control system functioning
and safety. Process Safety Progress, 16(3):126–131, 1997. 2.2

S. T. Kalat, S. G. Faal, U. Celik, and C. D. Onal. Tribot: A minimally-actuated
accessible holonomic hexapedal locomotion platform. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 6292–6297.
IEEE, 2015. 2.1.1

I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A range-sensor-based navigation
algorithm. The International Journal of Robotics Research, 17(9):934–953, 1998.
7.5

G. Kapellmann-Zafra, N. Salomons, A. Kolling, and R. Groß. Human-robot swarm
interaction with limited situational awareness. In International Conference on
Swarm Intelligence, pages 125–136. Springer, 2016. 2.2

https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html
https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html
https://commons.wikimedia.org/wiki/File:Nuclear_Dawn_-_Oasis_RTS_02.png#/media/File:Nuclear_Dawn_-_Oasis_RTS_02.png
https://commons.wikimedia.org/wiki/File:Nuclear_Dawn_-_Oasis_RTS_02.png#/media/File:Nuclear_Dawn_-_Oasis_RTS_02.png
https://commons.wikimedia.org/wiki/File:Nuclear_Dawn_-_Oasis_RTS_02.png#/media/File:Nuclear_Dawn_-_Oasis_RTS_02.png

271

J. Kato, D. Sakamoto, M. Inami, and T. Igarashi. Multi-touch interface for
controlling multiple mobile robots. In CHI ’09 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’09, pages 3443–3448, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-247-4. doi: 10.1145/1520340.1520500. URL
http://doi.acm.org/10.1145/1520340.1520500. 2.2, 2.3.3

S. Kernbach. Swarmrobot. org-open-hardware microrobotic project for large-scale
artificial swarms. arXiv preprint arXiv:1110.5762, 2011. 2.1.1

J. Y. Kim, T. Colaco, Z. Kashino, G. Nejat, and B. Benhabib. mroberto: A modular
millirobot for swarm-behavior studies. 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 2109–2114, 2016. 2.1.1, 3.3.1

Z. Kira and M. A. Potter. Exerting human control over decentralized robot
swarms. In Autonomous Robots and Agents, 2009. ICARA 2009. 4th International
Conference on, pages 566–571. IEEE, 2009. 2.2.4

E. Klavins. Automatic synthesis of controllers for distributed assembly and forma-
tion forming. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE
International Conference on, volume 3, pages 3296–3302. IEEE, 2002. 2.3.7

A. Kolling, K. Sycara, S. Nunnally, and M. Lewis. Human swarm interaction: An
experimental study of two types of interaction with foraging swarms. Journal of
Human-Robot Interaction, 2(2), 2013. 2.2.4

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. Human-aware robot navigation:
A survey. Robotics and Autonomous Systems, 61(12):1726–1743, 2013. 7

C. R. Kube and H. Zhang. The use of perceptual cues in multi-robot box-pushing.
In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Con-
ference on, volume 3, pages 2085–2090. IEEE, 1996. 7.5.5

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.
23rd International Conference on Computer Aided Verification (CAV’11), volume
6806 of LNCS, pages 585–591. Springer, 2011. 8.2

D. Laird, J. Price, and I. A. Raptis. Spider-bots: A low cost cooperative robotics
platform. In ASEE 2014 Zone 1 Conference. American Society for Engineering
Education, 2014. 3.1, 3.3.1

C. Landsiedel. Semantic Mapping for Autonomous Robots in Urban Environments.
PhD thesis, Technische Universität München, 2018. 7.6

Lark parser developers. Lark parser, 2018. URL https://github.com/

lark-parser/lark. 8.6

http://doi.acm.org/10.1145/1520340.1520500
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark

272

B. Larochelle, G.-J. M. Kruijff, N. Smets, T. Mioch, and P. Groenewegen. Estab-
lishing human situation awareness using a multi-modal operator control unit in
an urban search & rescue human-robot team. IEEE, 2011. 2.5

M. Le Goc, L. H. Kim, A. Parsaei, J.-D. Fekete, P. Dragicevic, and S. Follmer.
Zooids: Building blocks for swarm user interfaces. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology, pages 97–109.
ACM, 2016. 2.1.1, 2.2.4

J. D. Lee and K. A. See. Trust in automation: Designing for appropriate reliance.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 46
(1):50–80, 2004. 2.2

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An operating system for sensor
networks. In Ambient intelligence, pages 115–148. Springer, 2005. 2.1.1

M. Lewis, J. Polvichai, K. Sycara, and P. Scerri. Scaling-up human control for large
uav teams. Human factors of remotely operated vehicles, 7:237–250, 2006. 2.2

B. Lickel, D. L. Hamilton, G. Wieczorkowska, A. Lewis, S. J. Sherman, and A. N.
Uhles. Varieties of groups and the perception of group entitativity. Journal of
personality and social psychology, 78(2):223, 2000. 2.4

B. Lickel, D. L. Hamilton, and S. J. Sherman. Elements of a lay theory of groups:
Types of groups, relational styles, and the perception of group entitativity.
Personality and Social Psychology Review, 5(2):129–140, 2001. 2.4

A. M. Liu, C. M. Oman, R. Galvan, and A. Natapoff. Predicting space telerobotic
operator training performance from human spatial ability assessment. Acta
Astronautica, 92(1):38–47, 2013. 6

S. G. Loizou and V. Kumar. Biologically inspired bearing-only navigation and
tracking. In Decision and Control, 2007 46th IEEE Conference on, pages 1386–
1391. IEEE, 2007. 7.1

Y. K. Lopes, A. B. Leal, T. J. Dodd, and R. Groß. Application of supervisory control
theory to swarms of e-puck and kilobot robots. In International Conference on
Swarm Intelligence, pages 62–73. Springer, 2014. 10

Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß. Supervisory
control theory applied to swarm robotics. Swarm Intelligence, 10(1):65–97, 2016.
2.3.7, 10

Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß. Probabilistic
supervisory control theory (psct) applied to swarm robotics. In Proceedings

273

of the 16th Conference on Autonomous Agents and MultiAgent Systems, pages
1395–1403. International Foundation for Autonomous Agents and Multiagent
Systems, 2017. 2.3.7

C. I. Lopez, J. Kuczynski, and H. A. Yanco. Unified human and robot command
for disaster recovery situations. In Technologies for Homeland Security (HST),
2017 IEEE International Symposium on, pages 1–6. IEEE, 2017. 2.5

V. J. Lumelsky and A. A. Stepanov. Path-planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2
(1-4):403–430, 1987. 7.3, 7.5.2

M. Mamei, F. Zambonelli, and L. Leonardi. Co-fields: Towards a unifying approach
to the engineering of swarm intelligent systems. In Engineering Societies in the
Agents World III, pages 68–81. Springer, 2003. 2.3.3

M. D. Manning, C. E. Harriott, S. T. Hayes, J. A. Adams, and A. E. Seiffert. Heuris-
tic evaluation of swarm metrics’ effectiveness. In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot Interaction Extended
Abstracts, pages 17–18. ACM, 2015. 2.2.1

Z. Mason. Programming with stigmergy: using swarms for construction. Proceedings
of Artificial Life, 8:371–374, 2003. 2.3.2

M. J. Mataric. Navigating with a rat brain: a neurobiologically inspired model. In
From Animals to Animats; Proceedings of the First International Conference on
Simulation of Adaptive Behavior. MIT Press, Cambridge, Mass, page 81, 1991.
7.6

M. J. Matari. Interaction and intelligent behavior. Technical report, MAS-
SACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1994. 7.5.4

S. J. McDonald, M. B. Colton, C. K. Alder, and M. A. Goodrich. Haptic shape-
based management of robot teams in cordon and patrol. In Proceedings of the
2017 ACM/IEEE International Conference on Human-Robot Interaction, pages
380–388. ACM, 2017. 4.6.1

J. McLurkin, J. Smith, J. Frankel, D. Sotkowitz, D. Blau, and B. Schmidt. Speaking
swarmish: Human-robot interface design for large swarms of autonomous mobile
robots. In AAAI Spring Symposium: To Boldly Go Where No Human-Robot
Team Has Gone Before, pages 72–75, 2006. 2.2

J. McLurkin, A. J. Lynch, S. Rixner, T. W. Barr, A. Chou, K. Foster, and S. Bilstein.
A low-cost multi-robot system for research, teaching, and outreach. In Distributed
Autonomous Robotic Systems, pages 597–609. Springer, 2013. 2.1.1

274

J. D. McLurkin. Stupid robot tricks: A behavior-based distributed algorithm library
for programming swarms of robots. PhD thesis, Massachusetts Institute of
Technology, 2004. 2.3.4, 8.4

D. McNeill. So you think gestures are nonverbal? Psychological review, 92(3):350,
1985. 5.1

A. M. Mehta, J. DelPreto, K. W. Wong, S. Hamill, H. Kress-Gazit, and D. Rus.
Robot creation from functional specifications. In Robotics Research, pages 631–648.
Springer, 2018. 2.3.7

M. Micire, M. Desai, A. Courtemanche, K. M. Tsui, and H. A. Yanco. Analysis
of natural gestures for controlling robot teams on multi-touch tabletop surfaces.
In Proceedings of the ACM International Conference on Interactive Tabletops
and Surfaces, ITS ’09, pages 41–48, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-733-2. doi: 10.1145/1731903.1731912. URL http://doi.acm.org/

10.1145/1731903.1731912. 2.2, 2.2.2, 2.5, 4

M. Micire, M. Desai, J. L. Drury, E. McCann, A. Norton, K. M. Tsui, and H. A.
Yanco. Design and validation of two-handed multi-touch tabletop controllers
for robot teleoperation. In Proceedings of the 16th international conference on
Intelligent user interfaces, pages 145–154. ACM, 2011. 6.1

M. J. Micire. MULTI-TOUCH INTERACTION FOR ROBOT COMMAND AND
CONTROL. PhD thesis, Citeseer, 2010. 4.4, 4.4.1, 4.4.3, 5.3, 6, 6.7, 9.3

A. G. Millard, R. Joyce, J. A. Hilder, C. Fleşeriu, L. Newbrook, W. Li, L. J. McDaid,
and D. M. Halliday. The pi-puck extension board: a raspberry pi interface for
the e-puck robot platform. In Intelligent Robots and Systems (IROS), 2017
IEEE/RSJ International Conference on, pages 741–748. IEEE, 2017. 1

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for
education in engineering. In Proceedings of the 9th conference on autonomous robot
systems and competitions, volume 1, pages 59–65. IPCB: Instituto Politécnico de
Castelo Branco, 2009. 7.1

L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi. Team-level programming of
drone sensor networks. In Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems, pages 177–190. ACM, 2014. 2.3.6

M. A. Nacenta, Y. Kamber, Y. Qiang, and P. O. Kristensson. Memorability of pre-
designed and user-defined gesture sets. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1099–1108. ACM, 2013. 4

S. Nagavalli. Algorithms for timing and sequencing behaviors in robotic swarms.
2018. 2.4

http://doi.acm.org/10.1145/1731903.1731912
http://doi.acm.org/10.1145/1731903.1731912

275

J. Nagi, A. Giusti, L. M. Gambardella, and G. A. Di Caro. Human-swarm interaction
using spatial gestures. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 3834–3841. IEEE, 2014a. 2.2.4

J. Nagi, A. Giusti, F. Nagi, L. M. Gambardella, and G. A. Di Caro. Online feature
extraction for the incremental learning of gestures in human-swarm interaction.
In Robotics and Automation (ICRA), 2014 IEEE International Conference on,
pages 3331–3338. IEEE, 2014b. 2.2.4

R. Nagpal. A catalog of biologically-inspired primitives for engineering self-
organization. In Engineering Self-Organising Systems, pages 53–62. Springer,
2004. 2.3.4, 8.4

R. Nagpal and M. Mamei. Engineering amorphous computing systems. In Method-
ologies and Software Engineering for Agent Systems, pages 303–320. Springer,
2004. 2.3.1

N. Napp and E. Klavins. A compositional framework for programming stochastically
interacting robots. The International Journal of Robotics Research, 30(6):713–729,
2011. 2.3.4, 9.3

J. Ng and T. Bräunl. Performance comparison of bug navigation algorithms. Journal
of Intelligent and Robotic Systems, 50(1):73–84, 2007. 7.5, 7.6

S. Nunnally, P. Walker, A. Kolling, N. Chakraborty, M. Lewis, K. Sycara, and
M. Goodrich. Human influence of robotic swarms with bandwidth and localization
issues. In Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, pages 333–338. IEEE, 2012. 2.2.4

D. R. Olsen and M. A. Goodrich. Metrics for evaluating human-robot interactions.
In Proceedings of PERMIS, volume 2003, page 4, 2003. 2.2

D. R. Olsen, Jr. and S. B. Wood. Fan-out: Measuring human control of multiple
robots. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, pages 231–238, New York, NY, USA, 2004. ACM. ISBN 1-
58113-702-8. doi: 10.1145/985692.985722. URL http://doi.acm.org/10.1145/

985692.985722. 2.2

E. Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), pages
3400–3407. IEEE, May 2011. 3.2

E. Olson, J. Strom, R. Goeddel, R. Morton, P. Ranganathan, and A. Richardson.
Exploration and mapping with autonomous robot teams. Communications of
the ACM, 56(3), March 2013. URL http://doi.acm.org/10.1145/2428556.

2428574. 2.1.2

http://doi.acm.org/10.1145/985692.985722
http://doi.acm.org/10.1145/985692.985722
http://doi.acm.org/10.1145/2428556.2428574
http://doi.acm.org/10.1145/2428556.2428574

276

A. Özdemir, M. Gauci, and R. Gross. Shepherding with robots that do not compute.
In Artificial Life Conference Proceedings 14, pages 332–339. MIT Press, 2017.
2.3.5

R. OGrady, M. Birattari, and M. Dorigo. Swarmanoid, the movie. AAAI-11 Video
Proceedings, 2011. 3.1.4

D. W. Palmer, M. Kirschenbaum, and L. Seiter. Emergence-oriented programming.
In Systems, Man and Cybernetics, 2005 IEEE International Conference on,
volume 2, pages 1441–1448. IEEE, 2005a. 2.3.5

D. W. Palmer, M. Kirschenbaum, L. M. Seiter, J. Shifflet, and P. Kovacina. Behav-
ioral feedback as a catalyst for emergence in multi-agent systems. In Advanced
Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Confer-
ence on, pages 1575–1580. IEEE, 2005b. 1.1, 2.3.5, 2.3.5

R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A model for types and levels
of human interaction with automation. Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, 30(3):286–297, 2000. 2.2, 2.1

R. Parasuraman, S. Galster, P. Squire, H. Furukawa, and C. Miller. A flexible
delegation-type interface enhances system performance in human supervision of
multiple robots: Empirical studies with roboflag. IEEE Transactions on systems,
man, and cybernetics-part A: Systems and Humans, 35(4):481–493, 2005. 2.2.4

M. Patil, T. Abukhalil, S. Patel, and T. Sobh. Ub robot swarmdesign, implementa-
tion, and power management. In Control and Automation (ICCA), 2016 12th
IEEE International Conference on, pages 577–582. IEEE, 2016. 3.4

D. Payton, R. Estkowski, and M. Howard. Compound behaviors in pheromone
robotics. Robotics and Autonomous Systems, 44(3):229–240, 2003. 2.3.2

D. W. Payton, M. J. Daily, B. Hoff, M. D. Howard, and C. L. Lee. Pheromone
robotics. In Intelligent Systems and Smart Manufacturing, pages 67–75. Interna-
tional Society for Optics and Photonics, 2001. 2.3.2

R. Pelrine, A. Wong-Foy, B. McCoy, D. Holeman, R. Mahoney, G. Myers, J. Herson,
and T. Low. Diamagnetically levitated robots: An approach to massively parallel
robotic systems with unusual motion properties. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 739–744. IEEE, 2012.
1.2.3, 2.1.1

J. Penders, L. Alboul, U. Witkowski, A. Naghsh, J. Saez-Pons, S. Herbrechtsmeier,
and M. El-Habbal. A robot swarm assisting a human fire-fighter. Advanced
Robotics, 25(1-2):93–117, 2011. 2.2.5

277

A. Perlis. Epigrams in programming, 1982. URL http://www.cs.yale.edu/homes/

perlis-alan/quotes.html. 8.2

D. Pickem, M. Lee, and M. Egerstedt. The gritsbot in its natural habitat-a multi-
robot testbed. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 4062–4067. IEEE, 2015. 2.1.1, 3.3.1

C. Pinciroli, V. Trianni, R. OGrady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews,
E. Ferrante, G. Di Caro, F. Ducatelle, et al. Argos: a modular, parallel, multi-
engine simulator for multi-robot systems. Swarm intelligence, 6(4):271–295, 2012.
7.2

C. Pinciroli, A. Lee-Brown, and G. Beltrame. Buzz: An extensible programming
language for self-organizing heterogeneous robot swarms. CoRR, abs/1507.05946,
2015. URL http://arxiv.org/abs/1507.05946. 2.3.6

C. Pinciroli, A. Lee-Brown, and G. Beltrame. A tuple space for data sharing in
robot swarms. In Proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies (formerly BIONETICS),
pages 287–294. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2016. 2.3.2

D. Pinelle, N. Wong, and T. Stach. Heuristic evaluation for games: usability
principles for video game design. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1453–1462. ACM, 2008. 6.1

J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian. Crazyswarm: A large
nano-quadcopter swarm. In Robotics and Automation (ICRA), 2017 IEEE
International Conference on, pages 3299–3304. IEEE, 2017. 2.1.1

J. Price, D. Laird, and I. Raptis. Spider bots: A low cost platform for testing and
validating cooperative control algorithms. In ASME 2014 Dynamic Systems and
Control Conference, pages V001T14A005–V001T14A005. American Society of
Mechanical Engineers, 2014. 3.4

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop on
Open Source Software, 2009. 4.1

M. Quinn. A comparison of approaches to the evolution of homogeneous multi-robot
teams. In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on,
volume 1, pages 128–135. IEEE, 2001a. 2.3.5

M. Quinn. Evolving communication without dedicated communication channels. In
Advances in Artificial Life, pages 357–366. Springer, 2001b. 2.3.5

http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://www.cs.yale.edu/homes/perlis-alan/quotes.html
http://arxiv.org/abs/1507.05946

278

M. Quinn, L. Smith, G. Mayley, and P. Husbands. Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors.
Philosophical Transactions of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 361(1811):2321–2343, 2003. 2.3.5

M. Rahimi, S. Gibb, Y. Shen, and H. M. La. A comparison of various approaches
to reinforcement learning algorithms for multi-robot box pushing. arXiv preprint
arXiv:1809.08337, 2018. 7.5.5

T. S. Ray. An approach to the synthesis of life. 1991. 2.3.5

C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
ACM Siggraph Computer Graphics, volume 21, pages 25–34. ACM, 1987. 2.2.4

B. Ricks, C. W. Nielsen, M. Goodrich, et al. Ecological displays for robot in-
teraction: A new perspective. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 3, pages
2855–2860. IEEE, 2004. 2.2

M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal. Kilobot: A low cost
robot with scalable operations designed for collective behaviors. Robotics and
Autonomous Systems, 62(7):966–975, 2014a. 1.2.1, 2.1.1, 3.1, 3.3.1

M. Rubenstein, A. Cornejo, and R. Nagpal. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799, 2014b. ISSN 0036-
8075. doi: 10.1126/science.1254295. URL http://science.sciencemag.org/

content/345/6198/795. 7.1

J. Seyfried, M. Szymanski, N. Bender, R. Estana, M. Thiel, and H. Wörn. The i-
swarm project: Intelligent small world autonomous robots for micro-manipulation.
In Swarm Robotics, pages 70–83. Springer, 2005. 2.1.1

J. Shah, J. Wiken, B. Williams, and C. Breazeal. Improved human-robot team
performance using chaski, a human-inspired plan execution system. In Proceedings
of the 6th international conference on Human-robot interaction, pages 29–36. ACM,
2011. 2.5

T. Soule and R. B. Heckendorn. Cotsbots: computationally powerful, low-cost
robots for computer science curriculums. Journal of Computing Sciences in
Colleges, 27(1):180–187, 2011. 2.1.1, 2.1.2

R. Spica and P. R. Giordano. Active decentralized scale estimation for bearing-
based localization. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 5084–5091. IEEE, 2016. 7.1

http://science.sciencemag.org/content/345/6198/795
http://science.sciencemag.org/content/345/6198/795

279

D. St-Onge, V. S. Varadharajan, G. Li, I. Svogor, and G. Beltrame. ROS and buzz:
consensus-based behaviors for heterogeneous teams. CoRR, abs/1710.08843, 2017.
URL http://arxiv.org/abs/1710.08843. 10

D. St-Onge, C. Pinciroli, and G. Beltrame. Circle formation with computation-free
robots shows emergent behavioural structure. 2018. 2.3.5

K. J. Stewart. Trust transfer on the world wide web. Organization Science, 14(1):
5–17, 2003. 2.4

Strategic Capabilities Office. Perdix fact sheet, 2015. URL https://www.defense.

gov/Portals/1/Documents/pubs/Perdix%20Fact%20Sheet.pdf. 2.2.4

K. Sugawara, N. Correll, and D. Reishus. Object transportation by granular
convection using swarm robots. In Distributed autonomous robotic systems, pages
135–147. Springer, 2014. 7.5.5

D. J. Sumpter and M. Beekman. From nonlinearity to optimality: pheromone trail
foraging by ants. Animal behaviour, 66(2):273–280, 2003. 2.3.2

R. Suzuki, J. Kato, M. D. Gross, and T. Yeh. Reactile: Programming swarm user
interfaces through direct physical manipulation. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, page 199. ACM, 2018.
2.2.4

S. P. Swinnen and N. Wenderoth. Two hands, one brain: cognitive neuroscience of
bimanual skill. Trends in cognitive sciences, 8(1):18–25, 2004. 6.3

T. Tammet, J. Vain, A. Puusepp, E. Reilent, and A. Kuusik. Rfid-based communi-
cations for a self-organising robot swarm. In Self-Adaptive and Self-Organizing
Systems, 2008. SASO’08. Second IEEE International Conference on, pages 45–54.
IEEE, 2008. 2.1.2

A. Tapus and R. Siegwart. Incremental robot mapping with fingerprints of places.
In IROS, volume 1, pages 2429–2434, 2005. 7.6

K. Taylor and S. M. LaValle. I-bug: An intensity-based bug algorithm. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on, pages
3981–3986. IEEE, 2009. 7.3, 7.6

P. Thomas and R. Macredie. Games and the design of humancomputer interfaces.
Educational and Training Technology International, 31(2):134–142, 1994. doi: 10.
1080/0954730940310208. URL https://doi.org/10.1080/0954730940310208.
6.1

M. Tomita and M. Yamamoto. A sensor based navigation algorithm of a mobile
robot with moving obstacles in its workspace assuring convergence property.
Memoirs of the Faculty of Engineering, Kyushu University, 69(2), 2009. 7.5

http://arxiv.org/abs/1710.08843
https://www.defense.gov/Portals/1/Documents/pubs/Perdix%20Fact%20Sheet.pdf
https://www.defense.gov/Portals/1/Documents/pubs/Perdix%20Fact%20Sheet.pdf
https://doi.org/10.1080/0954730940310208

280

E. Tuci, M. H. M. Alkilabi, and O. Akanyeti. Cooperative object transport in
multi-robot systems: A review of the state-of-the-art. Frontiers in Robotics and
AI, 5:59, 2018. 7.5.5

A. M. Turing. The chemical basis of morphogenesis. Philosophical Transactions of
the Royal Society of London B: Biological Sciences, 237(641):37–72, 1952. 2.3.1,
2.3.2

A. Van Dam. Post-wimp user interfaces. Communications of the ACM, 40(2):63–67,
1997. 2.2.3

D. Vanacken, A. Demeure, K. Luyten, and K. Coninx. Ghosts in the interface:
Meta-user interface visualizations as guides for multi-touch interaction. In Hori-
zontal Interactive Human Computer Systems, 2008. TABLETOP 2008. 3rd IEEE
International Workshop on, pages 81–84. IEEE, 2008. 4

C. Vasile, A. Pavel, and C. Buiu. Integrating human swarm interaction in a
distributed robotic control system. In Automation science and engineering
(CASE), 2011 IEEE conference on, pages 743–748. IEEE, 2011. 2.2.4

K. J. Vicente. Ecological interface design: Progress and challenges. Human Factors:
The Journal of the Human Factors and Ergonomics Society, 44(1):62–78, 2002.
2.2

K. J. Vicente and J. Rasmussen. Ecological interface design: Theoretical foundations.
Systems, Man and Cybernetics, IEEE Transactions on, 22(4):589–606, 1992. 2.2

M. Viroli, D. Pianini, and J. Beal. Linda in space-time: an adaptive coordina-
tion model for mobile ad-hoc environments. In International Conference on
Coordination Languages and Models, pages 212–229. Springer, 2012. 2.3.6

P. Walker, S. Nunnally, M. Lewis, A. Kolling, N. Chakraborty, and K. Sycara.
Neglect benevolence in human control of swarms in the presence of latency. In
Systems, Man, and Cybernetics (SMC), 2012 IEEE International Conference on,
pages 3009–3014. IEEE, 2012. 2.2.4

H. Wang, M. Lewis, P. Velagapudi, P. Scerri, and K. Sycara. How search and its
subtasks scale in n robots. In Proceedings of the 4th ACM/IEEE International
Conference on Human Robot Interaction, HRI ’09, pages 141–148, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-404-1. doi: 10.1145/1514095.1514122. URL
http://doi.acm.org/10.1145/1514095.1514122. 1, 2.2

T. Wareham and A. Vardy. Viable algorithmic options for designing reactive robot
swarms. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 13
(1):5, 2018. 2.3.5

http://doi.acm.org/10.1145/1514095.1514122

281

J. Wawerla, G. S. Sukhatme, and M. J. Mataric. Collective construction with
multiple robots. In Intelligent Robots and Systems, 2002. IEEE/RSJ International
Conference on, volume 3, pages 2696–2701. IEEE, 2002. 2.3.2

J. Werfel, K. Petersen, and R. Nagpal. Designing collective behavior in a termite-
inspired robot construction team. Science, 343(6172):754–758, 2014. 2.3.2

E. L. Wiener and R. E. Curry. Flight-deck automation: Promises and problems.
Ergonomics, 23(10):995–1011, 1980. 2.2

D. A. Wilder. Perception of groups, size of opposition, and social influence. Journal
of Experimental Social Psychology, 13(3):253–268, 1977. 2.4

D. A. Wilder. Perceiving persons as a group: Effects on attributions of causality
and beliefs. Social Psychology, pages 13–23, 1978. 2.4

S. Wilson, R. Gameros, M. Sheely, M. Lin, K. Dover, R. Gevorkyan, M. Haberland,
A. Bertozzi, and S. Berman. Pheeno, a versatile swarm robotic research and
education platform. IEEE Robotics and Automation Letters, 1(2):884–891, 2016.
2.1.2

A. F. Winfield, W. Liu, J. Nembrini, and A. Martinoli. Modelling a wireless
connected swarm of mobile robots. Swarm Intelligence, 2(2):241–266, 2008. 8.3

J. O. Wobbrock, M. R. Morris, and A. D. Wilson. User-defined gestures for surface
computing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1083–1092. ACM, 2009. 2.2.2, 4, 4.1

H. A. Yanco, J. L. Drury, and J. Scholtz. Beyond usability evaluation: Analysis
of human-robot interaction at a major robotics competition. Human–Computer
Interaction, 19(1-2):117–149, 2004. 2.2

J. Yao, T. Fernando, and H. Wang. A multi-touch natural user interface framework.
In Systems and Informatics (ICSAI), 2012 International Conference on, pages
499–504. IEEE, 2012. 2.2.2

Appendices

282

Appendix A

Coding Definitions for User

Gestures

General Points

Code the time that the user ends the gesture (takes their finger off the screen), to

at least 0.1 second, 0.01 second is better.

Code all interactions with the screen. Some users draw on the screen

with their finger while explaining their commands, or describing the reaction they

would expect from the system. These should be coded because

• The system, being a dumb computer, can’t determine the user’s intentions

• Everyone coding the same things helps with inter-coder reliability

Use the “example” flag when coding these actions. The example flag is

also used for if the user repeats their command while describing it, but not for the

first time they do it.

283

284

• Do not code non-contact examples, which is to say when the user is discussing

their thinking and not touching the screen, even if they are repeating an

action that they did while touching the screen. Only count examples that

touch the screen.

Lasso and Box Select are essentially specific forms of Drag, but the users

frequently clarify these actions by saying things like “I’d take these robots” or

“Select some robots...”, or by mentioning their inspiration for the action, such as

Real Time Strategy (RTS) games or selecting multiple files on the desktop. Users

are generally consistent, so if a user has used Box Select or Lasso previously with

a clear statement of their intent, future Box Selections or Lassos can be coded as

such without requiring the user to say what they’re doing.

Generally, if the user does the same action with both hands, and the

actions have the same object, such as dragging the robots to one point with both

hands, it’s a single action, but coded as 2-handed. If the actions have different

objects, such as dragging one group of robots with one hand and a different group

with the other hand, it’s two drag actions, although they may have very similar or

the same ending time.

Gestures

Drag - User places their finger or fingers down and moves them to a different

location while touching the screen. The drag ends when the user lifts their finger,

so drawing a circle around robots and then to another location is a single drag

action, not a lasso followed by a drag.

• If two or more drags are performed at the same time on the same object, code

it as one instance of two-handed drag, not two instances of drag.

285

• If two or more drags are performed at the same time, but have different

objects, code it as two drags with different objects.

• If the user is drawing a specific form, use the “draw” flag of the drag code,

and describe what they drew.

• If a user lifts their finger while drawing something in multiple parts, such as

writing out words, or drawing arrowheads on lines, code each time they lift

their finger as a separate drag.

• A person dragging the side of their finger is an “other”, not a “drag”

UI - User interacts with the screen while describing a UI element such as

a menu, drop-down box, on-screen joystick, or similar. Also used for description of

a sequence of events, such as the user saying “I would pull up a menu” or “I would

type in a command”.

• Do not code the user describing something that they would like to have in

the UI unless they are describing how they would use it to issue commands

for the current task.

• If the user taps for a menu, or drags a menu down, code it as UI, not as a tap

or drag.

• Code UI actions at the end of the action, not at the end of the user description.

• If the user taps the same button many times, code each time (don’t combine

them)

Tap - User places finger on screen and lifts it immediately, without moving

it a significant distance. Taps longer than one second are “Holds”, as defined below.

286

Double-tap - User taps twice with both taps falling within an inch of

each other and within one second, and without describing tapping on something

else, such as tapping to bring up a menu and then tapping something on that menu.

• Taps for actions such as drawing a dotted line should be coded as individual

taps. Double-taps are coded as taps with the -c (for “count”) flag set to 2.

Triple-tap - As with double-tap, but with three taps.

• Anything beyond three taps should be coded as individual taps, but obvi-

ously with close-together time codes. Quadruple-taps and beyond are also

comparatively rare.

• Triple-taps are coded as taps with the -c (for “count”) flag set to 3.

Hold - User places one finger on the screen and leaves it there without

moving for more than one second. Code the time at the end of the hold, when they

lift their finger.

• Holds are coded as taps with the -h (for “hold”) flag.

Pinch - User places two fingers on the screen, resulting in two points of

contact, and moves them towards each other in a line.

• The Pinch code has flags for specifying the number of fingers and hands used,

please code them appropriately.

• Multiple pinches at the same time on the same object should be coded as a

single pinch instance. For a case where a user makes a pinch gesture with

both hands at once, code it as a single pinch, with two hands and four fingers.

• Multiple pinches at the same time on different objects should be coded as

separate pinches, with the -o/object flag describing which things were pinched.

287

Reverse pinch - User places two fingers on the screen, resulting in two

points of contact, and moves them away from each other in a line.

• The Pinch code has flags for specifying the number of fingers and hands used,

please code them appropriately.

Lasso - User touches on or near the robots and moves their finger in

a closed shape (usually a circle or oval) around or over some set of the robots.

Immediately precedes issuing some other command to the selected group.

• If it is unclear whether the user intended to perform this action as a selection,

code it as a drag.

Box select - User touches on or near the robots and drags their finger

diagonally across the robots in a straight line, then lifts their finger. Immediately

precedes issuing some other command to the selected group.

• If it is unclear whether the user intended to perform this action as a selection,

code it as a drag.

Voice command - Statements addressed to the robots, such as “Robots,

go to area A”, or statements such as “I would tell the robots to form a square”.

Code the time of voice commands at the end of the user’s full sentence.

• If the user says something like “Robots, do X and then do Y”, that’s one

voice command, don’t break it into two commands at the “and then”.

Other - Anything not listed above, but intended by the user as a command

for the robot. This code has a description field in the coding program, please use it

to describe the action.

288

• Gestures over the screen, without contact, and that don’t match the any

of the other commands should generally be coded as “Other”, but only if

they are clearly intended as a command to the robot, not e.g. pointing at

something on the screen or indicating the screen itself.

Appendix B

All Task Slides

1 Robot Case

Figure B.1: One robot: Move to A
Figure B.2: One robot: Move to A
with wall

289

290

Figure B.3: One robot: Stop the
robot

Figure B.4: One robot: Orange to
B, Red to A

Figure B.5: One robot: Orange to
A, Red to B

Figure B.6: One robot: Divide
group

Figure B.7: One robot: Move the
crate to A

Figure B.8: One robot: Mark de-
fective robot

291

Figure B.9: One robot: Remove
defective robot

Figure B.10: One robot: Patrol the
screen border

Figure B.11: One robot: Patrol
area A

10 Robot Case

Figure B.12: Ten robots: Move to
A

Figure B.13: Ten robots: Move to
A with wall

292

Figure B.14: Ten robots: Stop the
robots

Figure B.15: Ten robots: Divide
around obstacle

Figure B.16: Ten robots: Orange
to B, Red to A

Figure B.17: Ten robots: Orange
to A, Red to B

Figure B.18: Ten robots: Orange
to A, Red to B

Figure B.19: Ten robots: Divide
group

293

Figure B.20: Ten robots: Combine
groups

Figure B.21: Ten robots: Form a
line

Figure B.22: Ten robots: Form a
square

Figure B.23: Ten robots: Move the
crate to area A

Figure B.24: Ten robots: Move the
crate to area A

Figure B.25: Ten robots: Mark the
defective robot

294

Figure B.26: Ten robots: Remove
the defective robot

Figure B.27: Ten robots: Patrol
the screen border

Figure B.28: Ten robots: Patrol
area A

Figure B.29: Ten robots: Disperse
over screen

100 Robot Case

Figure B.30: 100 robots: Move to
A

Figure B.31: 100 robots: Move to
A with wall

295

Figure B.32: 100 robots: Stop the
robots

Figure B.33: 100 robots: Divide
around obstacle

Figure B.34: 100 robots: Orange
to B, Red to A

Figure B.35: 100 robots: Orange
to A, Red to B

Figure B.36: 100 robots: Orange
to A, Red to B

Figure B.37: 100 robots: Divide
group

296

Figure B.38: 100 robots: Combine
groups

Figure B.39: 100 robots: Form a
line

Figure B.40: 100 robots: Form a
square

Figure B.41: 100 robots: Move the
crate to area A

Figure B.42: 100 robots: Move the
crate to area A

Figure B.43: 100 robots: Mark de-
fective robot

297

Figure B.44: 100 robots: Remove
defective robot

Figure B.45: 100 robots: Patrol the
screen border

Figure B.46: 100 robots: Patrol
area A

Figure B.47: 100 robots: Disperse
over screen

1000 Robot Case

Figure B.48: 1000 robots: Move to
A

Figure B.49: 1000 robots: Move to
A with wall

298

Figure B.50: 1000 robots: Stop the
robots

Figure B.51: 1000 robots: Divide
around obstacle

Figure B.52: 1000 robots: Orange
to B, Red to A

Figure B.53: 1000 robots: Orange
to A, Red to B

Figure B.54: 1000 robots: Orange
to A, Red to B

Figure B.55: 1000 robots: Divide
group

299

Figure B.56: 1000 robots: Combine
groups

Figure B.57: 1000 robots: Form a
line

Figure B.58: 1000 robots: Form a
square

Figure B.59: 1000 robots: Move
the crate to area A

Figure B.60: 1000 robots: Move
the crate to area A

Figure B.61: 1000 robots: Mark
defective robot

300

Figure B.62: 1000 robots: Remove
defective robot

Figure B.63: 1000 robots: Patrol
the screen border

Figure B.64: 1000 robots: Patrol
area A

Figure B.65: 1000 robots: Disperse
over screen

Unknown Number of Robots Case

Figure B.66: Unknown number of
robots: Move to A

Figure B.67: Unknown number of
robots: Move to A with wall

301

Figure B.68: Unknown number of
robots: Stop the robots

Figure B.69: Unknown number of
robots: Divide around obstacle

Figure B.70: Unknown number of
robots: Orange to B, Red to A

Figure B.71: Unknown number of
robots: Orange to A, Red to B

Figure B.72: Unknown number of
robots: Orange to A, Red to B

Figure B.73: Unknown number of
robots: Divide group

302

Figure B.74: Unknown number of
robots: Combine groups

Figure B.75: Unknown number of
robots: Form a line

Figure B.76: Unknown number of
robots: Form a square

Figure B.77: Unknown number of
robots: Move the crate to area A

Figure B.78: Unknown number of
robots: Move the crate to area A

Figure B.79: Unknown number of
robots: Patrol the screen border

303

Figure B.80: Unknown number of
robots: Patrol area A

Figure B.81: Unknown number of
robots: Disperse over the screen
area

304

Biographical Sketch

Abraham M. Shultz received his bachelor’s degree in computer science from Worces-

ter Polytechnic Institute in 2004. After graduation, he spent 5 years in industry

as a software developer, working for Radiospire, RSA, and EMC2. He joined the

Robotics Laboratory at UMass Lowell in 2010. Abraham received his master’s

degree in computer science from UMass Lowell in 2016 for work on simulating mouse

cortical cultures and integration of cortical cultures with a robot arm and camera

to build a cybernetic system. The work described in this thesis is an outgrowth of

a personal project to make swarm robotics affordable for home experimenters, a

topic of which he is still fond.

